Co-Doped Magnesium Oxychloride Composites with Unique Flexural Strength for Construction Use
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-01866S
Czech Science Foundation
SGS20/153/OHK1/3T/11
Grant Agency of the Czech Technical University in Prague
20-SVV/2021
Specific university research
PubMed
35057321
PubMed Central
PMC8781469
DOI
10.3390/ma15020604
PII: ma15020604
Knihovny.cz E-zdroje
- Klíčová slova
- co-doped magnesium oxychloride cement, graphene oxide, mechanical and physical parameters, microstructure, morphology and phase composition, oxidized MWCNTs,
- Publikační typ
- časopisecké články MeSH
In this study, the combined effect of graphene oxide (GO) and oxidized multi-walled carbon nanotubes (OMWCNTs) on material properties of the magnesium oxychloride (MOC) phase 5 was analyzed. The selected carbon-based nanoadditives were used in small content in order to obtain higher values of mechanical parameters and higher water resistance while maintaining acceptable price of the final composites. Two sets of samples containing either 0.1 wt. % or 0.2 wt. % of both nanoadditives were prepared, in addition to a set of reference samples without additives. Samples were characterized by X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, and energy dispersive spectroscopy, which were used to obtain the basic information on the phase and chemical composition, as well as the microstructure and morphology. Basic macro- and micro-structural parameters were studied in order to determine the effect of the nanoadditives on the open porosity, bulk and specific density. In addition, the mechanical, hygric and thermal parameters of the prepared nano-doped composites were acquired and compared to the reference sample. An enhancement of all the mentioned types of parameters was observed. This can be assigned to the drop in porosity when GO and OMWCNTs were used. This research shows a pathway of increasing the water resistance of MOC-based composites, which is an important step in the development of the new generation of construction materials.
Zobrazit více v PubMed
Sorel S. On a new magnesium cement. CR Acad. Sci. 1867;65:102–104.
Li K., Wang Y., Yao N., Zhang A. Recent progress of magnesium oxychloride cement: Manufacture, curing, structure and performance. Constr. Build. Mater. 2020;255:119381. doi: 10.1016/j.conbuildmat.2020.119381. DOI
Kastiukas G., Ruan S., Unluer C., Liang S., Zhou X. Environmental Assessment of Magnesium Oxychloride Cement Samples: A Case Study in Europe. Sustainability. 2019;11:6957. doi: 10.3390/su11246957. DOI
Beaudoin J.J., Ramachandran V.S. Strength development in magnesium oxychloride and other cements. Cem. Concr. Res. 1975;5:617–630. doi: 10.1016/0008-8846(75)90062-9. DOI
Góchez R., Wambaugh J., Rochner B., Kitchens C. Kinetic study of the magnesium oxychloride cement cure reaction. J. Mater. Sci. 2017;52:7637–7646. doi: 10.1007/s10853-017-1013-x. DOI
Montle J., Mayhan K. The role of magnesium oxychloride as a fire-resistive material. Fire Technol. 1974;10:201–210. doi: 10.1007/BF02588845. DOI
Jirickova A., Lojka M., Lauermannova A.M., Antonacik F., Sedmidubsky D., Pavlikova M., Zaleska M., Pavlik Z., Jankovsky O. Synthesis, Structure, and Thermal Stability of Magnesium Oxychloride 5Mg(OH)(2).MgCl2.8H(2)O. Appl. Sci. 2020;10:1683. doi: 10.3390/app10051683. PubMed DOI
Lauermannová A.-M., Lojka M., Jankovský O., Faltysová I., Pavlíková M., Pivák A., Záleská M., Pavlík Z. High-performance magnesium oxychloride composites with silica sand and diatomite. J. Mater. Res. Technol. 2021;11:957–969. doi: 10.1016/j.jmrt.2021.01.028. DOI
Chau C.K., Chan J., Li Z. Influences of fly ash on magnesium oxychloride mortar. Cem. Concr. Compos. 2009;31:250–254. doi: 10.1016/j.cemconcomp.2009.02.011. DOI
Li Y., Yu H., Zheng L., Wen J., Wu C., Tan Y. Compressive strength of fly ash magnesium oxychloride cement containing granite wastes. Constr. Build. Mater. 2013;38:1–7. doi: 10.1016/j.conbuildmat.2012.06.016. DOI
He P., Poon C.S., Tsang D.C.W. Comparison of glass powder and pulverized fuel ash for improving the water resistance of magnesium oxychloride cement. Cem. Concr. Compos. 2018;86:98–109. doi: 10.1016/j.cemconcomp.2017.11.010. DOI
Zhou X., Li Z. Light-weight wood–magnesium oxychloride cement composite building products made by extrusion. Constr. Build. Mater. 2012;27:382–389. doi: 10.1016/j.conbuildmat.2011.07.033. DOI
He P., Hossain M.U., Poon C.S., Tsang D.C.W. Mechanical, durability and environmental aspects of magnesium oxychloride cement boards incorporating waste wood. J. Clean. Prod. 2019;207:391–399. doi: 10.1016/j.jclepro.2018.10.015. DOI
Lauermannová A.-M., Faltysová I., Lojka M., Antončík F., Sedmidubský D., Pavlík Z., Pavlíková M., Záleská M., Pivák A., Jankovský O. Regolith-based magnesium oxychloride composites doped by graphene: Novel high-performance building materials for lunar constructions. FlatChem. 2021;26:100234. doi: 10.1016/j.flatc.2021.100234. DOI
Fediuk R., Lesovik V., Mochalov A., Otsokov K., Lashina I., Timokhin R. Composite binders for concrete of protective structures. Mag. Civil Eng. 2018;6:208–218.
Li Z., Chau C. Influence of molar ratios on properties of magnesium oxychloride cement. Cem. Concr. Res. 2007;37:866–870. doi: 10.1016/j.cemconres.2007.03.015. DOI
Ba H., Guan H. Influence of MgO/MgCl2 molar ratio on phase stability of magnesium oxychloride cement. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2009;24:476–481. doi: 10.1007/s11595-009-3476-3. DOI
Liu Z., Wang S., Huang J., Wei Z., Guan B., Fang J. Experimental investigation on the properties and microstructure of magnesium oxychloride cement prepared with caustic magnesite and dolomite. Constr. Build. Mater. 2015;85:247–255. doi: 10.1016/j.conbuildmat.2015.01.056. DOI
Chau C.K., Li Z. Microstructures of magnesium oxychloride Sorel cement. Adv. Cem. Res. 2008;20:85–92. doi: 10.1680/adcr.2008.20.2.85. DOI
Walling S.A., Provis J.L. Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future? Chem. Rev. 2016;116:4170–4204. doi: 10.1021/acs.chemrev.5b00463. PubMed DOI
Jankovský O., Lojka M., Lauermannová A.-M., Antončík F., Pavlíková M., Pavlík Z., Sedmidubský D. Carbon Dioxide Uptake by MOC-Based Materials. Appl. Sci. 2020;10:2254. doi: 10.3390/app10072254. DOI
Zhang F.-J., Sun X.-Y., Li X., Zhang D., Xie W.-J., Liu J., Oh W.-C. Study on Water Resistance of Environmentally Friendly Magnesium Oxychloride Cement for Waste Wood Solidification. J. Korean Ceram. Soc. 2018;55:446–451. doi: 10.4191/kcers.2018.55.5.06. DOI
Zhang X., Ge S., Wang H., Chen R. Effect of 5-phase seed crystal on the mechanical properties and microstructure of magnesium oxychloride cement. Constr. Build. Mater. 2017;150:409–417. doi: 10.1016/j.conbuildmat.2017.05.211. DOI
Sorre C.A., Armstron C.R. Reactions and Equilibria in Magnesium Oxychloride Cements. J. Am. Ceram. Soc. 1976;59:51–54. doi: 10.1111/j.1151-2916.1976.tb09387.x. DOI
Robinson W., Waggaman W. Basic magnesium chlorides. J. Phys. Chem. 2002;13:673–678. doi: 10.1021/j150108a002. DOI
Matkovic B., Young J. Microstructure of magnesium oxychloride cements. Nat. Phys. Sci. 1973;246:79. doi: 10.1038/physci246079a0. DOI
Gong W., Yu H., Ma H., Qiao H., Chen G. Study on corrosion and anticorrosion of rebar in magnesium oxychloride cement concrete. Emerg. Mater. Res. 2019;8:94–104. doi: 10.1680/jemmr.18.00012. DOI
Amran M., Fediuk R., Vatin N., Huei Lee Y., Murali G., Ozbakkaloglu T., Klyuev S., Alabduljabber H. Fibre-Reinforced Foamed Concretes: A Review. Materials. 2020;13:4323. doi: 10.3390/ma13194323. PubMed DOI PMC
Li Y., Li Z., Pei H., Yu H. The influence of FeSO4 and KH2PO4 on the performance of magnesium oxychloride cement. Constr. Build. Mater. 2016;102:233–238. doi: 10.1016/j.conbuildmat.2015.10.186. DOI
Guan B., Tian H., Ding D., Wu J., Xiong R., Xu A., Chen H. Effect of Citric Acid on the Time-Dependent Rheological Properties of Magnesium Oxychloride Cement. J. Mater. Civ. Eng. 2018;30:04018275. doi: 10.1061/(ASCE)MT.1943-5533.0002451. DOI
Chen X., Zhang T., Bi W., Cheeseman C.R. Effect of tartaric acid and phosphoric acid on the water resistance of magnesium oxychloride (MOC) cement. Constr. Build. Mater. 2019;213:528–536. doi: 10.1016/j.conbuildmat.2019.04.086. DOI
Wu C., Chen W., Zhang H., Yu H., Zhang W., Jiang N., Liu L. The hydration mechanism and performance of Modified magnesium oxysulfate cement by tartaric acid. Constr. Build. Mater. 2017;144:516–524. doi: 10.1016/j.conbuildmat.2017.03.222. DOI
Wu C., Zhang H., Yu H. The effects of alumina-leached coal fly ash residue on magnesium oxychloride cement. Adv. Cem. Res. 2013;25:254–261. doi: 10.1680/adcr.12.00019. DOI
He P., Poon C.S., Tsang D.C.W. Using incinerated sewage sludge ash to improve the water resistance of magnesium oxychloride cement (MOC) Constr. Build. Mater. 2017;147:519–524. doi: 10.1016/j.conbuildmat.2017.04.187. DOI
Lee C., Wei X., Kysar J.W., Hone J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008;321:385–388. doi: 10.1126/science.1157996. PubMed DOI
Novoselov K.S., Geim A. The rise of graphene. J. Nat. Mater. 2007;6:183–191. PubMed
Falkovsky L.A. Optical properties of graphene. J. Phys. Conf. Ser. 2008;129:012004. doi: 10.1088/1742-6596/129/1/012004. DOI
Jankovský O., Lojka M., Luxa J., Sedmidubský D., Pumera M., Sofer Z. Introduction of sulfur to graphene oxide by Friedel-Crafts reaction. FlatChem. 2017;6:28–36. doi: 10.1016/j.flatc.2017.11.001. DOI
Panchakarla L., Subrahmanyam K., Saha S., Govindaraj A., Krishnamurthy H., Waghmare U., Rao C. Synthesis, structure, and properties of boron-and nitrogen-doped graphene. Adv. Mater. 2009;21:4726–4730. doi: 10.1002/adma.200901285. DOI
Qu L., Liu Y., Baek J.-B., Dai L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano. 2010;4:1321–1326. doi: 10.1021/nn901850u. PubMed DOI
Wu J., Xie L., Li Y., Wang H., Ouyang Y., Guo J., Dai H. Controlled chlorine plasma reaction for noninvasive graphene doping. J. Am. Chem. Soc. 2011;133:19668–19671. doi: 10.1021/ja2091068. PubMed DOI
Yang Z., Yao Z., Li G., Fang G., Nie H., Liu Z., Zhou X., Chen X.A., Huang S. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano. 2011;6:205–211. doi: 10.1021/nn203393d. PubMed DOI
Zhang C., Mahmood N., Yin H., Liu F., Hou Y. Synthesis of Phosphorus-Doped Graphene and its Multifunctional Applications for Oxygen Reduction Reaction and Lithium Ion Batteries. Adv. Mater. 2013;25:4932–4937. doi: 10.1002/adma.201301870. PubMed DOI
Fu Q., Gao B., Dou H., Hao L., Lu X., Sun K., Jiang J., Zhang X. Novel non-covalent sulfonated multiwalled carbon nanotubes from p-toluenesulfonic acid/glucose doped polypyrrole for electrochemical capacitors. Synth. Met. 2011;161:373–378. doi: 10.1016/j.synthmet.2010.12.009. DOI
Ferreira F.V., Francisco W., Menezes B.R.C.D., Cividanes L.D.S., Coutinho A.D.R., Thim G.P. Carbon nanotube functionalized with dodecylamine for the effective dispersion in solvents. Appl. Surf. Sci. 2015;357:2154–2159. doi: 10.1016/j.apsusc.2015.09.202. DOI
Cividanes L.D.S., Simonetti E.A.N., de Oliveira J.I.S., Serra A.A., Carlos de Souza Barboza J., Thim G.P. The sonication effect on CNT-epoxy composites finally clarified. Polym. Compos. 2017;38:1964–1973. doi: 10.1002/pc.23767. DOI
Mohamed A., Anas A.K., Bakar S.A., Ardyani T., Zin W.M.W., Ibrahim S., Sagisaka M., Brown P., Eastoe J. Enhanced dispersion of multiwall carbon nanotubes in natural rubber latex nanocomposites by surfactants bearing phenyl groups. J. Colloid Interface Sci. 2015;455:179–187. doi: 10.1016/j.jcis.2015.05.054. PubMed DOI
Balasubramanian K., Burghard M. Chemically Functionalized Carbon Nanotubes. Small. 2005;1:180–192. doi: 10.1002/smll.200400118. PubMed DOI
Parveen S., Rana S., Fangueiro R. A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites. J. Nanomater. 2013;2013:80. doi: 10.1155/2013/710175. DOI
Jankovský O., Jiříčková A., Luxa J., Sedmidubský D., Pumera M., Sofer Z. Fast Synthesis of Highly Oxidized Graphene Oxide. ChemistrySelect. 2017;2:9000–9006. doi: 10.1002/slct.201701784. DOI
Rosca I.D., Watari F., Uo M., Akasaka T. Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon. 2005;43:3124–3131. doi: 10.1016/j.carbon.2005.06.019. DOI
Korayem A.H., Tourani N., Zakertabrizi M., Sabziparvar A.M., Duan W.H. A review of dispersion of nanoparticles in cementitious matrices: Nanoparticle geometry perspective. Constr. Build. Mater. 2017;153:346–357. doi: 10.1016/j.conbuildmat.2017.06.164. DOI
Chuah S., Pan Z., Sanjayan J.G., Wang C.M., Duan W.H. Nano reinforced cement and concrete composites and new perspective from graphene oxide. Constr. Build. Mater. 2014;73:113–124. doi: 10.1016/j.conbuildmat.2014.09.040. DOI
Lauermannová A.-M., Lojka M., Sklenka J., Záleská M., Pavlíková M., Pivák A., Pavlík Z., Jankovský O. Magnesium oxychloride-graphene composites: Towards high strength and water resistant materials for construction industry. FlatChem. 2021;29:100284. doi: 10.1016/j.flatc.2021.100284. DOI
Lojka M., Lauermannová A.-M., Sedmidubský D., Pavlíková M., Záleská M., Pavlík Z., Pivák A., Jankovský O. Magnesium Oxychloride Cement Composites with MWCNT for the Construction Applications. Materials. 2021;14:484. doi: 10.3390/ma14030484. PubMed DOI PMC
Kolev S., Petkov P.S., Rangelov M., Vayssilov G.N. Ab Initio Molecular Dynamics of Na+ and Mg2+ Countercations at the Backbone of RNA in Water Solution. ACS Chem. Biol. 2013;8:1576–1589. doi: 10.1021/cb300463h. PubMed DOI
He H., Klinowski J., Forster M., Lerf A. A new structural model for graphite oxide. Chem. Phys. Lett. 1998;287:53–56. doi: 10.1016/S0009-2614(98)00144-4. DOI
Park S., Lee K.-S., Bozoklu G., Cai W., Nguyen S.T., Ruoff R.S. Graphene Oxide Papers Modified by Divalent Ions—Enhancing Mechanical Properties via Chemical Cross-Linking. ACS Nano. 2008;2:572–578. doi: 10.1021/nn700349a. PubMed DOI
Srivastava S. Sorption Of Divalent Metal Ions From Aqueous Solution By Oxidized carbon Nanotubes And Nanocages: A Review. Adv. Mater. Lett. 2013;4:2–8. doi: 10.5185/amlett.2013.icnano.110. DOI
European Committee for Standardization . EN 1015-10, Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened 676 Mortar. European Committee for Standardization; Brussels, Belgium: 1999.
Záleská M., Pavlík Z., Čítek D., Jankovský O., Pavlíková M. Eco-friendly concrete with scrap-tyre-rubber-based aggregate—Properties and thermal stability. Constr. Build. Mater. 2019;225:709–722. doi: 10.1016/j.conbuildmat.2019.07.168. DOI
European Committee for Standardization . EN 1015-11: Methods of Test for Mortar for Masonry—Part 10: Determination of Flexural and Compressive Strength 678 of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 1999.
European Committee for Standardization . EN 1015-18: Methods of Test for Mortar for Masonry—Part 18: Determination of Water Absorption Coefficient Due to Capillary Action of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 2002.
Bandara N., Esparza Y., Wu J. Graphite Oxide Improves Adhesion and Water Resistance of Canola Protein–Graphite Oxide Hybrid Adhesive. Sci. Rep. 2017;7:11538. doi: 10.1038/s41598-017-11966-8. PubMed DOI PMC
Záleská M., Pavlíková M., Pivák A., Marušiak Š., Jankovský O., Lauermannová A.-M., Lojka M., Antončík F., Pavlík Z. MOC Doped with Graphene Nanoplatelets: The Influence of the Mixture Preparation Technology on Its Properties. Materials. 2021;14:1450. doi: 10.3390/ma14061450. PubMed DOI PMC
Guo Y., Zhang Y., Soe K., Hutchison W.D., Timmers H., Poblete M.R. Effect of fly ash on mechanical properties of magnesium oxychloride cement under water attack. Struct. Concr. 2020;21:1181–1199. doi: 10.1002/suco.201900329. DOI
Chukanov N.V. Infrared Spectra of Mineral Species: Extended Library. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2013.
Everett D.H. Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Pure Appl. Chem. 1972;31:577–638. doi: 10.1351/pac197231040577. DOI
Adilhodzhaev A.I., Kadyrov I., Umarov K. Research of porosity of a cement stone with a zeolite containing filler and a superplasticstificator. J. Tashkent Inst. Railw. Eng. 2020;16:15–22.
Guo Y., Zhang Y.X., Soe K., Wuhrer R., Hutchison W.D., Timmers H. Development of magnesium oxychloride cement with enhanced water resistance by adding silica fume and hybrid fly ash-silica fume. J. Clean. Prod. 2021;313:127682. doi: 10.1016/j.jclepro.2021.127682. DOI
Zgueb R., Brichni A., Yacoubi N. Improvement of the thermal properties of Sorel cements by polyvinyl acetate: Consequences on physical and mechanical properties. Energy Build. 2018;169:1–8. doi: 10.1016/j.enbuild.2018.03.007. DOI
Prabavathy S., Jeyasubramanian K., Prasanth S., Hikku G.S., Robert R.B.J. Enhancement in behavioral properties of cement mortar cubes admixed with reduced graphene oxide. J. Build. Eng. 2020;28:101082. doi: 10.1016/j.jobe.2019.101082. DOI
Zhou C., Li F., Hu J., Ren M., Wei J., Yu Q. Enhanced mechanical properties of cement paste by hybrid graphene oxide/carbon nanotubes. Constr. Build. Mater. 2017;134:336–345. doi: 10.1016/j.conbuildmat.2016.12.147. DOI
Gong J., Lin L., Fan S. Modification of cementitious composites with graphene oxide and carbon nanotubes. SN Appl. Sci. 2020;2:1622. doi: 10.1007/s42452-020-03456-w. DOI
Feng C., Guimarães A.S., Ramos N., Sun L., Gawin D., Konca P., Hall C., Zhao J., Hirsch H., Grunewald J., et al. Hygric properties of porous building materials (VI): A round robin campaign. Build. Environ. 2020;185:107242. doi: 10.1016/j.buildenv.2020.107242. DOI
Ma Z., Tang Q., Wu H., Xu J., Liang C. Mechanical properties and water absorption of cement composites with various fineness and contents of waste brick powder from C&D waste. Cem. Concr. Compos. 2020;114:103758. doi: 10.1016/j.cemconcomp.2020.103758. DOI
Vyšvařil M., Pavlíková M., Záleská M., Pivák A., Žižlavský T., Rovnaníková P., Bayer P., Pavlík Z. Non-hydrophobized perlite renders for repair and thermal insulation purposes: Influence of different binders on their properties and durability. Constr. Build. Mater. 2020;263:120617. doi: 10.1016/j.conbuildmat.2020.120617. DOI
Demirboğa R. Thermal conductivity and compressive strength of concrete incorporation with mineral admixtures. Build. Environ. 2007;42:2467–2471. doi: 10.1016/j.buildenv.2006.06.010. DOI
Pivák A., Pavlíková M., Záleská M., Lojka M., Jankovský O., Pavlík Z. Magnesium Oxychloride Cement Composites with Silica Filler and Coal Fly Ash Admixture. Materials. 2020;13:2537. doi: 10.3390/ma13112537. PubMed DOI PMC
Bagatskii M.I., Jeżowski A., Szewczyk D., Sumarokov V.V., Barabashko M.S., Kuznetsov V.L., Moseenkov S.I., Ponomarev A.N. Size effects in the heat capacity of modified MWCNTs. Therm. Sci. Eng. Prog. 2021;26:101097. doi: 10.1016/j.tsep.2021.101097. DOI
Gardea F., Lagoudas D.C. Characterization of electrical and thermal properties of carbon nanotube/epoxy composites. Compos. Part B Eng. 2014;56:611–620. doi: 10.1016/j.compositesb.2013.08.032. DOI
Miranda A., Barekar N., McKay B.J. MWCNTs and their use in Al-MMCs for ultra-high thermal conductivity applications: A review. J. Alloy. Compd. 2019;774:820–840. doi: 10.1016/j.jallcom.2018.09.202. DOI
Masarapu C., Henry L.L., Wei B. Specific heat of aligned multiwalled carbon nanotubes. Nanotechnology. 2005;16:1490–1494. doi: 10.1088/0957-4484/16/9/013. DOI