Ternary Blended Binder for Production of a Novel Type of Lightweight Repair Mortar
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-07332S
Grantová Agentura České Republiky
PubMed
30917584
PubMed Central
PMC6472039
DOI
10.3390/ma12060996
PII: ma12060996
Knihovny.cz E-zdroje
- Klíčová slova
- biomass combustion, functional properties, lightweight mortar, pozzolanic activity, ternary blended binder,
- Publikační typ
- časopisecké články MeSH
The goal of the paper was development and testing of a novel type of ternary blended binder based on lime hydrate, metakaolin, and biomass ash that was studied as a binding material for production of lightweight mortar for renovation purposes. The biomass ash used as one of binder components was coming from wood chips ash combustion in a biomass heating plant. The raw ash was mechanically activated by grinding. In mortar composition, wood chips ash and metakaolin were used as partial substitutes of lime hydrate. Silica sand of particle size fraction 0⁻2 mm was mixed from three normalized sand fractions. For the evaluation of the effect of biomass ash and metakaolin incorporation in mortar mix on material properties, reference lime mortar was tested as well. Among the basic physical characterization of biomass ash, metakaolin and lime hydrate, specific density, specific surface, and particle size distribution were assessed. Their chemical composition was measured by X-Ray fluorescence analysis (XRF), morphology was examined using scanning electron microscopy (SEM), elements mapping was performed using energy dispersive spectroscopy (EDS) analyser, and mineralogical composition was tested using X-Ray diffraction (XRD). For the developed mortars, set of structural, mechanical, hygric, and thermal properties was assessed. The mortars with ternary blended binder exhibited improved mechanical resistance, lower thermal conductivity, and increased water vapor permeability compared to the reference lime mortar. Based on good functional performance of the produced mortar, the tested biomass ash could potentially represent a novel sustainable alternative to other pozzolans commonly used in construction industry. Moreover, reuse of biomass ash in production of building materials is highly beneficial both from the environmental and economic reasons especially taking into account circular economy principles. The ternary blended binder examined in this paper can find use in both rendering and walling repair mortars meeting the requirements of culture heritage authorities and technical standards.
Zobrazit více v PubMed
Nogueira R., Ferreira Pinto A.P., Gomes A. Design and behavior of traditional lime-based plasters and renders. Review and critical appraisal of strengths and weaknesses. Cem. Concr. Compos. 2018;89:192–204. doi: 10.1016/j.cemconcomp.2018.03.005. DOI
Callebaut K., Elsen J., Van Balen K., Viane W. Nineteenh century hydraulic restoration mortars in the Saint Michael’s Church (Leuven, Belgium) Natural hydraulic lime or cement? Cem. Concr. Res. 2001;31:397–403. doi: 10.1016/S0008-8846(00)00499-3. DOI
Lea F.M. The Chemistry of Cement and Concrete. Edward Arnold; London, UK: 1976.
Degryse P., Elsen J., Waelkens M. Study of ancient mortars from Sagalassos (Turkey) in view of their conservation. Cem. Concr. Res. 2002;32:1457–1463. doi: 10.1016/S0008-8846(02)00807-4. DOI
Borges C., Santos Silva A., Veiga R. Durability of ancient lime mortars in humid environment. Constr. Build. Mater. 2014;66:606–620. doi: 10.1016/j.conbuildmat.2014.05.019. DOI
Ravi R., Thirumalini S., Taher N. Analysis of ancient lime plasters—Reason behind longevity of the Monument Charminar, India a study. J. Build. Eng. 2018;20:30–41. doi: 10.1016/j.jobe.2018.04.010. DOI
Ponce-Antón G., Arizzi A., Cruz Zuluaga M., Cultrone G., Ortega L.A., Mauleon J.A. Mineralogical, textural and physical characterization to determine deterioration susceptibility of Irulegi castle lime mortars (Navarre, Spain) Materials. 2019;12:584. doi: 10.3390/ma12040584. PubMed DOI PMC
Grilo J., Faria P., Veiga R., Silva A.S., Silva V., Velosa A. New natural hydraulic lime mortars—physical and microstructural properties in different curing conditions. Constr. Build. Mater. 2014;54:378–384. doi: 10.1016/j.conbuildmat.2013.12.078. DOI
Zhang D., Zhao J., Wang D., Xu C., Zhai M., Ma X. Comparative study on the properties of three hydraulic lime mortar systems: Natural hydraulic lime mortar, cement-aerial lime-based mortar ad slag-aerial lime-based mortar. Constr. Build. Mater. 2018;186:42–52. doi: 10.1016/j.conbuildmat.2018.07.053. DOI
Silva B.A., Ferreira Pinto A.P., Gomes A. Natural hydraulic lime versus cement for blended lime mortars for restoration works. Constr. Build. Mater. 2015;94:346–360. doi: 10.1016/j.conbuildmat.2015.06.058. DOI
Moropoulou A., Bakolas A., Moundoulas P., Aggelakopoulou E., Anagnostopoulou S. Strength development and lime reaction in mortars for repairing historic masonries. Cem. Concr. Res. 2005;27:289–294. doi: 10.1016/j.cemconcomp.2004.02.017. DOI
Lanas J., Pérez Bernal J.L., Bello M.A., Alvarez Galindo J.I. Mechanical properties of natural hydraulic lime-based mortars. Cem. Concr. Res. 2004;34:2191–2201. doi: 10.1016/j.cemconres.2004.02.005. DOI
Mosquera M.J., Silva B., Prieto B., Ruiz-Herrera E. Addition of cement to lime-based mortars: Effect on pore structure and vapor transport. Cem. Concr. Res. 2006;36:1635–1642. doi: 10.1016/j.cemconres.2004.10.041. DOI
Faria-Rodrigues P., Henriques F.M.A. Current mortars in conservation: An overview. Restor. Build. Monum. 2004;10:609–622.
Elert K., Rodriguez-Navarro C., Pardo E., Hansen H., Cazalla O. Lime mortars for the conservation of historic buildings. Stud. Conserv. 2002;47:62–75. doi: 10.1179/sic.2002.47.1.62. DOI
Barbero-Barrera M., Maldonado-Ramos L., Van Balenb K., García-Santosa A., Neila-González F. Lime render layers: An overview of their properties. J. Cult. Herit. 2014;15:326–330. doi: 10.1016/j.culher.2013.07.004. DOI
Schueremans L., Cizer Ö., Janssens E., Serré G., Van Balen K. Characterization of repair mortars for the assessment of their compatibility in restoration projects: Research and practice. Constr. Build. Mater. 2011;25:4338–4350. doi: 10.1016/j.conbuildmat.2011.01.008. DOI
Arrizi A., Viles H., Cultrone G. Experimental testing of the durability of lime-based mortars used for rendering historic buildings. Constr. Build. Mater. 2012;28:807–818. doi: 10.1016/j.conbuildmat.2011.10.059. DOI
Hendry A.W. Masonry walls: Materials and construction. Constr. Build. Mater. 2001;15:323–330. doi: 10.1016/S0950-0618(01)00019-8. DOI
Lubelli B., Nijland T.G., van Hees R.P.J., Hacquerbord A. Effect of mixed in crystallization inhibitor on resistance of lime-cement mortar against NaCl crystallization. Constr. Build. Mater. 2010;24:2466–2472. doi: 10.1016/j.conbuildmat.2010.06.010. DOI
Lanas J., Sirera R., Alvarez J.I. Study of the mechanical behavior of masonry repair lime-based mortars cured and exposed under different conditions. Cem. Concr. Res. 2006;36:961–970. doi: 10.1016/j.cemconres.2005.12.003. DOI
Mosquera M.J., Benitez D., Perry S.H. Pore structure in mortars applied on restoration: Effects on properties relevant to decay of granite buildings. Cem. Concr. Res. 2002;32:1883–1888. doi: 10.1016/S0008-8846(02)00887-6. DOI
Arandigoyen M., Alvarez J.I. Pore structure and mechanical properties of cement-lime mortars. Cem. Concr. Res. 2007;37:767–775. doi: 10.1016/j.cemconres.2007.02.023. DOI
Arandigoyen M., Alvarez J.I. Blended pastes of cement and lime: Pore structure and capillary porosity. Appl. Surf. Sci. 2006;252:8077–8085. doi: 10.1016/j.apsusc.2005.10.019. DOI
Záleská M., Pavlík Z., Pavlíková M., Scheinherrová L., Pokorný J., Trník A., Svora P., Fořt J., Jankovský O., Suchorab O., et al. Biomass ash-based mineral admixture prepared from municipal sewage sludge and its application in cement composites. Clean Technol. Environ. Policy. 2018;20:159–171. doi: 10.1007/s10098-017-1465-3. DOI
Donatello S., Tyrer M., Cheeseman C.R. Comparison of test methods to assess pozzolanic activity. Cem. Concr. Compos. 2010;32:121–127. doi: 10.1016/j.cemconcomp.2009.10.008. DOI
Chia-Jung T., Ran H., Wei-Ting L., His-Ning W. Mechanical and cementitious characteristics of ground granulated blast furnace slag and basic oxygen furnace slag blended mortar. Mater. Des. 2014;60:267–273. doi: 10.1016/j.matdes.2014.04.002. DOI
Borges A., Flores-Colen I., de Brito J. Physical and mechanical performance of cement-based renders with different contents of fly ash, expanded cork granules and expanded clay. Constr. Build. Mater. 2018;191:535–543. doi: 10.1016/j.conbuildmat.2018.10.043. DOI
Balbuena J., Sínchez L., Cruy-Yusta M. Use of steel industry wastes for the preparation of self-cleaning mortars. Materials. 2019;12:621. doi: 10.3390/ma12040621. PubMed DOI PMC
Sala E., Giustina I., Plizzari G.A. Lime mortar with natural pozzolana: Historical issues and mechanical behaviour. In: D’Ayala D., Fodde E., editors. Structural Analysis of Historic Construction. Taylor & Francis Group; London, UK: 2008. pp. 957–963.
Pavia S., Aly M. Influence of aggregate and supplementary cementitious materials on the properties of hydrated lime (CL90s) mortar. Mater. Constr. 2016;66:e104. doi: 10.3989/mc.2016.01716. DOI
Ulukaya S., Yuzer N. Assessment of pozzolanicity of clay bricks fired at different temperatures for use in repair mortar. J. Mater. Civ. Eng. 2016;28:04015052. doi: 10.1061/(ASCE)MT.1943-5533.0001560. DOI
Stefanidou M. Use of natural pozzolans with lime for producing repair mortars. Environ. Earth Sci. 2016;75:758. doi: 10.1007/s12665-016-5444-5. DOI
Pavlíková M., Zemonová L., Pokorný J., Záleská M., Jankovský O., Lojka M., Sedmidubský D., Pavlík Z. Valorization of wood chips ash as an eco-friendly mineral admixture in mortar mix design. Waste Manag. 2018;80:89–100. doi: 10.1016/j.wasman.2018.09.004. PubMed DOI
Sklivaniti V., Tsakiridis P.E., Katsiotis N.S., Velissariou D., Pistofidis N., Papageorgiou D., Beazi M. Valorisation of woody biomass bottom ash in Portland cement: A characterization and hydration study. J. Environ. Chem. Eng. 2017;5:205–213. doi: 10.1016/j.jece.2016.11.042. DOI
Salvo M., Rizzo S., Caldirola M., Novajra G., Canonico F., Bianchi M., Ferraris M. Biomass ash as supplementary cementitious material (SCM) Adv. Appl. Ceram. 2015;114:3–10. doi: 10.1179/1743676115Y.0000000043. DOI
El-Diadamony H., Amer A.A., Sokkary T.M., El-Hoseny S. Hydration and characterisitcs of metakaolin pozzolanic cement pastes. HBRC J. 2016;14:150–158. doi: 10.1016/j.hbrcj.2015.05.005. DOI
Nunes C., Mácová P., Frankeová D., Ševčík R., Viani A. Influence of linseed oil on the microstructure and composition of lime and lime-metakaolin pastes after a long curing time. Constr. Build. Mater. 2018;189:787–796. doi: 10.1016/j.conbuildmat.2018.09.054. DOI
Bakolas A., Aggelakopoulou E., Moropoulou A., Anagnostopoulou S. Evaluation of pozzolanic activity and physicomechanical characteristics in metakaolin-lime pastes. J. Therm. Anal. Calorim. 2006;84:157–163. doi: 10.1007/s10973-005-7262-y. DOI
Aggelakopoulou E., Bakolas A., Moropoulou A. Properties of lime–metakolin mortars for the restoration of historic masonries. Appl. Clay Sci. 2011;53:15–19. doi: 10.1016/j.clay.2011.04.005. DOI
Methods of Testing Cement—Part. 6: Determination of Fineness. European Committee for Standardization; Brussels, Belgium: 2010. EN 196-6.
Pozzolanic Addition for Concrete—Metakaolin. Definitions, Specifications and Conformity Criteria. Association Française de Normalisation; La Plaine Saint-Denis, France: 2010. NF P 18-513.
Methods of Test for Mortar for Masonry—Part. 10: Determination of Dry Bulk Density of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 2000. EN 1015-10.
Methods of Test for Mortar for Masonry—Part. 10: Determination of Flexural and Compressive Strength of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 1999. EN 1015-11.
Fly Ash for Concrete—Part. 1: Definition, Specifications and Conformity Criteria. European Committee for Standardization; Brussels, Belgium: 2012. EN 450-1.
Záleská M., Pavlíková M., Pavlík Z., Jankovský O., Pokorný J., Tydlitát V., Svora P., Černý R. Physical and chemical characterization of technogenic pozzolans for the application in blended cements. Constr. Build. Mater. 2018;16:106–116. doi: 10.1016/j.conbuildmat.2017.11.021. DOI
Hall C. Water sorptivity of mortars and concretes: A review. Mag. Concr. Res. 2002;41:51–61. doi: 10.1680/macr.1989.41.147.51. DOI
Methods of Test for Mortar for Masonry—Part. 18: Determination of Water-Absorption Coefficient Due to Capillary Action of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 2002. EN 1015-18.
Kumaran M.K. Moisture diffusivity of building materials from water absorption measurements. J. Therm. Env. Build. Sci. 1999;22:349–355. doi: 10.1177/109719639902200409. DOI
Hygrothermal Performance of Building Materials and Products—Determination of Water Vapor Transmission Properties. International Organization for Standardization; Geneva, Switzerland: 2001. ISO 12572.
Raverdy M., Brivot F., Paillére A.M., Dron R. Appréciation de I’Activité Pouzzolanique des Constituants Secondaires; Proceedings of the 7th International Congress on the Chemistry of Cement; Paris, France. 1980; pp. 36–41.
Martins C.H., de Castro T.R., Gallo C.C. Characterization of mixed mortars with partial replacement of sand with sugarcane bagasse ash (SCBA) Open J. Civ. Eng. 2016;6:410–419. doi: 10.4236/ojce.2016.63035. DOI
Collepardi M. Degradation and restoration of masonry walls of historical buildings. Mater. Struct. 1990;23:81–102. doi: 10.1007/BF02472568. DOI
Bianco N., Calia A., Denotarpietro G., Negro P. Hydraulic mortar and problems related to the suaitabilitz for restoration. Periodico Mineral. 2013;82:529–542. doi: 10.2451/2013PM0031. DOI
Robert L., Burwell J.R. Manual of symbols and terminology for physicochemical quantities and units, appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry—Part I. Pure Appl. Chem. 1976;46:71–90. doi: 10.1016/B978-0-08-021360-6.50005-X. DOI
Aligizaki K.K. In: Pore Structure of Cement-Based Materials: Testing, Interpretation, and Requirements. Bentur A., Mindess S., editors. CRC Press; New York, NY, USA: 2006. (Modern Concrete Technology Series).
Santos A.R., do Rosário Weiga M., Silva A.S., de Brito J., Álvarez J.I. Evolution of the microstructure of lime based mortars and influence on the mechanical behavior: The role of the aggregates. Constr. Build. Mater. 2018;187:907–922. doi: 10.1016/j.conbuildmat.2018.07.223. DOI
Valverde J.M., Perejon A., Medina S., Perez-Maquedad L.A. Thermal decomposition of dolomite under CO2: Insights from TGA and in isute XRD analysis. Phys. Chem. Chem. Phys. 2015;17:30162–30176. doi: 10.1039/C5CP05596B. PubMed DOI
Westgate P., Ball R.J., Paine K. Olivine as a reactive aggregate in lime mortars. Constr. Build. Mater. 2019;195:115–126. doi: 10.1016/j.conbuildmat.2018.11.062. DOI
Roels S., Carmeliet J., Hens H., Adan O., Brocken H., Cerny R., Pavlik Z., Hall C., Kumaran K., Pel L., Plagge R. Interlaboratory comparison of hygric properties of porous building materials. J. Therm. Envelope Build. Sci. 2004;27:307–325. doi: 10.1177/1097196304042119. DOI
Barnat-Hunek D., Siddique R., Klimek B., Franus M. The use of zeolite, lightweight aggregate and boiler slag in restoration renders. Constr. Build. Mater. 2017;142:162–174. doi: 10.1016/j.conbuildmat.2017.03.079. DOI
Specification for Mortar for Masonry—Part. 1: Rendering and Plastering Mortar. European Committee for Standardization; Brussels, Belgium: 2016. EN 998-1.
Jiřičková M., Pavlík Z., Fiala L., Černý R. Thermal properties of mineral wool materials partially saturated by water. Int. J. Thermophys. 2006;27:1214–1227. doi: 10.1007/s10765-006-0076-8. DOI
Pavlík Z., Čáchová M., Vejmelková E., Korecký T., Fořt J., Pavlíková M., Černý R. Thermal properties of lime-pozzolan plasters for application in hollow bricks systems. Int. J. Civ. Environ. Eng. 2013;7:823–827.
Mortars with Crushed Lava Granulate for Repair of Damp Historical Buildings