Data-Independent Acquisition Represents a Promising Alternative for Fast Photochemical Oxidation of Proteins (FPOP) Samples Analysis

. 2024 Jul 16 ; 96 (28) : 11273-11279. [epub] 20240705

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38967040

Fast Photochemical Oxidation of Proteins (FPOP) is a protein footprinting method utilizing hydroxyl radicals to provide valuable information on the solvent-accessible surface area. The extensive number of oxidative modifications that are created by FPOP is both advantageous, leading to great spatial resolution, and challenging, increasing the complexity of data processing. The precise localization of the modification together with the appropriate reproducibility is crucial to obtain relevant structural information. In this paper, we propose a novel approach combining validated spectral libraries together with utilizing DIA data. First, the DDA data searched by FragPipe are subsequently validated using Skyline software to form a spectral library. This library is then matched against the DIA data to filter out nonrepresentative IDs. In comparison with FPOP data processing using only a search engine followed by generally applied filtration steps, the manually validated spectral library offers higher confidence in identifications and increased spatial resolution. Furthermore, the reproducibility of quantification was compared for DIA, DDA, and MS-only acquisition modes on timsTOF SCP. Comparison of coefficients of variation (CV) showed that the DIA and MS acquisition modes exhibit significantly better reproducibility in quantification (CV medians 0.1233 and 0.1494, respectively) compared to the DDA mode (CV median 0.2104).

Zobrazit více v PubMed

Heming J. D.; Huffman J. B.; Jones L. M.; Homa F. L. Isolation and Characterization of the Herpes Simplex Virus 1 Terminase Complex. Journal of Virology 2014, 88 (1), 225–236. 10.1128/JVI.02632-13. PubMed DOI PMC

Loginov D. S.; Fiala J.; Brechlin P.; Kruppa G.; Novak P. Hydroxyl Radical Footprinting Analysis of a Human Haptoglobin-Hemoglobin Complex. Biochim. Biophys. Acta - Proteins Proteom. 2022, 1870 (2), 140735.10.1016/j.bbapap.2021.140735. PubMed DOI

Du Y.; Duc N. M.; Rasmussen S. G. F.; Hilger D.; Kubiak X.; Wang L.; Bohon J.; Kim H. R.; Wegrecki M.; Asuru A.; Jeong K. M.; Lee J.; Chance M. R.; Lodowski D. T.; Kobilka B. K.; Chung K. Y. Assembly of a GPCR-G Protein Complex. Cell 2019, 177 (5), 1232–1242.e11. 10.1016/j.cell.2019.04.022. PubMed DOI PMC

Sperry J. B.; Shi X.; Rempel D. L.; Nishimura Y.; Akashi S.; Gross M. L. A Mass Spectrometric Approach to the Study of DNA-Binding Proteins: Interaction of Human TRF2 with Telomeric DNA. Biochemistry 2008, 47 (6), 1797–1807. 10.1021/bi702037p. PubMed DOI

Polák M.; Černý J.; Novák P. Isotopic Depletion Increases the Spatial Resolution of FPOP Top-Down Mass Spectrometry Analysis. Anal. Chem. 2024, 96 (4), 1478–1487. 10.1021/acs.analchem.3c03759. PubMed DOI PMC

Chen X.; Shao Z.; Marinkovic N. S.; Miller L. M.; Zhou P.; Chance M. R. Conformation Transition Kinetics of Regenerated Bombyx Mori Silk Fibroin Membrane Monitored by Time-Resolved FTIR Spectroscopy. Biophys. Chem. 2001, 89 (1), 25–34. 10.1016/S0301-4622(00)00213-1. PubMed DOI

Walters B. T.; Mayne L.; Hinshaw J. R.; Sosnick T. R.; Englander S. W. Folding of a Large Protein at High Structural Resolution. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (47), 18898–18903. 10.1073/pnas.1319482110. PubMed DOI PMC

Fojtík L.; Fiala J.; Pompach P.; Chmelík J.; Matoušek V.; Beier P.; Kukačka Z.; Novák P. Fast Fluoroalkylation of Proteins Uncovers the Structure and Dynamics of Biological Macromolecules. J. Am. Chem. Soc. 2021, 143 (49), 20670–20679. 10.1021/jacs.1c07771. PubMed DOI

Cheng M.; Zhang B.; Cui W.; Gross M. L. Laser-Initiated Radical Trifluoromethylation of Peptides and Proteins and Its Application to Mass Spectrometry-Based Protein Footprinting HHS Public Access. Angew. Chem., Int. Ed. Engl. 2017, 56 (45), 14007–14010. 10.1002/anie.201706697. PubMed DOI PMC

Zhang M. M.; Rempel D. L.; Gross M. L. A Fast Photochemical Oxidation of Proteins (FPOP) Platform for Free-Radical Reactions: The Carbonate Radical Anion with Peptides and Proteins. Free radical biology & medicine 2019, 131, 126–132. 10.1016/j.freeradbiomed.2018.11.031. PubMed DOI PMC

Hambly D. M.; Gross M. L. Laser Flash Photolysis of Hydrogen Peroxide to Oxidize Protein Solvent-Accessible Residues on the Microsecond Timescale. J. Am. Soc. Mass Spectrom. 2005, 16 (12), 2057–2063. 10.1016/j.jasms.2005.09.008. PubMed DOI

Loginov D. S.; Fiala J.; Chmelik J.; Brechlin P.; Kruppa G.; Novak P. Benefits of Ion Mobility Separation and Parallel Accumulation-Serial Fragmentation Technology on timsTOF Pro for the Needs of Fast Photochemical Oxidation of Protein Analysis. ACS Omega 2021, 6 (15), 10352–10361. 10.1021/acsomega.1c00732. PubMed DOI PMC

Liu X. R.; Rempel D. L.; Gross M. L. Protein Higher-Order-Structure Determination by Fast Photochemical Oxidation of Proteins and Mass Spectrometry Analysis. Nat. Protoc. 2020, 15 (12), 3942–3970. 10.1038/s41596-020-0396-3. PubMed DOI PMC

Zakopcanik M.; Kavan D.; Novak P.; Loginov D. S. Quantifying the Impact of the Peptide Identification Framework on the Results of Fast Photochemical Oxidation of Protein Analysis. J. Proteome Res. 2023, 23 (2), 609–617. 10.1021/acs.jproteome.3c00390. PubMed DOI PMC

Griss J. Spectral Library Searching in Proteomics. PROTEOMICS 2016, 16 (5), 729–740. 10.1002/pmic.201500296. PubMed DOI

Lam H.; Deutsch E. W.; Eddes J. S.; Eng J. K.; King N.; Stein S. E.; Aebersold R. Development and Validation of a Spectral Library Searching Method for Peptide Identification from MS/MS. PROTEOMICS 2007, 7 (5), 655–667. 10.1002/pmic.200600625. PubMed DOI

Shao W.; Lam H. Tandem Mass Spectral Libraries of Peptides and Their Roles in Proteomics Research. Mass Spectrom. Rev. 2017, 36 (5), 634–648. 10.1002/mas.21512. PubMed DOI

Kong A. T.; Leprevost F. V.; Avtonomov D. M.; Mellacheruvu D.; Nesvizhskii A. I. MSFragger: Ultrafast and Comprehensive Peptide Identification in Shotgun Proteomics. Nat. Methods 2017, 14 (5), 513–520. 10.1038/nmeth.4256. PubMed DOI PMC

MacLean B.; Tomazela D. M.; Shulman N.; Chambers M.; Finney G. L.; Frewen B.; Kern R.; Tabb D. L.; Liebler D. C.; MacCoss M. J. Skyline: An Open Source Document Editor for Creating and Analyzing Targeted Proteomics Experiments. Bioinformatics 2010, 26 (7), 966–968. 10.1093/bioinformatics/btq054. PubMed DOI PMC

Deutsch E. W.; Bandeira N.; Perez-Riverol Y.; Sharma V.; Carver J. J.; Mendoza L.; Kundu D. J.; Wang S.; Bandla C.; Kamatchinathan S.; Hewapathirana S.; Pullman B. S.; Wertz J.; Sun Z.; Kawano S.; Okuda S.; Watanabe Y.; MacLean B.; MacCoss M. J.; Zhu Y.; Ishihama Y.; Vizcaíno J. A. The ProteomeXchange Consortium at 10 Years: 2023 Update. Nucleic Acids Res. 2023, 51 (D1), D1539–D1548. 10.1093/nar/gkac1040. PubMed DOI PMC

Perez-Riverol Y.; Bai J.; Bandla C.; García-Seisdedos D.; Hewapathirana S.; Kamatchinathan S.; Kundu D. J.; Prakash A.; Frericks-Zipper A.; Eisenacher M.; Walzer M.; Wang S.; Brazma A.; Vizcaíno J. A. The PRIDE Database Resources in 2022: A Hub for Mass Spectrometry-Based Proteomics Evidences. Nucleic Acids Res. 2022, 50 (D1), D543–D552. 10.1093/nar/gkab1038. PubMed DOI PMC

Rojas Ramírez C.; Espino J. A.; Jones L. M.; Polasky D. A.; Nesvizhskii A. I. Efficient Analysis of Proteome-Wide FPOP Data by FragPipe. Anal. Chem. 2023, 95 (44), 16131–16137. 10.1021/acs.analchem.3c02388. PubMed DOI

Polák M.; Yassaghi G.; Kavan D.; Filandr F.; Fiala J.; Kukačka Z.; Halada P.; Loginov D. S.; Novák P. Utilization of Fast Photochemical Oxidation of Proteins and Both Bottom-up and Top-down Mass Spectrometry for Structural Characterization of a Transcription Factor-dsDNA Complex. Anal. Chem. 2022, 94 (7), 3203–3210. 10.1021/acs.analchem.1c04746. PubMed DOI

Cornwell O.; Radford S. E.; Ashcroft A. E.; Ault J. R. Comparing Hydrogen Deuterium Exchange and Fast Photochemical Oxidation of Proteins: A Structural Characterisation of Wild-Type and ΔN6 β 2-Microglobulin. J. Am. Soc. Mass Spectrom. 2018, 29, 2413–2426. 10.1007/s13361-018-2067-y. PubMed DOI PMC

Box and whisker plot maker. Statistics Kingdom. https://www.statskingdom.com/advanced-boxplot-maker.html (accessed 2023-12-12).

ANOVA Calculator - One Way ANOVA and Tukey HSD test. Statistics Kingdom. https://www.statskingdom.com/180Anova1way.html (accessed 2023-12-12).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...