Data-Independent Acquisition Represents a Promising Alternative for Fast Photochemical Oxidation of Proteins (FPOP) Samples Analysis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38967040
PubMed Central
PMC11256011
DOI
10.1021/acs.analchem.4c01084
Knihovny.cz E-zdroje
- MeSH
- fotochemické procesy * MeSH
- hydroxylový radikál chemie analýza MeSH
- oxidace-redukce * MeSH
- proteiny * chemie analýza MeSH
- software MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hydroxylový radikál MeSH
- proteiny * MeSH
Fast Photochemical Oxidation of Proteins (FPOP) is a protein footprinting method utilizing hydroxyl radicals to provide valuable information on the solvent-accessible surface area. The extensive number of oxidative modifications that are created by FPOP is both advantageous, leading to great spatial resolution, and challenging, increasing the complexity of data processing. The precise localization of the modification together with the appropriate reproducibility is crucial to obtain relevant structural information. In this paper, we propose a novel approach combining validated spectral libraries together with utilizing DIA data. First, the DDA data searched by FragPipe are subsequently validated using Skyline software to form a spectral library. This library is then matched against the DIA data to filter out nonrepresentative IDs. In comparison with FPOP data processing using only a search engine followed by generally applied filtration steps, the manually validated spectral library offers higher confidence in identifications and increased spatial resolution. Furthermore, the reproducibility of quantification was compared for DIA, DDA, and MS-only acquisition modes on timsTOF SCP. Comparison of coefficients of variation (CV) showed that the DIA and MS acquisition modes exhibit significantly better reproducibility in quantification (CV medians 0.1233 and 0.1494, respectively) compared to the DDA mode (CV median 0.2104).
Department of Biochemistry Faculty of Science Charles University 12820 Prague Czech Republic
Institute of Microbiology The Czech Academy of Sciences 14220 Prague Czech Republic
Zobrazit více v PubMed
Heming J. D.; Huffman J. B.; Jones L. M.; Homa F. L. Isolation and Characterization of the Herpes Simplex Virus 1 Terminase Complex. Journal of Virology 2014, 88 (1), 225–236. 10.1128/JVI.02632-13. PubMed DOI PMC
Loginov D. S.; Fiala J.; Brechlin P.; Kruppa G.; Novak P. Hydroxyl Radical Footprinting Analysis of a Human Haptoglobin-Hemoglobin Complex. Biochim. Biophys. Acta - Proteins Proteom. 2022, 1870 (2), 140735.10.1016/j.bbapap.2021.140735. PubMed DOI
Du Y.; Duc N. M.; Rasmussen S. G. F.; Hilger D.; Kubiak X.; Wang L.; Bohon J.; Kim H. R.; Wegrecki M.; Asuru A.; Jeong K. M.; Lee J.; Chance M. R.; Lodowski D. T.; Kobilka B. K.; Chung K. Y. Assembly of a GPCR-G Protein Complex. Cell 2019, 177 (5), 1232–1242.e11. 10.1016/j.cell.2019.04.022. PubMed DOI PMC
Sperry J. B.; Shi X.; Rempel D. L.; Nishimura Y.; Akashi S.; Gross M. L. A Mass Spectrometric Approach to the Study of DNA-Binding Proteins: Interaction of Human TRF2 with Telomeric DNA. Biochemistry 2008, 47 (6), 1797–1807. 10.1021/bi702037p. PubMed DOI
Polák M.; Černý J.; Novák P. Isotopic Depletion Increases the Spatial Resolution of FPOP Top-Down Mass Spectrometry Analysis. Anal. Chem. 2024, 96 (4), 1478–1487. 10.1021/acs.analchem.3c03759. PubMed DOI PMC
Chen X.; Shao Z.; Marinkovic N. S.; Miller L. M.; Zhou P.; Chance M. R. Conformation Transition Kinetics of Regenerated Bombyx Mori Silk Fibroin Membrane Monitored by Time-Resolved FTIR Spectroscopy. Biophys. Chem. 2001, 89 (1), 25–34. 10.1016/S0301-4622(00)00213-1. PubMed DOI
Walters B. T.; Mayne L.; Hinshaw J. R.; Sosnick T. R.; Englander S. W. Folding of a Large Protein at High Structural Resolution. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (47), 18898–18903. 10.1073/pnas.1319482110. PubMed DOI PMC
Fojtík L.; Fiala J.; Pompach P.; Chmelík J.; Matoušek V.; Beier P.; Kukačka Z.; Novák P. Fast Fluoroalkylation of Proteins Uncovers the Structure and Dynamics of Biological Macromolecules. J. Am. Chem. Soc. 2021, 143 (49), 20670–20679. 10.1021/jacs.1c07771. PubMed DOI
Cheng M.; Zhang B.; Cui W.; Gross M. L. Laser-Initiated Radical Trifluoromethylation of Peptides and Proteins and Its Application to Mass Spectrometry-Based Protein Footprinting HHS Public Access. Angew. Chem., Int. Ed. Engl. 2017, 56 (45), 14007–14010. 10.1002/anie.201706697. PubMed DOI PMC
Zhang M. M.; Rempel D. L.; Gross M. L. A Fast Photochemical Oxidation of Proteins (FPOP) Platform for Free-Radical Reactions: The Carbonate Radical Anion with Peptides and Proteins. Free radical biology & medicine 2019, 131, 126–132. 10.1016/j.freeradbiomed.2018.11.031. PubMed DOI PMC
Hambly D. M.; Gross M. L. Laser Flash Photolysis of Hydrogen Peroxide to Oxidize Protein Solvent-Accessible Residues on the Microsecond Timescale. J. Am. Soc. Mass Spectrom. 2005, 16 (12), 2057–2063. 10.1016/j.jasms.2005.09.008. PubMed DOI
Loginov D. S.; Fiala J.; Chmelik J.; Brechlin P.; Kruppa G.; Novak P. Benefits of Ion Mobility Separation and Parallel Accumulation-Serial Fragmentation Technology on timsTOF Pro for the Needs of Fast Photochemical Oxidation of Protein Analysis. ACS Omega 2021, 6 (15), 10352–10361. 10.1021/acsomega.1c00732. PubMed DOI PMC
Liu X. R.; Rempel D. L.; Gross M. L. Protein Higher-Order-Structure Determination by Fast Photochemical Oxidation of Proteins and Mass Spectrometry Analysis. Nat. Protoc. 2020, 15 (12), 3942–3970. 10.1038/s41596-020-0396-3. PubMed DOI PMC
Zakopcanik M.; Kavan D.; Novak P.; Loginov D. S. Quantifying the Impact of the Peptide Identification Framework on the Results of Fast Photochemical Oxidation of Protein Analysis. J. Proteome Res. 2023, 23 (2), 609–617. 10.1021/acs.jproteome.3c00390. PubMed DOI PMC
Griss J. Spectral Library Searching in Proteomics. PROTEOMICS 2016, 16 (5), 729–740. 10.1002/pmic.201500296. PubMed DOI
Lam H.; Deutsch E. W.; Eddes J. S.; Eng J. K.; King N.; Stein S. E.; Aebersold R. Development and Validation of a Spectral Library Searching Method for Peptide Identification from MS/MS. PROTEOMICS 2007, 7 (5), 655–667. 10.1002/pmic.200600625. PubMed DOI
Shao W.; Lam H. Tandem Mass Spectral Libraries of Peptides and Their Roles in Proteomics Research. Mass Spectrom. Rev. 2017, 36 (5), 634–648. 10.1002/mas.21512. PubMed DOI
Kong A. T.; Leprevost F. V.; Avtonomov D. M.; Mellacheruvu D.; Nesvizhskii A. I. MSFragger: Ultrafast and Comprehensive Peptide Identification in Shotgun Proteomics. Nat. Methods 2017, 14 (5), 513–520. 10.1038/nmeth.4256. PubMed DOI PMC
MacLean B.; Tomazela D. M.; Shulman N.; Chambers M.; Finney G. L.; Frewen B.; Kern R.; Tabb D. L.; Liebler D. C.; MacCoss M. J. Skyline: An Open Source Document Editor for Creating and Analyzing Targeted Proteomics Experiments. Bioinformatics 2010, 26 (7), 966–968. 10.1093/bioinformatics/btq054. PubMed DOI PMC
Deutsch E. W.; Bandeira N.; Perez-Riverol Y.; Sharma V.; Carver J. J.; Mendoza L.; Kundu D. J.; Wang S.; Bandla C.; Kamatchinathan S.; Hewapathirana S.; Pullman B. S.; Wertz J.; Sun Z.; Kawano S.; Okuda S.; Watanabe Y.; MacLean B.; MacCoss M. J.; Zhu Y.; Ishihama Y.; Vizcaíno J. A. The ProteomeXchange Consortium at 10 Years: 2023 Update. Nucleic Acids Res. 2023, 51 (D1), D1539–D1548. 10.1093/nar/gkac1040. PubMed DOI PMC
Perez-Riverol Y.; Bai J.; Bandla C.; García-Seisdedos D.; Hewapathirana S.; Kamatchinathan S.; Kundu D. J.; Prakash A.; Frericks-Zipper A.; Eisenacher M.; Walzer M.; Wang S.; Brazma A.; Vizcaíno J. A. The PRIDE Database Resources in 2022: A Hub for Mass Spectrometry-Based Proteomics Evidences. Nucleic Acids Res. 2022, 50 (D1), D543–D552. 10.1093/nar/gkab1038. PubMed DOI PMC
Rojas Ramírez C.; Espino J. A.; Jones L. M.; Polasky D. A.; Nesvizhskii A. I. Efficient Analysis of Proteome-Wide FPOP Data by FragPipe. Anal. Chem. 2023, 95 (44), 16131–16137. 10.1021/acs.analchem.3c02388. PubMed DOI
Polák M.; Yassaghi G.; Kavan D.; Filandr F.; Fiala J.; Kukačka Z.; Halada P.; Loginov D. S.; Novák P. Utilization of Fast Photochemical Oxidation of Proteins and Both Bottom-up and Top-down Mass Spectrometry for Structural Characterization of a Transcription Factor-dsDNA Complex. Anal. Chem. 2022, 94 (7), 3203–3210. 10.1021/acs.analchem.1c04746. PubMed DOI
Cornwell O.; Radford S. E.; Ashcroft A. E.; Ault J. R. Comparing Hydrogen Deuterium Exchange and Fast Photochemical Oxidation of Proteins: A Structural Characterisation of Wild-Type and ΔN6 β 2-Microglobulin. J. Am. Soc. Mass Spectrom. 2018, 29, 2413–2426. 10.1007/s13361-018-2067-y. PubMed DOI PMC
Box and whisker plot maker. Statistics Kingdom. https://www.statskingdom.com/advanced-boxplot-maker.html (accessed 2023-12-12).
ANOVA Calculator - One Way ANOVA and Tukey HSD test. Statistics Kingdom. https://www.statskingdom.com/180Anova1way.html (accessed 2023-12-12).