• This record comes from PubMed

MOC Doped with Graphene Nanoplatelets: The Influence of the Mixture Preparation Technology on Its Properties

. 2021 Mar 16 ; 14 (6) : . [epub] 20210316

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
20-01866S Grantová Agentura České Republiky
SGS20/153/OHK1/3T/11 Grant Agency of the Czech Technical University in Prague

The ongoing tendency to create environmentally friendly building materials is nowadays connected with the use of reactive magnesia-based composites. The aim of the presented research was to develop an ecologically sustainable composite material based on MOC (magnesium oxychloride cement) with excellent mechanical, chemical, and physical properties. The effect of the preparation procedure of MOC pastes doped with graphene nanoplatelets on their fresh and hardened properties was researched. One-step and two-step homogenization techniques were proposed as prospective tools for the production of MOC-based composites of advanced parameters. The conducted experiments and analyses covered X-ray fluorescence, scanning electron microscopy, energy-dispersive spectroscopy, high-resolution transmission electron microscopy, sorption analysis, X-ray diffraction, and optical microscopy. The viscosity of the fresh mixtures was monitored using a rotational viscometer. For the hardened composites, macro- and micro-structural parameters were measured together with the mechanical parameters. These tests were performed after 7 days and 14 days. The use of a carbon-based nanoadditive led to a significant drop in porosity, thus densifying the MOC matrix. Accordingly, the mechanical resistance was greatly improved by graphene nanoplatelets. The two-step homogenization procedure positively affected all researched functional parameters of the developed composites (e.g., the compressive strength increase of approximately 54% after 7 days, and 37% after 14 days, respectively) and can be recommended for the preparation of advanced functional materials reinforced with graphene.

See more in PubMed

Cataldi P., Athanassiou A., Bayer I.S. Graphene nanoplatelets-based advanced materials and recent progress in sustainable applications. Appl. Sci. 2018;8:1438. doi: 10.3390/app8091438. DOI

Du H., Pang S.D. Enhancement of barrier properties of cement mortar with graphene nanoplatelet. Cem. Concr. Res. 2015;76:10–19. doi: 10.1016/j.cemconres.2015.05.007. DOI

Tong T., Fan Z., Liu Q., Wang S., Tan S., Yu Q. Investigation of the effects of graphene and graphene oxide nanoplatelets on the micro- and macro-properties of cementitious materials. Constr. Build. Mater. 2016;106:102–114. doi: 10.1016/j.conbuildmat.2015.12.092. DOI

Wang B., Jiang R., Wu Z. Investigation of the mechanical properties and microstructure of graphene nanoplatelet-cement composite. Nanomaterials. 2016;6:200. doi: 10.3390/nano6110200. PubMed DOI PMC

Liu Q., Xu Q., Yu Q., Gao R., Tong T. Experimental investigation on mechanical and piezoresistive properties of cementitious materials containing graphene and graphene oxide nanoplatelets. Constr. Build. Mater. 2016;127:565–576. doi: 10.1016/j.conbuildmat.2016.10.024. DOI

Tao J., Wang X., Wang Z., Zeng Q. Graphene nanoplatelets as an effective additive to tune the microstructures and piezoresistive properties of cement-based composites. Constr. Build. Mater. 2019;209:665–678. doi: 10.1016/j.conbuildmat.2019.03.173. DOI

Le J.-L., Du H., Pang S.D. Use of 2d graphene nanoplatelets (gnp) in cement composites for structural health evaluation. Compos. Part B Eng. 2014;67:555–563. doi: 10.1016/j.compositesb.2014.08.005. DOI

Du H., Gao H.J., Pang S.D. Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet. Cem. Concr. Res. 2016;83:114–123. doi: 10.1016/j.cemconres.2016.02.005. DOI

Yang H., Cui H., Tang W., Li Z., Han N., Xing F. A critical review on research progress of graphene/cement based composites. Compos. Part A Appl. Sci. Manuf. 2017;102:273–296. doi: 10.1016/j.compositesa.2017.07.019. DOI

Sedaghat A., Ram M.K., Zayed A., Kamal R., Shanahan N. Investigation of physical properties of graphene-cement composite for structural applications. J. Compos. Mater. 2014;4:10. doi: 10.4236/ojcm.2014.41002. DOI

Gholampour A., Valizadeh Kiamahalleh M., Tran D.N.H., Ozbakkaloglu T., Losic D. From graphene oxide to reduced graphene oxide: Impact on the physiochemical and mechanical properties of graphene–cement composites. ACS Appl. Mater. Interfaces. 2017;9:43275–43286. doi: 10.1021/acsami.7b16736. PubMed DOI

Alkhateb H., Al-Ostaz A., Cheng A.H.-D., Li X. Materials genome for graphene-cement nanocomposites. J. Nanomech. Micromech. 2013;3:67–77. doi: 10.1061/(ASCE)NM.2153-5477.0000055. DOI

Liang A., Jiang X., Hong X., Jiang Y., Shao Z., Zhu D. Recent developments concerning the dispersion methods and mechanisms of graphene. Coatings. 2018;8:33. doi: 10.3390/coatings8010033. DOI

Al-Dahawi A., Öztürk O., Emami F., Yıldırım G., Şahmaran M. Effect of mixing methods on the electrical properties of cementitious composites incorporating different carbon-based materials. Constr. Build. Mater. 2016;104:160–168. doi: 10.1016/j.conbuildmat.2015.12.072. DOI

Bai S., Jiang L., Xu N., Jin M., Jiang S. Enhancement of mechanical and electrical properties of graphene/cement composite due to improved dispersion of graphene by addition of silica fume. Constr. Build. Mater. 2018;164:433–441. doi: 10.1016/j.conbuildmat.2017.12.176. DOI

Du H., Pang S.D. Dispersion and stability of graphene nanoplatelet in water and its influence on cement composites. Constr. Build. Mater. 2018;167:403–413. doi: 10.1016/j.conbuildmat.2018.02.046. DOI

Chuah S., Li W., Chen S.J., Sanjayan J.G., Duan W.H. Investigation on dispersion of graphene oxide in cement composite using different surfactant treatments. Constr. Build. Mater. 2018;161:519–527. doi: 10.1016/j.conbuildmat.2017.11.154. DOI

Li X., Korayem A.H., Li C., Liu Y., He H., Sanjayan J.G., Duan W.H. Incorporation of graphene oxide and silica fume into cement paste: A study of dispersion and compressive strength. Constr. Build. Mater. 2016;123:327–335. doi: 10.1016/j.conbuildmat.2016.07.022. DOI

Liu J., Fu J., Yang Y., Gu C. Study on dispersion, mechanical and microstructure properties of cement paste incorporating graphene sheets. Constr. Build. Mater. 2019;199:1–11. doi: 10.1016/j.conbuildmat.2018.12.006. DOI

Yoo D.-Y., Sohn H.-K., Borges P.H.R., Fediuk R., Kim S. Enhancing the tensile performance of ultra-high-performance concrete through strategic use of novel half-hooked steel fibers. J. Mater. Res. Technol. 2020;9:2914–2925. doi: 10.1016/j.jmrt.2020.01.042. DOI

Lesovik V., Fediuk R., Glagolev E., Lashina I., Mochalov A., Timokhin R. Features of building composites designing for their exploitation in extreme conditions. IOP Conf. Ser. Mater. Sci. Eng. 2018;456:012054. doi: 10.1088/1757-899X/456/1/012054. DOI

Svintsov A.P., Shchesnyak E.L., Galishnikova V.V., Fediuk R.S., Stashevskaya N.A. Effect of nano-modified additives on properties of concrete mixtures during winter season. Constr. Build. Mater. 2020;237:117527. doi: 10.1016/j.conbuildmat.2019.117527. DOI

IEA . Cement. IEA; Paris, France: 2020.

Maddalena R., Roberts J.J., Hamilton A. Can portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements. J. Clean. Prod. 2018;186:933–942. doi: 10.1016/j.jclepro.2018.02.138. DOI

Power I.M., Dipple G.M., Francis P.S. Assessing the carbon sequestration potential of magnesium oxychloride cement building materials. Cem. Concr. Compos. 2017;78:97–107. doi: 10.1016/j.cemconcomp.2017.01.003. DOI

Záleská M., Pavlíková M., Jankovský O., Lojka M., Antončík F., Pivák A., Pavlík Z. Influence of waste plastic aggregate and water-repellent additive on the properties of lightweight magnesium oxychloride cement composite. Appl. Sci. 2019;9:5463. doi: 10.3390/app9245463. DOI

Pivák A., Pavlíková M., Záleská M., Lojka M., Jankovský O., Pavlík Z. Magnesium oxychloride cement composites with silica filler and coal fly ash admixture. Materials. 2020;13:2537. doi: 10.3390/ma13112537. PubMed DOI PMC

Jiříčková A., Lojka M., Lauermannová A.-M., Antončík F., Sedmidubský D., Pavlíková M., Záleská M., Pavlík Z., Jankovský O. Synthesis, structure, and thermal stability of magnesium oxychloride 5Mg(OH)2·MgCl2·8H2O. Appl. Sci. 2020;10:1683. doi: 10.3390/app10051683. DOI

Li K., Wang Y., Yao N., Zhang A. Recent progress of magnesium oxychloride cement: Manufacture, curing, structure and performance. Constr. Build. Mater. 2020;255:119381. doi: 10.1016/j.conbuildmat.2020.119381. DOI

Pivák A., Pavlíková M., Záleská M., Lojka M., Lauermannová A.-M., Jankovský O., Pavlík Z. Low-carbon composite based on moc, silica sand and ground porcelain insulator waste. Processes. 2020;8:829. doi: 10.3390/pr8070829. DOI

Lauermannová A.-M., Antončík F., Lojka M., Jankovský O., Pavlíková M., Pivák A., Záleská M., Pavlík Z. The impact of graphene and diatomite admixtures on the performance and properties of high-performance magnesium oxychloride cement composites. Materials. 2020;13:5708. doi: 10.3390/ma13245708. PubMed DOI PMC

Jankovský O., Lojka M., Lauermannová A.-M., Antončík F., Pavlíková M., Záleská M., Pavlík Z., Pivák A., Sedmidubský D. Towards novel building materials: High-strength nanocomposites based on graphene, graphite oxide and magnesium oxychloride. Appl. Mater. Today. 2020;20:100766. doi: 10.1016/j.apmt.2020.100766. DOI

Ferraris C.F., Gaidis J.M. Connection between the rheology of concrete and rheology of cement paste. ACI Mater. J. 1992;89:388–393.

Jankovský O., Lojka M., Lauermannová A.-M., Antončík F., Pavlíková M., Pavlík Z., Sedmidubský D. Carbon dioxide uptake by moc-based materials. Appl. Sci. 2020;10:2254. doi: 10.3390/app10072254. DOI

Shi E., Wang A., Ling Z. Mir, vnir, nir, and raman spectra of magnesium chlorides with six hydration degrees: Implication for mars and europa. J. Raman Spectrosc. 2020;51:1589–1602. doi: 10.1002/jrs.5700. DOI

Sugimoto K., Dinnebier R.E., Hanson J.C. Structures of three dehydration products of bischofite from in situ synchrotron powder diffraction data (MgCl2·nH2O; n = 1, 2, 4) Acta Crystallogr. B. 2007;63:235–242. doi: 10.1107/S0108768107002558. PubMed DOI

Bandara N., Esparza Y., Wu J. Graphite oxide improves adhesion and water resistance of canola protein–graphite oxide hybrid adhesive. Sci. Rep. 2017;7:11538. doi: 10.1038/s41598-017-11966-8. PubMed DOI PMC

Hontoria-Lucas C., López-Peinado A.J., López-González J.d.D., Rojas-Cervantes M.L., Martín-Aranda R.M. Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization. Carbon. 1995;33:1585–1592. doi: 10.1016/0008-6223(95)00120-3. DOI

Posudievsky O.Y., Khazieieva O.A., Koshechko V.G., Pokhodenko V.D. Preparation of graphene oxide by solvent-free mechanochemical oxidation of graphite. J. Mater. Chem. 2012;22:12465–12467. doi: 10.1039/c2jm16073k. DOI

Yuan Y., Rezaee R. Comparative porosity and pore structure assessment in shales: Measurement techniques, influencing factors and implications for reservoir characterization. Energies. 2019;12:2094. doi: 10.3390/en12112094. DOI

Misra A., Mathur R. Magnesium oxychloride cement concrete. Bull. Mater. Sci. 2007;30:239–246. doi: 10.1007/s12034-007-0043-4. DOI

Góchez R., Wambaugh J., Rochner B., Kitchens C.L. Kinetic study of the magnesium oxychloride cement cure reaction. J. Mater. Sci. 2017;52:7637–7646. doi: 10.1007/s10853-017-1013-x. DOI

Lauermannová A.-M., Lojka M., Jankovský O., Faltysová I., Pavlíková M., Pivák A., Záleská M., Pavlík Z. High-performance magnesium oxychloride composites with silica sand and diatomite. J. Mater. Res. Technol. 2021;11:957–969. doi: 10.1016/j.jmrt.2021.01.028. DOI

Guo Y., Zhang Y., Soe K., Pulham M. Recent development in magnesium oxychloride cement. Struct. Concr. 2018;19:1290–1300. doi: 10.1002/suco.201800077. DOI

Matkovic B., Young J.F. Microstructure of magnesium oxychloride cements. Nat. Phys. Sci. 1973;246:79–80. doi: 10.1038/physci246079a0. DOI

Hewlett P., Liska M. Lea’s Chemistry of Cement and Concrete. Butterworth-Heinemann; Oxford, UK: 2019.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...