MOC-Diatomite Composites Filled with Multi-Walled Carbon Nanotubes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-01866S
Grantová Agentura České Republiky
SGS20/153/OHK1/3T/11
Grant Agency of the Czech Technical University in Prague
20-SVV/2021
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34443099
PubMed Central
PMC8399920
DOI
10.3390/ma14164576
PII: ma14164576
Knihovny.cz E-zdroje
- Klíčová slova
- diatomite, magnesium oxychloride cement, mechanical and thermal performance, multi-walled carbon nanotubes, structure analysis, thermal stability,
- Publikační typ
- časopisecké články MeSH
The studies focusing on magnesium oxychloride cement (MOC) composites have recently become fairly widespread because of MOC's excellent mechanical properties and environmental sustainability. Numerous fillers, admixtures and nano-dopants were studied in order to improve the overall performance of MOC-based derivatives. Some of them exhibited specific flaws, such as a tendency to aggregate, increase in porosity, aeration of the composite matrix, depreciation in water resistance and mechanical strength, etc. In this manuscript, MOC-based composites doped by multi-walled carbon nanotubes (MWCNTs) are designed and tested. In order to modify the final properties of composites, diatomite was admixed as partial substitution of MgO, which was used in the composition of the researched material in excess, i.e., the majority of MgO constituted part of MOC and the rest served as fine filler. The composites were subjected to the broad experimental campaign that covered SEM (scanning electron microscopy), EDS (energy dispersive spectroscopy), HR-TEM (high-resolution transmission electron microscopy), XRD (X-ray diffraction), OM (optical microscopy) and STA-MS (simultaneous thermal analysis with mass spectroscopy). For 28 days hardened samples, macrostructural and microstructural parameters, mechanical properties, hygric and thermal characteristics were experimentally assessed. The incorporation of MWCNTs and diatomite resulted in the significant enhancement of composites' compactness, mechanical strength and stiffness and reduction in water absorption and rate of water imbibition. The thermal properties of the enriched MOC composites yielded interesting values and provided information for future modification of thermal performance of MOC composites with respect to their specific use in practice, e.g., in passive moderation of indoor climate. The combination of MWCNTs and diatomite represents a valuable modification of the MOC matrix and can be further exploited in the design and development of advanced building materials and components.
Zobrazit více v PubMed
Canterford J.H. Magnesia-an important industrial mineral: A review of processing options and uses. Miner. Process. Extr. Matell. Rev. 1985;2:57–104. doi: 10.1080/08827508508952601. DOI
Bilinski H., Matkovicć B., Mažuranicć C., Žunicć T. The formation of magnesium oxychloride phases in the systems MgOMgCl2-H2O and NaOH-MgCl2-H2O. J. Am. Ceram. Soc. 1984;67:266–269. doi: 10.1111/j.1151-2916.1984.tb18844.x. DOI
Lojka M., Jankovský O., Jiříčková A., Lauermanova A.M., Antončík F., Sedmidubský D., Pavlík Z., Pavlíková M. Thermal Stability and Konetics of Formation of Magnesium Oxychloride Phase 3Mg(OH)(2). MgCl2.8H(2)O. Materials. 2020;13:767. doi: 10.3390/ma13030767. PubMed DOI PMC
Jiříčková A., Lojka M., Lauermanova A.M., Antončík F., Sedmidubský D., Pavlíková M., Záleská M., Pavlík Z., Jankovský O. Synthesis, Structure, and Thermal Stability of Magnesium Oxychloride 5Mg(OH)2·MgCl2·8H2O. Appl. Sci. 2020;10:1683. doi: 10.3390/app10051683. PubMed DOI
Hao Y., Li Y. Study on preparation and properties of modified magnesium oxychloride cement foam concrete. Constr. Build. Mater. 2021;282:122708. doi: 10.1016/j.conbuildmat.2021.122708. DOI
Zhou X., Li Z. Light-weight wood–magnesium oxychloride cement composite building products made by extrusion. Constr. Build. Mater. 2012;27:382–389. doi: 10.1016/j.conbuildmat.2011.07.033. DOI
Gomes C.M., Cheung N., Gomes G.M., Sousa A.K., Peruzzi A.P. Improvement of water resistance in magnesia cements with renewable source silica. Constr. Build. Mater. 2021;272:121650. doi: 10.1016/j.conbuildmat.2020.121650. DOI
Bensted J. Special cements. In: Hewlett P.C., editor. Lea’s Chemistry of Cement and Concrete. 4th ed. Butterworth-Heinemann; Oxford, UK: 2003.
Lauermanova A.M., Lojka M., Jankovský O., Faltysová I., Pavlíková M., Pivák A., Záleská M., Pavlík Z. High-performance magnesium oxychloride composites with silica sand and diatomite. J. Mater. Res. Technol. 2021;11:957–969. doi: 10.1016/j.jmrt.2021.01.028. DOI
Yılmaz B., Ediz N. The use of raw and calcined diatomite in cement production. Cement Concr Compos. 2008;30:202. doi: 10.1016/j.cemconcomp.2007.08.003. DOI
Guo Y., Zhang Y., Soe K., Hutchinson W.D., Timmers H., Poblete M.R. Effect of fly ash on mechanical properties of magnesium cement under water attack. Struct. Conc. 2020;21:1181–1199. doi: 10.1002/suco.201900329. DOI
Zhang T., Vandeperre L.J., Cheeseman C.R. Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate. Cem. Concr. Res. 2014;65:8–14. doi: 10.1016/j.cemconres.2014.07.001. DOI
Bernard E., Lothenbach B., Cau-Dit-Coumes C., Chlique C., Dauzères A., Pochard I. Magnesium and calcium silicate hydrates, Part I: Investigation of the possible magnesium incorporation in calcium silicate hydrate (C-S-H) and of the calcium in magnesium silicate hydrate (M-S-H) Appl. Geochem. 2018;89:229–242. doi: 10.1016/j.apgeochem.2017.12.005. DOI
Sugimoto K., Robert E., Dinnebiera R.E., Hansonb J.C. Structures of three dehydration products of bischofite from in situ synchrotron powder diffraction data (MgCl2nH2O; n = 1, 2, 4) Acta Cryst. 2007;B63:235–242. doi: 10.1107/S0108768107002558. PubMed DOI
Zhao H., Xiao Q., Huang D., Zhang S. Influence of Pore Structure on Compressive Strength of Cement Mortar. Sci. World J. 2014;2014:247058. doi: 10.1155/2014/247058. PubMed DOI PMC
Benayache S., Alleg S., Mebrek A., Suñol J.J. Thermal and microstructural properties of paraffin/diatomite composite. Vacuum. 2018;157:136–144. doi: 10.1016/j.vacuum.2018.08.044. DOI
Jeong S.-G., Jeon J., Lee J.-H., Kim S. Optimal preparation of PCM/diatomite composites for enhancing thermal properties. Int. J. Heat Mass Transf. 2013;62:711–717. doi: 10.1016/j.ijheatmasstransfer.2013.03.043. DOI
Zhao Y.H. Effect of CNT/CNF on Thermal and Mechanical Properties of Cement Mortars. Adv. Mater. Res. 2014;1049–1050:234–237. doi: 10.4028/www.scientific.net/AMR.1049-1050.234. DOI
Zhu Y., Qian Y., Zhang L., Bai B., Wang X., Li J., Bi S., Kong L., Liu W., Zhang L. Enhanced thermal conductivity of geopolymer nanocomposites by incorporating interface engineered carbon nanotubes. Compos. Commun. 2021;24:100691. doi: 10.1016/j.coco.2021.100691. DOI
Hassanzadeh-Aghdam M.K., Mahmoodi M.J., Safi M. Effect of adding carbon nanotubes on the thermal conductivity of steel fiber-reinforced concrete. Compos. Part B: Eng. 2019;174:106972. doi: 10.1016/j.compositesb.2019.106972. DOI
Feng C., Guimarães A.S., Ramos N., Sun L., Gawin D., Konca P., Hall C., Zhao J., Hirsch H., Grunewald J., et al. Hygric properties of porous building materials (VI): A round robin campaign. Build. Environ. 2020;185:107242. doi: 10.1016/j.buildenv.2020.107242. DOI
Veiga M.R., Magalhães A., Bosilijkov V. Capillarity tests on historic mortar samples extracted from site. In: Martens D., Vermeltfoort A., editors. Methodology and Compared Results, Proceedings of the 13th International Brick and Block Masonry Conference, Amsterdam, The Netherlands, 4–7 July 2004. Eindhoven University of Technology; Amsterdam, The Netherlands: 2004.
Vyšvařil M., Pavlíková M., Záleská M., Pivák A., Žižlavský T., Rovnaníková P., Bayer P., Pavlík Z. Non-hydrophobized perlite renders for repair and thermal insulation purposes: Influence of different binders on their properties and durability. Constr. Build. Mater. 2020;263:120617. doi: 10.1016/j.conbuildmat.2020.120617. DOI