Co-Doped Magnesium Oxychloride Composites with Unique Flexural Strength for Construction Use

. 2022 Jan 14 ; 15 (2) : . [epub] 20220114

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35057321

Grantová podpora
20-01866S Czech Science Foundation
SGS20/153/OHK1/3T/11 Grant Agency of the Czech Technical University in Prague
20-SVV/2021 Specific university research

In this study, the combined effect of graphene oxide (GO) and oxidized multi-walled carbon nanotubes (OMWCNTs) on material properties of the magnesium oxychloride (MOC) phase 5 was analyzed. The selected carbon-based nanoadditives were used in small content in order to obtain higher values of mechanical parameters and higher water resistance while maintaining acceptable price of the final composites. Two sets of samples containing either 0.1 wt. % or 0.2 wt. % of both nanoadditives were prepared, in addition to a set of reference samples without additives. Samples were characterized by X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, and energy dispersive spectroscopy, which were used to obtain the basic information on the phase and chemical composition, as well as the microstructure and morphology. Basic macro- and micro-structural parameters were studied in order to determine the effect of the nanoadditives on the open porosity, bulk and specific density. In addition, the mechanical, hygric and thermal parameters of the prepared nano-doped composites were acquired and compared to the reference sample. An enhancement of all the mentioned types of parameters was observed. This can be assigned to the drop in porosity when GO and OMWCNTs were used. This research shows a pathway of increasing the water resistance of MOC-based composites, which is an important step in the development of the new generation of construction materials.

Zobrazit více v PubMed

Sorel S. On a new magnesium cement. CR Acad. Sci. 1867;65:102–104.

Li K., Wang Y., Yao N., Zhang A. Recent progress of magnesium oxychloride cement: Manufacture, curing, structure and performance. Constr. Build. Mater. 2020;255:119381. doi: 10.1016/j.conbuildmat.2020.119381. DOI

Kastiukas G., Ruan S., Unluer C., Liang S., Zhou X. Environmental Assessment of Magnesium Oxychloride Cement Samples: A Case Study in Europe. Sustainability. 2019;11:6957. doi: 10.3390/su11246957. DOI

Beaudoin J.J., Ramachandran V.S. Strength development in magnesium oxychloride and other cements. Cem. Concr. Res. 1975;5:617–630. doi: 10.1016/0008-8846(75)90062-9. DOI

Góchez R., Wambaugh J., Rochner B., Kitchens C. Kinetic study of the magnesium oxychloride cement cure reaction. J. Mater. Sci. 2017;52:7637–7646. doi: 10.1007/s10853-017-1013-x. DOI

Montle J., Mayhan K. The role of magnesium oxychloride as a fire-resistive material. Fire Technol. 1974;10:201–210. doi: 10.1007/BF02588845. DOI

Jirickova A., Lojka M., Lauermannova A.M., Antonacik F., Sedmidubsky D., Pavlikova M., Zaleska M., Pavlik Z., Jankovsky O. Synthesis, Structure, and Thermal Stability of Magnesium Oxychloride 5Mg(OH)(2).MgCl2.8H(2)O. Appl. Sci. 2020;10:1683. doi: 10.3390/app10051683. PubMed DOI

Lauermannová A.-M., Lojka M., Jankovský O., Faltysová I., Pavlíková M., Pivák A., Záleská M., Pavlík Z. High-performance magnesium oxychloride composites with silica sand and diatomite. J. Mater. Res. Technol. 2021;11:957–969. doi: 10.1016/j.jmrt.2021.01.028. DOI

Chau C.K., Chan J., Li Z. Influences of fly ash on magnesium oxychloride mortar. Cem. Concr. Compos. 2009;31:250–254. doi: 10.1016/j.cemconcomp.2009.02.011. DOI

Li Y., Yu H., Zheng L., Wen J., Wu C., Tan Y. Compressive strength of fly ash magnesium oxychloride cement containing granite wastes. Constr. Build. Mater. 2013;38:1–7. doi: 10.1016/j.conbuildmat.2012.06.016. DOI

He P., Poon C.S., Tsang D.C.W. Comparison of glass powder and pulverized fuel ash for improving the water resistance of magnesium oxychloride cement. Cem. Concr. Compos. 2018;86:98–109. doi: 10.1016/j.cemconcomp.2017.11.010. DOI

Zhou X., Li Z. Light-weight wood–magnesium oxychloride cement composite building products made by extrusion. Constr. Build. Mater. 2012;27:382–389. doi: 10.1016/j.conbuildmat.2011.07.033. DOI

He P., Hossain M.U., Poon C.S., Tsang D.C.W. Mechanical, durability and environmental aspects of magnesium oxychloride cement boards incorporating waste wood. J. Clean. Prod. 2019;207:391–399. doi: 10.1016/j.jclepro.2018.10.015. DOI

Lauermannová A.-M., Faltysová I., Lojka M., Antončík F., Sedmidubský D., Pavlík Z., Pavlíková M., Záleská M., Pivák A., Jankovský O. Regolith-based magnesium oxychloride composites doped by graphene: Novel high-performance building materials for lunar constructions. FlatChem. 2021;26:100234. doi: 10.1016/j.flatc.2021.100234. DOI

Fediuk R., Lesovik V., Mochalov A., Otsokov K., Lashina I., Timokhin R. Composite binders for concrete of protective structures. Mag. Civil Eng. 2018;6:208–218.

Li Z., Chau C. Influence of molar ratios on properties of magnesium oxychloride cement. Cem. Concr. Res. 2007;37:866–870. doi: 10.1016/j.cemconres.2007.03.015. DOI

Ba H., Guan H. Influence of MgO/MgCl2 molar ratio on phase stability of magnesium oxychloride cement. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2009;24:476–481. doi: 10.1007/s11595-009-3476-3. DOI

Liu Z., Wang S., Huang J., Wei Z., Guan B., Fang J. Experimental investigation on the properties and microstructure of magnesium oxychloride cement prepared with caustic magnesite and dolomite. Constr. Build. Mater. 2015;85:247–255. doi: 10.1016/j.conbuildmat.2015.01.056. DOI

Chau C.K., Li Z. Microstructures of magnesium oxychloride Sorel cement. Adv. Cem. Res. 2008;20:85–92. doi: 10.1680/adcr.2008.20.2.85. DOI

Walling S.A., Provis J.L. Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future? Chem. Rev. 2016;116:4170–4204. doi: 10.1021/acs.chemrev.5b00463. PubMed DOI

Jankovský O., Lojka M., Lauermannová A.-M., Antončík F., Pavlíková M., Pavlík Z., Sedmidubský D. Carbon Dioxide Uptake by MOC-Based Materials. Appl. Sci. 2020;10:2254. doi: 10.3390/app10072254. DOI

Zhang F.-J., Sun X.-Y., Li X., Zhang D., Xie W.-J., Liu J., Oh W.-C. Study on Water Resistance of Environmentally Friendly Magnesium Oxychloride Cement for Waste Wood Solidification. J. Korean Ceram. Soc. 2018;55:446–451. doi: 10.4191/kcers.2018.55.5.06. DOI

Zhang X., Ge S., Wang H., Chen R. Effect of 5-phase seed crystal on the mechanical properties and microstructure of magnesium oxychloride cement. Constr. Build. Mater. 2017;150:409–417. doi: 10.1016/j.conbuildmat.2017.05.211. DOI

Sorre C.A., Armstron C.R. Reactions and Equilibria in Magnesium Oxychloride Cements. J. Am. Ceram. Soc. 1976;59:51–54. doi: 10.1111/j.1151-2916.1976.tb09387.x. DOI

Robinson W., Waggaman W. Basic magnesium chlorides. J. Phys. Chem. 2002;13:673–678. doi: 10.1021/j150108a002. DOI

Matkovic B., Young J. Microstructure of magnesium oxychloride cements. Nat. Phys. Sci. 1973;246:79. doi: 10.1038/physci246079a0. DOI

Gong W., Yu H., Ma H., Qiao H., Chen G. Study on corrosion and anticorrosion of rebar in magnesium oxychloride cement concrete. Emerg. Mater. Res. 2019;8:94–104. doi: 10.1680/jemmr.18.00012. DOI

Amran M., Fediuk R., Vatin N., Huei Lee Y., Murali G., Ozbakkaloglu T., Klyuev S., Alabduljabber H. Fibre-Reinforced Foamed Concretes: A Review. Materials. 2020;13:4323. doi: 10.3390/ma13194323. PubMed DOI PMC

Li Y., Li Z., Pei H., Yu H. The influence of FeSO4 and KH2PO4 on the performance of magnesium oxychloride cement. Constr. Build. Mater. 2016;102:233–238. doi: 10.1016/j.conbuildmat.2015.10.186. DOI

Guan B., Tian H., Ding D., Wu J., Xiong R., Xu A., Chen H. Effect of Citric Acid on the Time-Dependent Rheological Properties of Magnesium Oxychloride Cement. J. Mater. Civ. Eng. 2018;30:04018275. doi: 10.1061/(ASCE)MT.1943-5533.0002451. DOI

Chen X., Zhang T., Bi W., Cheeseman C.R. Effect of tartaric acid and phosphoric acid on the water resistance of magnesium oxychloride (MOC) cement. Constr. Build. Mater. 2019;213:528–536. doi: 10.1016/j.conbuildmat.2019.04.086. DOI

Wu C., Chen W., Zhang H., Yu H., Zhang W., Jiang N., Liu L. The hydration mechanism and performance of Modified magnesium oxysulfate cement by tartaric acid. Constr. Build. Mater. 2017;144:516–524. doi: 10.1016/j.conbuildmat.2017.03.222. DOI

Wu C., Zhang H., Yu H. The effects of alumina-leached coal fly ash residue on magnesium oxychloride cement. Adv. Cem. Res. 2013;25:254–261. doi: 10.1680/adcr.12.00019. DOI

He P., Poon C.S., Tsang D.C.W. Using incinerated sewage sludge ash to improve the water resistance of magnesium oxychloride cement (MOC) Constr. Build. Mater. 2017;147:519–524. doi: 10.1016/j.conbuildmat.2017.04.187. DOI

Lee C., Wei X., Kysar J.W., Hone J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008;321:385–388. doi: 10.1126/science.1157996. PubMed DOI

Novoselov K.S., Geim A. The rise of graphene. J. Nat. Mater. 2007;6:183–191. PubMed

Falkovsky L.A. Optical properties of graphene. J. Phys. Conf. Ser. 2008;129:012004. doi: 10.1088/1742-6596/129/1/012004. DOI

Jankovský O., Lojka M., Luxa J., Sedmidubský D., Pumera M., Sofer Z. Introduction of sulfur to graphene oxide by Friedel-Crafts reaction. FlatChem. 2017;6:28–36. doi: 10.1016/j.flatc.2017.11.001. DOI

Panchakarla L., Subrahmanyam K., Saha S., Govindaraj A., Krishnamurthy H., Waghmare U., Rao C. Synthesis, structure, and properties of boron-and nitrogen-doped graphene. Adv. Mater. 2009;21:4726–4730. doi: 10.1002/adma.200901285. DOI

Qu L., Liu Y., Baek J.-B., Dai L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano. 2010;4:1321–1326. doi: 10.1021/nn901850u. PubMed DOI

Wu J., Xie L., Li Y., Wang H., Ouyang Y., Guo J., Dai H. Controlled chlorine plasma reaction for noninvasive graphene doping. J. Am. Chem. Soc. 2011;133:19668–19671. doi: 10.1021/ja2091068. PubMed DOI

Yang Z., Yao Z., Li G., Fang G., Nie H., Liu Z., Zhou X., Chen X.A., Huang S. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano. 2011;6:205–211. doi: 10.1021/nn203393d. PubMed DOI

Zhang C., Mahmood N., Yin H., Liu F., Hou Y. Synthesis of Phosphorus-Doped Graphene and its Multifunctional Applications for Oxygen Reduction Reaction and Lithium Ion Batteries. Adv. Mater. 2013;25:4932–4937. doi: 10.1002/adma.201301870. PubMed DOI

Fu Q., Gao B., Dou H., Hao L., Lu X., Sun K., Jiang J., Zhang X. Novel non-covalent sulfonated multiwalled carbon nanotubes from p-toluenesulfonic acid/glucose doped polypyrrole for electrochemical capacitors. Synth. Met. 2011;161:373–378. doi: 10.1016/j.synthmet.2010.12.009. DOI

Ferreira F.V., Francisco W., Menezes B.R.C.D., Cividanes L.D.S., Coutinho A.D.R., Thim G.P. Carbon nanotube functionalized with dodecylamine for the effective dispersion in solvents. Appl. Surf. Sci. 2015;357:2154–2159. doi: 10.1016/j.apsusc.2015.09.202. DOI

Cividanes L.D.S., Simonetti E.A.N., de Oliveira J.I.S., Serra A.A., Carlos de Souza Barboza J., Thim G.P. The sonication effect on CNT-epoxy composites finally clarified. Polym. Compos. 2017;38:1964–1973. doi: 10.1002/pc.23767. DOI

Mohamed A., Anas A.K., Bakar S.A., Ardyani T., Zin W.M.W., Ibrahim S., Sagisaka M., Brown P., Eastoe J. Enhanced dispersion of multiwall carbon nanotubes in natural rubber latex nanocomposites by surfactants bearing phenyl groups. J. Colloid Interface Sci. 2015;455:179–187. doi: 10.1016/j.jcis.2015.05.054. PubMed DOI

Balasubramanian K., Burghard M. Chemically Functionalized Carbon Nanotubes. Small. 2005;1:180–192. doi: 10.1002/smll.200400118. PubMed DOI

Parveen S., Rana S., Fangueiro R. A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites. J. Nanomater. 2013;2013:80. doi: 10.1155/2013/710175. DOI

Jankovský O., Jiříčková A., Luxa J., Sedmidubský D., Pumera M., Sofer Z. Fast Synthesis of Highly Oxidized Graphene Oxide. ChemistrySelect. 2017;2:9000–9006. doi: 10.1002/slct.201701784. DOI

Rosca I.D., Watari F., Uo M., Akasaka T. Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon. 2005;43:3124–3131. doi: 10.1016/j.carbon.2005.06.019. DOI

Korayem A.H., Tourani N., Zakertabrizi M., Sabziparvar A.M., Duan W.H. A review of dispersion of nanoparticles in cementitious matrices: Nanoparticle geometry perspective. Constr. Build. Mater. 2017;153:346–357. doi: 10.1016/j.conbuildmat.2017.06.164. DOI

Chuah S., Pan Z., Sanjayan J.G., Wang C.M., Duan W.H. Nano reinforced cement and concrete composites and new perspective from graphene oxide. Constr. Build. Mater. 2014;73:113–124. doi: 10.1016/j.conbuildmat.2014.09.040. DOI

Lauermannová A.-M., Lojka M., Sklenka J., Záleská M., Pavlíková M., Pivák A., Pavlík Z., Jankovský O. Magnesium oxychloride-graphene composites: Towards high strength and water resistant materials for construction industry. FlatChem. 2021;29:100284. doi: 10.1016/j.flatc.2021.100284. DOI

Lojka M., Lauermannová A.-M., Sedmidubský D., Pavlíková M., Záleská M., Pavlík Z., Pivák A., Jankovský O. Magnesium Oxychloride Cement Composites with MWCNT for the Construction Applications. Materials. 2021;14:484. doi: 10.3390/ma14030484. PubMed DOI PMC

Kolev S., Petkov P.S., Rangelov M., Vayssilov G.N. Ab Initio Molecular Dynamics of Na+ and Mg2+ Countercations at the Backbone of RNA in Water Solution. ACS Chem. Biol. 2013;8:1576–1589. doi: 10.1021/cb300463h. PubMed DOI

He H., Klinowski J., Forster M., Lerf A. A new structural model for graphite oxide. Chem. Phys. Lett. 1998;287:53–56. doi: 10.1016/S0009-2614(98)00144-4. DOI

Park S., Lee K.-S., Bozoklu G., Cai W., Nguyen S.T., Ruoff R.S. Graphene Oxide Papers Modified by Divalent Ions—Enhancing Mechanical Properties via Chemical Cross-Linking. ACS Nano. 2008;2:572–578. doi: 10.1021/nn700349a. PubMed DOI

Srivastava S. Sorption Of Divalent Metal Ions From Aqueous Solution By Oxidized carbon Nanotubes And Nanocages: A Review. Adv. Mater. Lett. 2013;4:2–8. doi: 10.5185/amlett.2013.icnano.110. DOI

European Committee for Standardization . EN 1015-10, Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened 676 Mortar. European Committee for Standardization; Brussels, Belgium: 1999.

Záleská M., Pavlík Z., Čítek D., Jankovský O., Pavlíková M. Eco-friendly concrete with scrap-tyre-rubber-based aggregate—Properties and thermal stability. Constr. Build. Mater. 2019;225:709–722. doi: 10.1016/j.conbuildmat.2019.07.168. DOI

European Committee for Standardization . EN 1015-11: Methods of Test for Mortar for Masonry—Part 10: Determination of Flexural and Compressive Strength 678 of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 1999.

European Committee for Standardization . EN 1015-18: Methods of Test for Mortar for Masonry—Part 18: Determination of Water Absorption Coefficient Due to Capillary Action of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 2002.

Bandara N., Esparza Y., Wu J. Graphite Oxide Improves Adhesion and Water Resistance of Canola Protein–Graphite Oxide Hybrid Adhesive. Sci. Rep. 2017;7:11538. doi: 10.1038/s41598-017-11966-8. PubMed DOI PMC

Záleská M., Pavlíková M., Pivák A., Marušiak Š., Jankovský O., Lauermannová A.-M., Lojka M., Antončík F., Pavlík Z. MOC Doped with Graphene Nanoplatelets: The Influence of the Mixture Preparation Technology on Its Properties. Materials. 2021;14:1450. doi: 10.3390/ma14061450. PubMed DOI PMC

Guo Y., Zhang Y., Soe K., Hutchison W.D., Timmers H., Poblete M.R. Effect of fly ash on mechanical properties of magnesium oxychloride cement under water attack. Struct. Concr. 2020;21:1181–1199. doi: 10.1002/suco.201900329. DOI

Chukanov N.V. Infrared Spectra of Mineral Species: Extended Library. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2013.

Everett D.H. Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Pure Appl. Chem. 1972;31:577–638. doi: 10.1351/pac197231040577. DOI

Adilhodzhaev A.I., Kadyrov I., Umarov K. Research of porosity of a cement stone with a zeolite containing filler and a superplasticstificator. J. Tashkent Inst. Railw. Eng. 2020;16:15–22.

Guo Y., Zhang Y.X., Soe K., Wuhrer R., Hutchison W.D., Timmers H. Development of magnesium oxychloride cement with enhanced water resistance by adding silica fume and hybrid fly ash-silica fume. J. Clean. Prod. 2021;313:127682. doi: 10.1016/j.jclepro.2021.127682. DOI

Zgueb R., Brichni A., Yacoubi N. Improvement of the thermal properties of Sorel cements by polyvinyl acetate: Consequences on physical and mechanical properties. Energy Build. 2018;169:1–8. doi: 10.1016/j.enbuild.2018.03.007. DOI

Prabavathy S., Jeyasubramanian K., Prasanth S., Hikku G.S., Robert R.B.J. Enhancement in behavioral properties of cement mortar cubes admixed with reduced graphene oxide. J. Build. Eng. 2020;28:101082. doi: 10.1016/j.jobe.2019.101082. DOI

Zhou C., Li F., Hu J., Ren M., Wei J., Yu Q. Enhanced mechanical properties of cement paste by hybrid graphene oxide/carbon nanotubes. Constr. Build. Mater. 2017;134:336–345. doi: 10.1016/j.conbuildmat.2016.12.147. DOI

Gong J., Lin L., Fan S. Modification of cementitious composites with graphene oxide and carbon nanotubes. SN Appl. Sci. 2020;2:1622. doi: 10.1007/s42452-020-03456-w. DOI

Feng C., Guimarães A.S., Ramos N., Sun L., Gawin D., Konca P., Hall C., Zhao J., Hirsch H., Grunewald J., et al. Hygric properties of porous building materials (VI): A round robin campaign. Build. Environ. 2020;185:107242. doi: 10.1016/j.buildenv.2020.107242. DOI

Ma Z., Tang Q., Wu H., Xu J., Liang C. Mechanical properties and water absorption of cement composites with various fineness and contents of waste brick powder from C&D waste. Cem. Concr. Compos. 2020;114:103758. doi: 10.1016/j.cemconcomp.2020.103758. DOI

Vyšvařil M., Pavlíková M., Záleská M., Pivák A., Žižlavský T., Rovnaníková P., Bayer P., Pavlík Z. Non-hydrophobized perlite renders for repair and thermal insulation purposes: Influence of different binders on their properties and durability. Constr. Build. Mater. 2020;263:120617. doi: 10.1016/j.conbuildmat.2020.120617. DOI

Demirboğa R. Thermal conductivity and compressive strength of concrete incorporation with mineral admixtures. Build. Environ. 2007;42:2467–2471. doi: 10.1016/j.buildenv.2006.06.010. DOI

Pivák A., Pavlíková M., Záleská M., Lojka M., Jankovský O., Pavlík Z. Magnesium Oxychloride Cement Composites with Silica Filler and Coal Fly Ash Admixture. Materials. 2020;13:2537. doi: 10.3390/ma13112537. PubMed DOI PMC

Bagatskii M.I., Jeżowski A., Szewczyk D., Sumarokov V.V., Barabashko M.S., Kuznetsov V.L., Moseenkov S.I., Ponomarev A.N. Size effects in the heat capacity of modified MWCNTs. Therm. Sci. Eng. Prog. 2021;26:101097. doi: 10.1016/j.tsep.2021.101097. DOI

Gardea F., Lagoudas D.C. Characterization of electrical and thermal properties of carbon nanotube/epoxy composites. Compos. Part B Eng. 2014;56:611–620. doi: 10.1016/j.compositesb.2013.08.032. DOI

Miranda A., Barekar N., McKay B.J. MWCNTs and their use in Al-MMCs for ultra-high thermal conductivity applications: A review. J. Alloy. Compd. 2019;774:820–840. doi: 10.1016/j.jallcom.2018.09.202. DOI

Masarapu C., Henry L.L., Wei B. Specific heat of aligned multiwalled carbon nanotubes. Nanotechnology. 2005;16:1490–1494. doi: 10.1088/0957-4484/16/9/013. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...