Legume Genetics and Biology: From Mendel's Pea to Legume Genomics
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu úvodníky, historické články, úvodní články
Grantová podpora
IGA-2020_003
Grant Agency of Czech Republic and Grant Agency of Palacký University
PubMed
32397225
PubMed Central
PMC7247574
DOI
10.3390/ijms21093336
PII: ijms21093336
Knihovny.cz E-zdroje
- Klíčová slova
- genomics, legumes, nitrogen fixation, proteins,
- MeSH
- dědičnost MeSH
- dějiny 19. století MeSH
- dějiny starověku MeSH
- dějiny středověku MeSH
- Fabaceae genetika metabolismus MeSH
- fenotyp MeSH
- fixace dusíku genetika fyziologie MeSH
- genetická variace MeSH
- genomika * MeSH
- lidé MeSH
- modely genetické MeSH
- zemědělské plodiny genetika dějiny metabolismus MeSH
- Check Tag
- dějiny 19. století MeSH
- dějiny starověku MeSH
- dějiny středověku MeSH
- lidé MeSH
- Publikační typ
- historické články MeSH
- úvodní články MeSH
- úvodníky MeSH
Legumes have played an important part in cropping systems since the dawn of agriculture, both as human food and as animal feed. The legume family is arguably one of the most abundantly domesticated crop plant families. Their ability to symbiotically fix nitrogen and improve soil fertility has been rewarded since antiquity and makes them a key protein source. The pea was the original model organism used in Mendel's discovery of the laws of inheritance, making it the foundation of modern plant genetics. This Special Issue provides up-to-date information on legume biology, genetic advances, and the legacy of Mendel.
Department of Botany Faculty of Sciences Palacký University 779 00 Olomouc Czech Republic
Plant Sciences and Plant Pathology Department Montana State University Bozeman MT 59717 USA
Zobrazit více v PubMed
Smykal P., Coyne C.J., Ambrose M.J., Maxted N., Schaefer H., Blair M.W., Berger J., Greene S.L., Nelson M.N., Besharat N., et al. Legume Crops Phylogeny and Genetic Diversity for Science and Breeding. Crit. Rev. Plant Sci. 2015;34:43–104. doi: 10.1080/07352689.2014.897904. DOI
Lewis G., Schrire B., Mackinder B., Lock M. Legumes of the World. Royal Botanic Gardens; London, UK: 2005.
De Candolle A. Origin of Cultivated Plants. American Association for the Advancement of Science; Appleton, WI, USA: 1890.
Vavilov N.I. In: The Origin, Variation, Immunity and Breeding of Cultivated Plants. Starchester K., editor. Volume 13. Chronica Botanica; Leyden, The Netherlands: 1951. pp. 1–364.
Smartt J. Grain Legumes: Evolution and Genetic Resources. Cambridge University Press; Cambridge, UK: 1990.
Zohary D., Hopf M., Weiss E. Domestication of Plants in the Old World: The Origin and Spread of Domesticated Plants in Southwest Asia, Europe, and the Mediterranean Basin. 4th ed. Oxford University Press; Oxford, UK: 2012.
Abbo S., van-Oss R.P., Gopher A., Saranga Y., Ofner R., Peleg Z. Plant domestication versus crop evolution: A conceptual framework for cereals and grain legumes. Trends Plant Sci. 2014;19:351–360. doi: 10.1016/j.tplants.2013.12.002. PubMed DOI
Smýkal P., Nelson M.N., Berger J.D., Von Wettberg E.J.B. The Impact of Genetic Changes during Crop Domestication. Agronomy. 2018;8:119. doi: 10.3390/agronomy8070119. DOI
Smykal P. Pea (Pisum sativum L.) in Biology prior and after Mendel’s Discovery. Czech J. Genet. Plant Breed. 2014;50:52–64. doi: 10.17221/2/2014-CJGPB. DOI
Smykal P., Varshney R.K., Singh V.K., Coyne C.J., Domoney C., Kejnovsky E., Warkentin T. From Mendel’s discovery on pea to today’s plant genetics and breeding. Appl. Genet. 2016;129:2267–2280. doi: 10.1007/s00122-016-2803-2. PubMed DOI
Cook D.R. Medicago truncatula—A model in the making! Curr. Opin. Plant Biol. 1999;2:301–304. doi: 10.1016/S1369-5266(99)80053-3. PubMed DOI
Sato S., Nakamura Y., Kaneko T., Asamizu E., Kato T., Nakao M., Sasamoto S., Watanabe A., Ono A., Kawashima K., et al. Genome structure of the legume, Lotus japonicus. DNA Res. 2008;15:227–239. doi: 10.1093/dnares/dsn008. PubMed DOI PMC
Schmutz J., Cannon S.B., Schlueter J., Ma J., Mitros T., Nelson W., Hyten D.L., Song Q., Thelen J.J., Cheng J., et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010;465:120. doi: 10.1038/nature08957. PubMed DOI
Schmutz J., McClean P.E., Mamidi S., Wu G.A., Cannon S.B., Grimwood J., Jenkins J., Shu S., Song Q., Chavarro C., et al. A reference genome for common bean and genome-wide analysis of dual domestications. Nat. Genet. 2014;46:707–713. doi: 10.1038/ng.3008. PubMed DOI PMC
Bauchet G.J., Bett K.E., Cameron C.T., Campbell J.D., Cannon E.K., Cannon S.B., Carlson J.W., Chan A., Cleary A., Close T.J., et al. The future of legume genetic data resources: Challenges, opportunities, and priorities. Legume Sci. 2019;1:e16. doi: 10.1002/leg3.16. DOI
Hina A., Cao Y., Song S., Li S., Sharmin R.A., Elattar M.A., Bhat J.A., Zhao T. High-Resolution Mapping in Two RIL Populations Refines Major “QTL Hotspot” Regions for Seed Size and Shape in Soybean (Glycine max L.) Int. J. Mol. Sci. 2020;21:1040. doi: 10.3390/ijms21031040. PubMed DOI PMC
Zhang T., Wu T., Wang L., Jiang B., Zhen C., Yuan S., Hou W., Wu C., Han T., Sun S. A Combined Linkage and GWAS Analysis Identifies QTLs Linked to Soybean Seed Protein and Oil Content. Int. J. Mol. Sci. 2019;20:5915. doi: 10.3390/ijms20235915. PubMed DOI PMC
Tafesse E.G., Gali K.K., Lachagari V.B.R., Bueckert R., Warkentin T.D. Genome-Wide Association Mapping for Heat Stress Responsive Traits in Field Pea. Int. J. Mol. Sci. 2020;21:2043. doi: 10.3390/ijms21062043. PubMed DOI PMC
Annicchiarico P., Nazzicari N., Laouar M., Thami-Alami I., Romani M., Pecetti L. Development and Proof-of-Concept Application of Genome-Enabled Selection for Pea Grain Yield under Severe Terminal Drought. Int. J. Mol. Sci. 2020;21:2414. doi: 10.3390/ijms21072414. PubMed DOI PMC
Plewiński P., Książkiewicz M., Rychel-Bielska S., Rudy E., Wolko B. Candidate Domestication-Related Genes Revealed by Expression Quantitative Trait Loci Mapping of Narrow-Leafed Lupin (Lupinus angustifolius L.) Int. J. Mol. Sci. 2019;20:5670. doi: 10.3390/ijms20225670. PubMed DOI PMC
Trněný O., Vlk D., Macková E., Matoušková M., Řepková J., Nedělník J., Hofbauer J., Vejražka K., Jakešová H., Jansa J., et al. Allelic Variants for Candidate Nitrogen Fixation Genes Revealed by Sequencing in Red Clover (Trifolium pratense L.) Int. J. Mol. Sci. 2019;20:5470. doi: 10.3390/ijms20215470. PubMed DOI PMC
Sivasakthi K., Marques E., Kalungwana N., Carrasquilla-Garcia N., Chang P.L., Bergmann E.M., Bueno E., Cordeiro M., Sani S.G.A.S., Udupa S.M., et al. Functional Dissection of the Chickpea (Cicer arietinum L.) Stay-Green Phenotype Associated with Molecular Variation at an Ortholog of Mendel’s I Gene for Cotyledon Color: Implications for Crop Production and Carotenoid Biofortification. Int. J. Mol. Sci. 2019;20:5562. doi: 10.3390/ijms20225562. PubMed DOI PMC
Polit J.T., Ciereszko I., Dubis A.T., Leśniewska J., Basa A., Winnicki K., Żabka A., Audzei M., Sobiech Ł., Faligowska A., et al. Irrigation-Induced Changes in Chemical Composition and Quality of Seeds of Yellow Lupine (Lupinus luteus L.) Int. J. Mol. Sci. 2019;20:5521. doi: 10.3390/ijms20225521. PubMed DOI PMC
Al Amin G.M., Kong K., Sharmin R.A., Kong J., Bhat J.A., Zhao T. Characterization and Rapid Gene-Mapping of Leaf Lesion Mimic Phenotype of spl-1 Mutant in Soybean (Glycine max (L.) Merr.) Int. J. Mol. Sci. 2019;20:2193. doi: 10.3390/ijms20092193. PubMed DOI PMC
Sun S., Deng D., Duan C., Zong X., Xu D., He Y., Zhu Z. Two Novel er1 Alleles Conferring Powdery Mildew (Erysiphe pisi) Resistance Identified in a Worldwide Collection of Pea (Pisum sativum L.) Germplasms. Int. J. Mol. Sci. 2019;20:5071. doi: 10.3390/ijms20205071. PubMed DOI PMC
Kumar J., Choudhary A.K., Gupta D.S., Kumar S. Towards Exploitation of Adaptive Traits for Climate-Resilient Smart Pulses. Int. J. Mol. Sci. 2019;20:2971. doi: 10.3390/ijms20122971. PubMed DOI PMC
Glazińska P., Kulasek M., Glinkowski W., Wojciechowski W., Kosiński J. Integrated Analysis of Small RNA, Transcriptome and Degradome Sequencing Provides New Insights into Floral Development and Abscission in Yellow Lupine (Lupinus luteus L.) Int. J. Mol. Sci. 2019;20:5122. doi: 10.3390/ijms20205122. PubMed DOI PMC
Krishnamurthy P., Tsukamoto C., Ishimoto M. Reconstruction of the Evolutionary Histories of UGT Gene Superfamily in Legumes Clarifies the Functional Divergence of Duplicates in Specialized Metabolism. Int. J. Mol. Sci. 2020;21:1855. doi: 10.3390/ijms21051855. PubMed DOI PMC
Nováková E., Zablatzká L., Brus J., Nesrstová V., Hanáček P., Kalendar R., Cvrčková F., Majeský Ľ., Smýkal P. Allelic Diversity of Acetyl Coenzyme A Carboxylase accD/bccp Genes Implicated in Nuclear-Cytoplasmic Conflict in the Wild and Domesticated Pea (Pisum sp.) Int. J. Mol. Sci. 2019;20:1773. doi: 10.3390/ijms20071773. PubMed DOI PMC