MOC Doped with Graphene Nanoplatelets: The Influence of the Mixture Preparation Technology on Its Properties
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
20-01866S
Grantová Agentura České Republiky
SGS20/153/OHK1/3T/11
Grant Agency of the Czech Technical University in Prague
PubMed
33809728
PubMed Central
PMC8002252
DOI
10.3390/ma14061450
PII: ma14061450
Knihovny.cz E-resources
- Keywords
- graphene nanoplatelets, magnesium oxychloride cement, mechanical properties, mixing method, structural parameters,
- Publication type
- Journal Article MeSH
The ongoing tendency to create environmentally friendly building materials is nowadays connected with the use of reactive magnesia-based composites. The aim of the presented research was to develop an ecologically sustainable composite material based on MOC (magnesium oxychloride cement) with excellent mechanical, chemical, and physical properties. The effect of the preparation procedure of MOC pastes doped with graphene nanoplatelets on their fresh and hardened properties was researched. One-step and two-step homogenization techniques were proposed as prospective tools for the production of MOC-based composites of advanced parameters. The conducted experiments and analyses covered X-ray fluorescence, scanning electron microscopy, energy-dispersive spectroscopy, high-resolution transmission electron microscopy, sorption analysis, X-ray diffraction, and optical microscopy. The viscosity of the fresh mixtures was monitored using a rotational viscometer. For the hardened composites, macro- and micro-structural parameters were measured together with the mechanical parameters. These tests were performed after 7 days and 14 days. The use of a carbon-based nanoadditive led to a significant drop in porosity, thus densifying the MOC matrix. Accordingly, the mechanical resistance was greatly improved by graphene nanoplatelets. The two-step homogenization procedure positively affected all researched functional parameters of the developed composites (e.g., the compressive strength increase of approximately 54% after 7 days, and 37% after 14 days, respectively) and can be recommended for the preparation of advanced functional materials reinforced with graphene.
See more in PubMed
Cataldi P., Athanassiou A., Bayer I.S. Graphene nanoplatelets-based advanced materials and recent progress in sustainable applications. Appl. Sci. 2018;8:1438. doi: 10.3390/app8091438. DOI
Du H., Pang S.D. Enhancement of barrier properties of cement mortar with graphene nanoplatelet. Cem. Concr. Res. 2015;76:10–19. doi: 10.1016/j.cemconres.2015.05.007. DOI
Tong T., Fan Z., Liu Q., Wang S., Tan S., Yu Q. Investigation of the effects of graphene and graphene oxide nanoplatelets on the micro- and macro-properties of cementitious materials. Constr. Build. Mater. 2016;106:102–114. doi: 10.1016/j.conbuildmat.2015.12.092. DOI
Wang B., Jiang R., Wu Z. Investigation of the mechanical properties and microstructure of graphene nanoplatelet-cement composite. Nanomaterials. 2016;6:200. doi: 10.3390/nano6110200. PubMed DOI PMC
Liu Q., Xu Q., Yu Q., Gao R., Tong T. Experimental investigation on mechanical and piezoresistive properties of cementitious materials containing graphene and graphene oxide nanoplatelets. Constr. Build. Mater. 2016;127:565–576. doi: 10.1016/j.conbuildmat.2016.10.024. DOI
Tao J., Wang X., Wang Z., Zeng Q. Graphene nanoplatelets as an effective additive to tune the microstructures and piezoresistive properties of cement-based composites. Constr. Build. Mater. 2019;209:665–678. doi: 10.1016/j.conbuildmat.2019.03.173. DOI
Le J.-L., Du H., Pang S.D. Use of 2d graphene nanoplatelets (gnp) in cement composites for structural health evaluation. Compos. Part B Eng. 2014;67:555–563. doi: 10.1016/j.compositesb.2014.08.005. DOI
Du H., Gao H.J., Pang S.D. Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet. Cem. Concr. Res. 2016;83:114–123. doi: 10.1016/j.cemconres.2016.02.005. DOI
Yang H., Cui H., Tang W., Li Z., Han N., Xing F. A critical review on research progress of graphene/cement based composites. Compos. Part A Appl. Sci. Manuf. 2017;102:273–296. doi: 10.1016/j.compositesa.2017.07.019. DOI
Sedaghat A., Ram M.K., Zayed A., Kamal R., Shanahan N. Investigation of physical properties of graphene-cement composite for structural applications. J. Compos. Mater. 2014;4:10. doi: 10.4236/ojcm.2014.41002. DOI
Gholampour A., Valizadeh Kiamahalleh M., Tran D.N.H., Ozbakkaloglu T., Losic D. From graphene oxide to reduced graphene oxide: Impact on the physiochemical and mechanical properties of graphene–cement composites. ACS Appl. Mater. Interfaces. 2017;9:43275–43286. doi: 10.1021/acsami.7b16736. PubMed DOI
Alkhateb H., Al-Ostaz A., Cheng A.H.-D., Li X. Materials genome for graphene-cement nanocomposites. J. Nanomech. Micromech. 2013;3:67–77. doi: 10.1061/(ASCE)NM.2153-5477.0000055. DOI
Liang A., Jiang X., Hong X., Jiang Y., Shao Z., Zhu D. Recent developments concerning the dispersion methods and mechanisms of graphene. Coatings. 2018;8:33. doi: 10.3390/coatings8010033. DOI
Al-Dahawi A., Öztürk O., Emami F., Yıldırım G., Şahmaran M. Effect of mixing methods on the electrical properties of cementitious composites incorporating different carbon-based materials. Constr. Build. Mater. 2016;104:160–168. doi: 10.1016/j.conbuildmat.2015.12.072. DOI
Bai S., Jiang L., Xu N., Jin M., Jiang S. Enhancement of mechanical and electrical properties of graphene/cement composite due to improved dispersion of graphene by addition of silica fume. Constr. Build. Mater. 2018;164:433–441. doi: 10.1016/j.conbuildmat.2017.12.176. DOI
Du H., Pang S.D. Dispersion and stability of graphene nanoplatelet in water and its influence on cement composites. Constr. Build. Mater. 2018;167:403–413. doi: 10.1016/j.conbuildmat.2018.02.046. DOI
Chuah S., Li W., Chen S.J., Sanjayan J.G., Duan W.H. Investigation on dispersion of graphene oxide in cement composite using different surfactant treatments. Constr. Build. Mater. 2018;161:519–527. doi: 10.1016/j.conbuildmat.2017.11.154. DOI
Li X., Korayem A.H., Li C., Liu Y., He H., Sanjayan J.G., Duan W.H. Incorporation of graphene oxide and silica fume into cement paste: A study of dispersion and compressive strength. Constr. Build. Mater. 2016;123:327–335. doi: 10.1016/j.conbuildmat.2016.07.022. DOI
Liu J., Fu J., Yang Y., Gu C. Study on dispersion, mechanical and microstructure properties of cement paste incorporating graphene sheets. Constr. Build. Mater. 2019;199:1–11. doi: 10.1016/j.conbuildmat.2018.12.006. DOI
Yoo D.-Y., Sohn H.-K., Borges P.H.R., Fediuk R., Kim S. Enhancing the tensile performance of ultra-high-performance concrete through strategic use of novel half-hooked steel fibers. J. Mater. Res. Technol. 2020;9:2914–2925. doi: 10.1016/j.jmrt.2020.01.042. DOI
Lesovik V., Fediuk R., Glagolev E., Lashina I., Mochalov A., Timokhin R. Features of building composites designing for their exploitation in extreme conditions. IOP Conf. Ser. Mater. Sci. Eng. 2018;456:012054. doi: 10.1088/1757-899X/456/1/012054. DOI
Svintsov A.P., Shchesnyak E.L., Galishnikova V.V., Fediuk R.S., Stashevskaya N.A. Effect of nano-modified additives on properties of concrete mixtures during winter season. Constr. Build. Mater. 2020;237:117527. doi: 10.1016/j.conbuildmat.2019.117527. DOI
IEA . Cement. IEA; Paris, France: 2020.
Maddalena R., Roberts J.J., Hamilton A. Can portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements. J. Clean. Prod. 2018;186:933–942. doi: 10.1016/j.jclepro.2018.02.138. DOI
Power I.M., Dipple G.M., Francis P.S. Assessing the carbon sequestration potential of magnesium oxychloride cement building materials. Cem. Concr. Compos. 2017;78:97–107. doi: 10.1016/j.cemconcomp.2017.01.003. DOI
Záleská M., Pavlíková M., Jankovský O., Lojka M., Antončík F., Pivák A., Pavlík Z. Influence of waste plastic aggregate and water-repellent additive on the properties of lightweight magnesium oxychloride cement composite. Appl. Sci. 2019;9:5463. doi: 10.3390/app9245463. DOI
Pivák A., Pavlíková M., Záleská M., Lojka M., Jankovský O., Pavlík Z. Magnesium oxychloride cement composites with silica filler and coal fly ash admixture. Materials. 2020;13:2537. doi: 10.3390/ma13112537. PubMed DOI PMC
Jiříčková A., Lojka M., Lauermannová A.-M., Antončík F., Sedmidubský D., Pavlíková M., Záleská M., Pavlík Z., Jankovský O. Synthesis, structure, and thermal stability of magnesium oxychloride 5Mg(OH)2·MgCl2·8H2O. Appl. Sci. 2020;10:1683. doi: 10.3390/app10051683. DOI
Li K., Wang Y., Yao N., Zhang A. Recent progress of magnesium oxychloride cement: Manufacture, curing, structure and performance. Constr. Build. Mater. 2020;255:119381. doi: 10.1016/j.conbuildmat.2020.119381. DOI
Pivák A., Pavlíková M., Záleská M., Lojka M., Lauermannová A.-M., Jankovský O., Pavlík Z. Low-carbon composite based on moc, silica sand and ground porcelain insulator waste. Processes. 2020;8:829. doi: 10.3390/pr8070829. DOI
Lauermannová A.-M., Antončík F., Lojka M., Jankovský O., Pavlíková M., Pivák A., Záleská M., Pavlík Z. The impact of graphene and diatomite admixtures on the performance and properties of high-performance magnesium oxychloride cement composites. Materials. 2020;13:5708. doi: 10.3390/ma13245708. PubMed DOI PMC
Jankovský O., Lojka M., Lauermannová A.-M., Antončík F., Pavlíková M., Záleská M., Pavlík Z., Pivák A., Sedmidubský D. Towards novel building materials: High-strength nanocomposites based on graphene, graphite oxide and magnesium oxychloride. Appl. Mater. Today. 2020;20:100766. doi: 10.1016/j.apmt.2020.100766. DOI
Ferraris C.F., Gaidis J.M. Connection between the rheology of concrete and rheology of cement paste. ACI Mater. J. 1992;89:388–393.
Jankovský O., Lojka M., Lauermannová A.-M., Antončík F., Pavlíková M., Pavlík Z., Sedmidubský D. Carbon dioxide uptake by moc-based materials. Appl. Sci. 2020;10:2254. doi: 10.3390/app10072254. DOI
Shi E., Wang A., Ling Z. Mir, vnir, nir, and raman spectra of magnesium chlorides with six hydration degrees: Implication for mars and europa. J. Raman Spectrosc. 2020;51:1589–1602. doi: 10.1002/jrs.5700. DOI
Sugimoto K., Dinnebier R.E., Hanson J.C. Structures of three dehydration products of bischofite from in situ synchrotron powder diffraction data (MgCl2·nH2O; n = 1, 2, 4) Acta Crystallogr. B. 2007;63:235–242. doi: 10.1107/S0108768107002558. PubMed DOI
Bandara N., Esparza Y., Wu J. Graphite oxide improves adhesion and water resistance of canola protein–graphite oxide hybrid adhesive. Sci. Rep. 2017;7:11538. doi: 10.1038/s41598-017-11966-8. PubMed DOI PMC
Hontoria-Lucas C., López-Peinado A.J., López-González J.d.D., Rojas-Cervantes M.L., Martín-Aranda R.M. Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization. Carbon. 1995;33:1585–1592. doi: 10.1016/0008-6223(95)00120-3. DOI
Posudievsky O.Y., Khazieieva O.A., Koshechko V.G., Pokhodenko V.D. Preparation of graphene oxide by solvent-free mechanochemical oxidation of graphite. J. Mater. Chem. 2012;22:12465–12467. doi: 10.1039/c2jm16073k. DOI
Yuan Y., Rezaee R. Comparative porosity and pore structure assessment in shales: Measurement techniques, influencing factors and implications for reservoir characterization. Energies. 2019;12:2094. doi: 10.3390/en12112094. DOI
Misra A., Mathur R. Magnesium oxychloride cement concrete. Bull. Mater. Sci. 2007;30:239–246. doi: 10.1007/s12034-007-0043-4. DOI
Góchez R., Wambaugh J., Rochner B., Kitchens C.L. Kinetic study of the magnesium oxychloride cement cure reaction. J. Mater. Sci. 2017;52:7637–7646. doi: 10.1007/s10853-017-1013-x. DOI
Lauermannová A.-M., Lojka M., Jankovský O., Faltysová I., Pavlíková M., Pivák A., Záleská M., Pavlík Z. High-performance magnesium oxychloride composites with silica sand and diatomite. J. Mater. Res. Technol. 2021;11:957–969. doi: 10.1016/j.jmrt.2021.01.028. DOI
Guo Y., Zhang Y., Soe K., Pulham M. Recent development in magnesium oxychloride cement. Struct. Concr. 2018;19:1290–1300. doi: 10.1002/suco.201800077. DOI
Matkovic B., Young J.F. Microstructure of magnesium oxychloride cements. Nat. Phys. Sci. 1973;246:79–80. doi: 10.1038/physci246079a0. DOI
Hewlett P., Liska M. Lea’s Chemistry of Cement and Concrete. Butterworth-Heinemann; Oxford, UK: 2019.
Co-Doped Magnesium Oxychloride Composites with Unique Flexural Strength for Construction Use