Allelic Variants for Candidate Nitrogen Fixation Genes Revealed by Sequencing in Red Clover (Trifolium pratense L.)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TH02010351
Technology Agency of the Czech Republic
MZE-RO1718
Ministry of Agriculture of the Czech Republic
Ref. 51834/2017-MZE17253/6.2.2
National programme of conservation and utilization of plant genetic resources and agro-biodiversity
MUNI/A/0958/2018
Ministry of Education, Youth and Sports
PubMed
31684086
PubMed Central
PMC6862357
DOI
10.3390/ijms20215470
PII: ijms20215470
Knihovny.cz E-zdroje
- Klíčová slova
- associated genes, associated polymorphisms, biological nitrogen fixation, genome-wide association, red clover,
- MeSH
- alely MeSH
- fenotyp MeSH
- fixace dusíku genetika MeSH
- genotyp MeSH
- interakce mikroorganismu a hostitele MeSH
- kořeny rostlin genetika mikrobiologie MeSH
- polymorfismus genetický * MeSH
- Rhizobium fyziologie MeSH
- rostlinné geny genetika MeSH
- sekvenční analýza DNA metody MeSH
- symbióza genetika MeSH
- Trifolium genetika mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
Plant-rhizobia symbiosis can activate key genes involved in regulating nodulation associated with biological nitrogen fixation (BNF). Although the general molecular basis of the BNF process is frequently studied, little is known about its intraspecific variability and the characteristics of its allelic variants. This study's main goals were to describe phenotypic and genotypic variation in the context of nitrogen fixation in red clover (Trifolium pretense L.) and identify variants in BNF candidate genes associated with BNF efficiency. Acetylene reduction assay validation was the criterion for selecting individual plants with particular BNF rates. Sequences in 86 key candidate genes were obtained by hybridization-based sequence capture target enrichment of plants with alternative phenotypes for nitrogen fixation. Two genes associated with BNF were identified: ethylene response factor required for nodule differentiation (EFD) and molybdate transporter 1 (MOT1). In addition, whole-genome population genotyping by double-digest restriction-site-associated sequencing (ddRADseq) was performed, and BNF was evaluated by the natural 15N abundance method. Polymorphisms associated with BNF and reflecting phenotype variability were identified. The genetic structure of plant accessions was not linked to BNF rate of measured plants. Knowledge of the genetic variation within BNF candidate genes and the characteristics of genetic variants will be beneficial in molecular diagnostics and breeding of red clover.
Agricultural Research Ltd Zahradní 1 664 41 Troubsko Czech Republic
Department of Experimental Biology Masaryk University 625 00 Brno Czech Republic
Red Clover and Grass Breeding 724 47 Hladké Životice Czech Republic
Research Institute for Fodder Crops Ltd 664 41 Troubsko Czech Republic
Zobrazit více v PubMed
Zohary M., Heller D. The genus Trifolium. Israel Academy of Sciences and Humanities; Jerusalem, Israel: 1984.
Gillett J.M., Taylor N.L. The World of Clovers. Iowa State University Press; Ames, Iowa, IA, USA: 2001.
Ellison N.W., Liston A., Steiner J.J., Williams W.M., Taylor N.L. Molecular phylogenetics of the clover genus (Trifolium-Leguminosae) Mol. Phylogenet. Evol. 2006;39:688–705. doi: 10.1016/j.ympev.2006.01.004. PubMed DOI
Kintl A., Elbl J., Lošák T., Vaverková M.D., Nedělník J. Mixed intercropping of wheat and white clover to enhance the sustainability of the conventional cropping system: Effects on biomass production and leaching of mineral nitrogen. Sustain. 2018;10:3367. doi: 10.3390/su10103367. DOI
Hauer R.F., Lamberti G.A. Methods in Stream Ecology: Volume 1: Ecosystem Structure. Academic Press; Cambridge, MA, USA: 2017.
Lerouge P. Symbiotic host specificity between leguminous plants and rhizobia is determined by substituted and acylated glucosamine oligosaccharide signals. Glycobiology. 1994;4:127–134. doi: 10.1093/glycob/4.2.127. PubMed DOI
Luna R., Planchon C. Genotype x Bradyrhizobium japonicum strain interactions in dinitrogen fixation and agronomic traits of soybean (Glycine max L. Merr.) Euphytica. 1995;86:127–134. doi: 10.1007/BF00022018. DOI
Kouchi H., Imaizumi-Anraku H., Hayashi M., Hakoyama T., Nakagawa T., Umehara Y., Suganuma N., Kawaguchi M. How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. Plant Cell Physiol. 2010;51:1381–1397. doi: 10.1093/pcp/pcq107. PubMed DOI PMC
Carlsson G., Huss-Danell K. Nitrogen fixation in perennial forage legumes in the field. Plant Soil. 2003;253:353–372. doi: 10.1023/A:1024847017371. DOI
Provorov N.A., Tikhonovich I.A. Genetic resources for improving nitrogen fixation in legume-rhizobia symbiosis. Genet. Resour. Crop. Evol. 2003;50:89–99. doi: 10.1023/A:1022957429160. DOI
Freiberg C., Fellay R., Bairoch A., Broughton W.J., Rosenthal A., Perret X. Molecular basis of symbiosis between Rhizobium and legumes. Nature. 1997;387:394–401. doi: 10.1038/387394a0. PubMed DOI
Catoira R., Galera C., De Billy F., Penmetsa R.V., Journet E.P., Maillet F., Rosenberg C., Cook D., Gough C., Denarie J. Four genes of Medicago truncatula controlling components of a Nod factor transduction pathway. Plant Cell. 2000;12:1647–1665. doi: 10.1105/tpc.12.9.1647. PubMed DOI PMC
Oldroyd G.E.D., Long S.R. Identification and characterization of nodulation-signaling pathway 2, a gene of Medicago truncatula involved in nod factor signaling. Plant Physiol. 2003;131:1027–1032. doi: 10.1104/pp.102.010710. PubMed DOI PMC
Gleason C., Yang T. Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition Article W342F Mutation in CCaMK Enhances Its Affinity to Calmodulin But Compromises Its Role in Supporting Root Nodule Symbiosis in Medicago truncatula View pr. Nature. 2006;441:1149–1152. doi: 10.1038/nature04812. PubMed DOI
Delves A.C., Mathews2 A., Day D.A., Carter A.S., Carroll B.J., Gresshoff P.M. Regulation of the Soybean-Rhizobium Nodule Symbiosis by Shoot and Root Factors’. Plant Physiol. 1986;82:588–590. doi: 10.1104/pp.82.2.588. PubMed DOI PMC
Caetano-Anolles G., Gresshoff P.M. Plant Genetic Control of Nodulation. Annu. Rev. Microbiol. 1991;45:345–382. doi: 10.1146/annurev.mi.45.100191.002021. PubMed DOI
Gage D.J. 2004 Infection and Invasion of Roots by Symbiotic, Nitrogen-Fixing Rhizobia during Nodulation of Temperate Legumes. Microbiol. Mol. Biol. Rev. 2017;68:203. PubMed PMC
Marchal K., Vanderleyden J. The “oxygen paradox” of dinitrogen-fixing bacteria. Biol. Fertil. Soils. 2000;30:363–373. doi: 10.1007/s003740050017. DOI
Kundu S., Trent J.T., Hargrove M.S. Plants, humans and hemoglobins. Trends Plant Sci. 2003;8:387–393. doi: 10.1016/S1360-1385(03)00163-8. PubMed DOI
Penmetsa R.V., Cook D.R. A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science. 1997;275:527–530. doi: 10.1126/science.275.5299.527. PubMed DOI
Mitra R.M., Gleason C.A., Edwards A., Hadfield J., Downie J.A., Oldroyd G.E.D., Long S.R. A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: Gene identification by transcript-based cloning. Proc. Natl. Acad. Sci. USA. 2004;101:4701–4705. doi: 10.1073/pnas.0400595101. PubMed DOI PMC
Domonkos A., Horvath B., Marsh J.F., Halasz G., Ayaydin F., Oldroyd G.E.D., Kalo P. The identification of novel loci required for appropriate nodule development in Medicago truncatula. BMC Plant Biol. 2013;13:157. doi: 10.1186/1471-2229-13-157. PubMed DOI PMC
Kang Y., Li M., Sinharoy S., Verdier J. A snapshot of functional genetic studies in Medicago truncatula. Front. Plant Sci. 2016;7:1175. doi: 10.3389/fpls.2016.01175. PubMed DOI PMC
Veerappan V., Jani M., Kadel K., Troiani T., Gale R., Mayes T., Shulaev E., Wen J., Mysore K.S., Azad R.K., et al. Rapid identification of causative insertions underlying Medicago truncatula Tnt1 mutants defective in symbiotic nitrogen fixation from a forward genetic screen by whole genome sequencing. BMC Genom. 2016;17:141. doi: 10.1186/s12864-016-2452-5. PubMed DOI PMC
Yano K., Aoki S., Liu M., Umehara Y., Suganuma N., Iwasaki W., Sato S., Soyano T., Kouchi H., Kawaguchi M. Function and evolution of a Lotus japonicus AP2/ERF family transcription factor that is required for development of infection threads. DNA Res. 2017;24:193–203. PubMed PMC
Cregan P.B., Jarvik T., Bush A.L., Shoemaker R.C., Lark K.G., Kahler A.L., Kaya N., VanToai T.T., Lohnes D.G., Chung J. An integrated genetic linkage map of the soybean genome. Crop Sci. 1999;39:1464–1490. doi: 10.2135/cropsci1999.3951464x. DOI
Santos M.A.D., Nicolás M.F., Hungria M. Identificação de QTL associados à simbiose entre Bradyrhizobium japonicum, B. elkanii e soja. Pesqui. Agropecuária Bras. 2006;41:67–75. doi: 10.1590/S0100-204X2006000100010. DOI
Santos M.A., Geraldi I.O., Garcia A.A.F., Bortolatto N., Schiavon A., Hungria M. Mapping of QTLs associated with biological nitrogen fixation traits in soybean. Hereditas. 2013;150:17–25. doi: 10.1111/j.1601-5223.2013.02275.x. PubMed DOI
Nicolás M.F., Hungria M., Arias C.A.A. Identification of quantitative trait loci controlling nodulation and shoot mass in progenies from two Brazilian soybean cultivars. Field Crop. Res. 2006;95:355–366. doi: 10.1016/j.fcr.2005.04.012. DOI
Kim D.H., Parupalli S., Azam S., Lee S.H., Varshney R.K. Comparative sequence analysis of nitrogen fixation-related genes in six legumes. Front. Plant Sci. 2013;4:300. doi: 10.3389/fpls.2013.00300. PubMed DOI PMC
Alves-Carvalho S., Aubert G., Carrère S., Cruaud C., Brochot A.L., Jacquin F., Klein A., Martin C., Boucherot K., Kreplak J., et al. Full-length de novo assembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species. Plant J. 2015;84:1–19. doi: 10.1111/tpj.12967. PubMed DOI
Qiao Z., Pingault L., Nourbakhsh-Rey M., Libault M. Comprehensive comparative genomic and transcriptomic analyses of the legume genes controlling the nodulation process. Front. Plant Sci. 2016;7:34. doi: 10.3389/fpls.2016.00034. PubMed DOI PMC
Vižintin L., Javornik B., Bohanec B. Genetic characterization of selected Trifolium species as revealed by nuclear DNA content and ITS rDNA region analysis. Plant Sci. 2006;170:859–866. doi: 10.1016/j.plantsci.2005.12.007. DOI
Ištvánek J., Jaroš M., Krenek A., Řepková J. Genome assembly and annotation for red clover (Trifolium pratense; Fabaceae) Am. J. Bot. 2014;101:327–337. doi: 10.3732/ajb.1300340. PubMed DOI
De Vega J.J., Ayling S., Hegarty M., Kudrna D., Goicoechea J.L., Ergon Å., Rognli O.A., Jones C., Swain M., Geurts R., et al. Red clover (Trifolium pratense L.) draft genome provides a platform for trait improvement. Sci. Rep. 2015;5:1–10. doi: 10.1038/srep17394. PubMed DOI PMC
Young N.D., Debellé F., Oldroyd G.E.D., Geurts R., Cannon S.B., Udvardi M.K., Benedito V.A., Mayer K.F.X., Gouzy J., Schoof H., et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature. 2011;480:520–524. doi: 10.1038/nature10625. PubMed DOI PMC
Stanton-Geddes J., Paape T., Epstein B., Briskine R., Yoder J., Mudge J., Bharti A.K., Farmer A.D., Zhou P., Denny R., et al. Candidate Genes and Genetic Architecture of Symbiotic and Agronomic Traits Revealed by Whole-Genome, Sequence-Based Association Genetics in Medicago truncatula. PLoS ONE. 2013;8:e65688. doi: 10.1371/journal.pone.0065688. PubMed DOI PMC
Curtin S.J., Tiffin P., Guhlin J., Trujillo D., Burghart L., Atkins P., Baltes N.J., Denny R., Voytas D.F., Stupar R.M., et al. Validating genome-wide association candidates controlling quantitative variation in nodulation. Plant Physiol. 2017;173:921–931. doi: 10.1104/pp.16.01923. PubMed DOI PMC
Grunvald A.K., Torres A.R., Luiz de Lima Passianotto A., Santos M.A., Jean M., Belzile F., Hungria M. Identification of QTLs associated with biological nitrogen fixation traits in soybean using a genotyping-by-sequencing approach. Crop. Sci. 2018;58:2523–2532. doi: 10.2135/cropsci2018.01.0031. DOI
Peterson B.K., Weber J.N., Kay E.H., Fisher H.S., Hoekstra H.E. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE. 2012;7:e37135. doi: 10.1371/journal.pone.0037135. PubMed DOI PMC
Byrne S., Czaban A., Studer B., Panitz F., Bendixen C., Asp T. Genome Wide Allele Frequency Fingerprints (GWAFFs) of Populations via Genotyping by Sequencing. PLoS ONE. 2013;8:e57438. doi: 10.1371/journal.pone.0057438. PubMed DOI PMC
Kozarewa I., Armisen J., Gardner A.F., Slatko B.E., Hendrickson C.L. Overview of target enrichment strategies. Curr. Protoc. Mol. Biol. 2015;112:7–21. PubMed
Roux B., Rodde N., ßoise Jardinaud M.-F., Timmers T., Sauviac L., Cottret L., Ebastien Carr Ere S., Sallet E., Courcelle E., Moreau S., et al. An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. Plant J. 2014;77:817–837. doi: 10.1111/tpj.12442. PubMed DOI
Tejada-Jiménez M., Gil-Díez P., León-Mediavilla J., Wen J., Mysore K.S., Imperial J., González-Guerrero M. Medicago truncatula Molybdate Transporter type 1 (MtMOT1.3) is a plasma membrane molybdenum transporter required for nitrogenase activity in root nodules under molybdenum deficiency. New Phytol. 2017;216:1223–1235. doi: 10.1111/nph.14739. PubMed DOI
Liu X., Huang M., Fan B., Buckler E.S., Zhang Z. Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLoS Genet. 2016;12:e1005767. doi: 10.1371/journal.pgen.1005767. PubMed DOI PMC
Benjamini Y., Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI
Yang Y., Zhao Q., Li X., Ai W., Liu D., Qi W., Zhang M., Yang C., Liao H. Characterization of genetic basis on synergistic interactions between root architecture and biological nitrogen fixation in soybean. Front. Plant Sci. 2017;8:1466. doi: 10.3389/fpls.2017.01466. PubMed DOI PMC
Vance C.P. The Rhizobiaceae. Springer Netherlands; Heidelberg, Germany: 1998. Legume Symbiotic Nitrogen Fixation: Agronomic Aspects; pp. 509–530.
Yang Q., Yang Y., Xu R., Lv H., Liao H. Genetic analysis and mapping of QTLs for soybean biological nitrogen fixation traits under varied field conditions. Front. Plant Sci. 2019;10:75. doi: 10.3389/fpls.2019.00075. PubMed DOI PMC
Smith G.R., Knight W.E., Peterson H.H. Variation among Inbred Lines of Crimson Clover for N2 Fixation (C2H2) Efficiency. Crop Sci. 1982;22:716–719. doi: 10.2135/cropsci1982.0011183X002200040005x. DOI
Nutman P.S. Improving nitrogen fixation in legumes by plant breeding; the relevance of host selection experiments in red clover (Trifolium pratense L.) and subterranean clover (T. subterraneum L.) Plant Soil. 1984;82:285–301. doi: 10.1007/BF02184268. DOI
Unkovich M., Herridge D., Peoples M., Cadisch G., Boddey B., Giller K., Alves B., Chalk P. Measuring plant-associated nitrogen fixation in agricultural systems. Aust. Cent. Int. Agric. Res. 2008;136:132–188.
Sulieman S., Schulze J. The efficiency of nitrogen fixation of the model legume Medicago truncatula (Jemalong A17) is low compared to Medicago sativa. J. Plant Physiol. 2010;167:683–692. doi: 10.1016/j.jplph.2009.12.016. PubMed DOI
Thilakarathna M.S., Papadopoulos Y.A., Rodd A.V., Grimmett M., Fillmore S.A.E., Crouse M., Prithiviraj B. Nitrogen fixation and transfer of red clover genotypes under legume–grass forage based production systems. Nutr. Cycl. Agroecosystems. 2016;106:233–247. doi: 10.1007/s10705-016-9802-1. DOI
Thilakarathna M.S., Papadopoulos Y.A., Grimmett M., Fillmore S.A.E., Crouse M., Prithiviraj B. Red Clover Varieties with Nitrogen Fixing Advantage during the Early Stages of Seedling Development. Can. J. Plant Sci. 2018;98:517–526. doi: 10.1139/cjps-2017-0071. DOI
Hardy R.W.F., Burns R.C., Holsten R.D. Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol. Biochem. 1973;5:47–81. doi: 10.1016/0038-0717(73)90093-X. DOI
Mckenna P., Cannon N., Dooley J., Conway J. The use of red clover (Trifolium pratense) in soil fertility-building: A Review. Field Crop. Res. 2018;221:38–49. doi: 10.1016/j.fcr.2018.02.006. DOI
Ferguson B.J., Mens C., Hastwell A.H., Zhang M., Su H., Jones C.H., Chu X., Gresshoff P.M. Legume nodulation: The host controls the party. Plant Cell Environ. 2018;42:41–51. doi: 10.1111/pce.13348. PubMed DOI
Roughley R.J., Dart P.J. Reduction of acetylene by nodules of Trifolium subterraneum as affected by root temperature, Rhizobium strain and host cultivar. Arch. Mikrobiol. 1969;69:171–179. doi: 10.1007/BF00409761. DOI
Bergersen F.J. The Quantitative Relationship Between Nitrogen Fixation And The Acetylene-Reduction assay. Aust. J. Biol. Sci. 1970;23:1015–1026. doi: 10.1071/BI9701015. DOI
Vessey J.K. Measurement of nitrogenase activity in legume root nodules: In defense of the acetylene reduction assay. Plant Soil. 1994;158:151–162. doi: 10.1007/BF00009490. DOI
Nakano T., Suzuki K., Fujimura T., Shinshi H. Genome-wide analysis of the ERF gene family in arabidopsis and rice. Plant Physiol. 2006;140:411–432. doi: 10.1104/pp.105.073783. PubMed DOI PMC
Riechmann J.L., Heard J., Martin G., Reuber L., Jiang C.Z., Keddie J., Adam L., Pineda O., Ratcliffe O.J., Samaha R.R., et al. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science. 2000;290:2105–2110. doi: 10.1126/science.290.5499.2105. PubMed DOI
Vernié T., Moreau S., De Billy F., Plet J., Combier J.P., Rogers C., Oldroyd G., Frugier F., Niebel A., Gamas P. EFD is an ERF transcription factor involved in the control of nodule number and differentiation in Medicago truncatula. Plant Cell. 2008;20:2696–2713. doi: 10.1105/tpc.108.059857. PubMed DOI PMC
Tejada-Jiménez M., Chamizo-Ampudia A., Galván A., Fernández E., Llamas Á. Molybdenum metabolism in plants. Metallomics. 2013;5:1191–1203. doi: 10.1039/c3mt00078h. PubMed DOI
Krusell L., Krause K., Ott T., Desbrosses G., Krämer U., Sato S., Nakamura Y., Tabata S., James E.K., Sandal N., et al. The Sulfate Transporter SST1 Is Crucial for Symbiotic Nitrogen Fixation in Lotus japonicus Root Nodules. Plant Cell. 2005;17:1625–1636. doi: 10.1105/tpc.104.030106. PubMed DOI PMC
Cheng G., Karunakaran R., East A.K., Poole P.S. Multiplicity of Sulfate and Molybdate Transporters and Their Role in Nitrogen Fixation in Rhizobium leguminosarum bv. viciae Rlv3841. Mol. Plant Microbe. Interact. 2016;29:143–152. doi: 10.1094/MPMI-09-15-0215-R. PubMed DOI
Delgado M.J., Tresierra-Ayala A., Talbi C., Bedmar E.J. Functional characterization of the Bradyrhizobium japonicum modA and modB genes involved in molybdenum transport. Microbiology. 2006;152:199–207. doi: 10.1099/mic.0.28347-0. PubMed DOI
Avenhaus U., Cabeza R.A., Liese R., Lingner A., Dittert K., Salinas-Riester G., Pommerenke C., Schulze J. Short-term molecular acclimation processes of legume nodules to increased external oxygen concentration. Front. Plant Sci. 2016;6 doi: 10.3389/fpls.2015.01133. PubMed DOI PMC
Minchin F.R. Regulation of oxygen diffusion in legume nodules. Soil Biol. Biochem. 1997;29:881–888. doi: 10.1016/S0038-0717(96)00204-0. DOI
Mylona P., Pawlowski K., Bisseling T. Symbiotic Nitrogen Fixation. Plant Cell. 1995;7:869–885. doi: 10.2307/3870043. PubMed DOI PMC
Cabeza R., Koester B., Liese R., Lingner A., Baumgarten V., Dirks J., Salinas-Riester G., Pommerenke C., Dittert K., Schulze J. An RNA Sequencing Transcriptome Analysis Reveals Novel Insights into Molecular Aspects of the Nitrate Impact on the Nodule Activity of Medicago truncatula. Plant Physiol. 2014;164:400–411. doi: 10.1104/pp.113.228312. PubMed DOI PMC
Bogusz D., Appleby C.A., Landsmann J., Dennis E.S., Trinick M.J., Peacock W.J. Functioning haemoglobin genes in non-nodulating plants. Nature. 1988;331:178–180. doi: 10.1038/331178a0. PubMed DOI
Arredondo-Peter R., Hargrove S., Sarath C., Moran J.F., Lohrman J., Olson J.S., Klucas R. V Rice Hemoglobins. Plant Physiol. 1997;115:1259–1266. doi: 10.1104/pp.115.3.1259. PubMed DOI PMC
Trevaskis B., Watts R.A., Andersson C.R., Llewellyn D.J., Hargrove M.S., Olson J.S., Dennis E.S., Peacock W.J. Two hemoglobin genes in Arabidopsis thaliana: The evolutionary origins of leghemoglobins. Proc. Natl. Acad. Sci. USA. 1997;94:12230–12234. doi: 10.1073/pnas.94.22.12230. PubMed DOI PMC
Andersson C.R., Ostergaard Jensen E., Llewellyn D.J., Dennis E.S., Peacock W.J. A new hemoglobin gene from soybean: A role for hemoglobin in all plants (nonsymbiotic/leghemoglobin/evolution) Plant Biol. 1996;93:5682–5687. PubMed PMC
Bustos-Sanmamed P., Tovar-Méndez A., Crespi M., Sato S., Tabata S., Becana M. Regulation of nonsymbiotic and truncated hemoglobin genes of Lotus japonicus in plant organs and in response to nitric oxide and hormones. New Phytol. 2011;189:765–776. doi: 10.1111/j.1469-8137.2010.03527.x. PubMed DOI
Calvo-Begueria L., Cuypers B., Van Doorslaer S., Abbruzzetti S., Bruno S., Berghmans H., Dewilde S., Ramos J., Viappiani C.O., Becana M. Characterization of the heme pocket structure and ligand binding kinetics of non-symbiotic hemoglobins from the model legume lotus japonicus. Front. Plant Sci. 2017;8:1–14. doi: 10.3389/fpls.2017.00407. PubMed DOI PMC
Igamberdiev A.U. Nitrate, NO and haemoglobin in plant adaptation to hypoxia: An alternative to classic fermentation pathways. J. Exp. Bot. 2004;55:2473–2482. doi: 10.1093/jxb/erh272. PubMed DOI
Gupta K.J., Mur L.A.J., Wany A., Kumari A., Fernie A.R., Ratcliffe R.G. The role of nitrite and nitric oxide under low oxygen conditions in plants. New Phytol. 2019 doi: 10.1111/nph.15969. PubMed DOI
Guilfoyle T.J., Hagen G. Auxin response factors. Curr. Opin. Plant Biol. 2007;10:453–460. doi: 10.1016/j.pbi.2007.08.014. PubMed DOI
Breakspear A., Liu C., Roy S., Stacey N., Rogers C., Trick M., Morieri G., Mysore K.S., Wen J., Oldroyd G.E.D., et al. The root hair “infectome” of medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for auxin signaling in rhizobial infectionw. Plant Cell. 2014;26:4680–4701. doi: 10.1105/tpc.114.133496. PubMed DOI PMC
Becana M., Wienkoop S., Matamoros M.A. Sulfur Transport and Metabolism in Legume Root Nodules. Front. Plant Sci. 2018;9:1–10. doi: 10.3389/fpls.2018.01434. PubMed DOI PMC
Ehrhardt D.W., Atkinson M.E., Faull K.F., Freedberg D.I., Sutherlin D.P., Armstrong R., Long S.R. In vitro sulfotransferase activity of NodH, a nodulation protein of Rhizobium meliloti required for host-specific nodulation. J. Bacteriol. 1995;177:6237–6245. doi: 10.1128/jb.177.21.6237-6245.1995. PubMed DOI PMC
Zhao Y., Cheng S., Song Y., Huang Y., Zhou S., Liu X., Zhou D.-X. The Interaction between Rice ERF3 and WOX11 Promotes Crown Root Development by Regulating Gene Expression Involved in Cytokinin Signaling. Plant Cell. 2015;27:2469–2483. doi: 10.1105/tpc.15.00227. PubMed DOI PMC
Dündar E., Bush D.R. BAT1, a bidirectional amino acid transporter in Arabidopsis. Planta. 2009;229:1047–1056. doi: 10.1007/s00425-009-0892-8. PubMed DOI
Miflin B.J., Habash D.Z. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J. Exp. Bot. 2002;53:979–987. doi: 10.1093/jexbot/53.370.979. PubMed DOI
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC
Rogers S.O., Bendich A.J. Extraction of DNA from plant tissues. In: Gelvin S.B., Schilperoort R.A., Verma D.P.S., editors. Plant Molecular Biology Manual. Springer Netherlands; Heidelberg, Germany: 1989. pp. 73–83.
Andrews S. Babraham Bioinformatics-FastQC A Quality Control tool for High Throughput Sequence Data. [(accessed on 9 September 2019)]; Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Catchen J.M., Amores A., Hohenlohe P., Cresko W., Postlethwait J.H. Stacks: Building and Genotyping Loci De Novo From Short-Read Sequences. G3 Genes Genomes Genet. 2011;1:171–182. doi: 10.1534/g3.111.000240. PubMed DOI PMC
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Li H., Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–595. doi: 10.1093/bioinformatics/btp698. PubMed DOI PMC
McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S., Daly M., et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–1303. doi: 10.1101/gr.107524.110. PubMed DOI PMC
Depristo M.A., Banks E., Poplin R., Garimella K.V., Maguire J.R., Hartl C., Philippakis A.A., Del Angel G., Rivas M.A., Hanna M., et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011;43:491–501. doi: 10.1038/ng.806. PubMed DOI PMC
Van der Auwera G.A., Carneiro M.O., Hartl C., Poplin R., del Angel G., Levy-Moonshine A., Jordan T., Shakir K., Roazen D., Thibault J., et al. From fastQ data to high-confidence variant calls: The genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013;43:11.10.1–11.10.33. PubMed PMC
McLaren W., Gil L., Hunt S.E., Riat H.S., Ritchie G.R.S., Thormann A., Flicek P., Cunningham F. The Ensembl Variant Effect Predictor. Genome Biol. 2016;17:1–14. doi: 10.1186/s13059-016-0974-4. PubMed DOI PMC
Meirmans P.G., Liu S., Van Tienderen P.H. The Analysis of Polyploid Genetic Data. J. Hered. 2018;109:283–296. doi: 10.1093/jhered/esy006. PubMed DOI
Stacklies W., Redestig H., Scholz M., Walther D., Selbig J. pcaMethods-A bioconductor package providing PCA methods for incomplete data. Bioinformatics. 2007;23:1164–1167. doi: 10.1093/bioinformatics/btm069. PubMed DOI
Yu J., Pressoir G., Briggs W.H., Vroh Bi I., Yamasaki M., Doebley J.F., McMullen M.D., Gaut B.S., Nielsen D.M., Holland J.B., et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 2006;38:203–208. doi: 10.1038/ng1702. PubMed DOI
Lipka A.E., Tian F., Wang Q., Peiffer J., Li M., Bradbury P.J., Gore M.A., Buckler E.S., Zhang Z. GAPIT: Genome association and prediction integrated tool. Bioinformatics. 2012;28:2397–2399. doi: 10.1093/bioinformatics/bts444. PubMed DOI
Legume Genetics and Biology: From Mendel's Pea to Legume Genomics