Ternary Blended Binder for Production of a Novel Type of Lightweight Repair Mortar

. 2019 Mar 26 ; 12 (6) : . [epub] 20190326

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30917584

Grantová podpora
18-07332S Grantová Agentura České Republiky

The goal of the paper was development and testing of a novel type of ternary blended binder based on lime hydrate, metakaolin, and biomass ash that was studied as a binding material for production of lightweight mortar for renovation purposes. The biomass ash used as one of binder components was coming from wood chips ash combustion in a biomass heating plant. The raw ash was mechanically activated by grinding. In mortar composition, wood chips ash and metakaolin were used as partial substitutes of lime hydrate. Silica sand of particle size fraction 0⁻2 mm was mixed from three normalized sand fractions. For the evaluation of the effect of biomass ash and metakaolin incorporation in mortar mix on material properties, reference lime mortar was tested as well. Among the basic physical characterization of biomass ash, metakaolin and lime hydrate, specific density, specific surface, and particle size distribution were assessed. Their chemical composition was measured by X-Ray fluorescence analysis (XRF), morphology was examined using scanning electron microscopy (SEM), elements mapping was performed using energy dispersive spectroscopy (EDS) analyser, and mineralogical composition was tested using X-Ray diffraction (XRD). For the developed mortars, set of structural, mechanical, hygric, and thermal properties was assessed. The mortars with ternary blended binder exhibited improved mechanical resistance, lower thermal conductivity, and increased water vapor permeability compared to the reference lime mortar. Based on good functional performance of the produced mortar, the tested biomass ash could potentially represent a novel sustainable alternative to other pozzolans commonly used in construction industry. Moreover, reuse of biomass ash in production of building materials is highly beneficial both from the environmental and economic reasons especially taking into account circular economy principles. The ternary blended binder examined in this paper can find use in both rendering and walling repair mortars meeting the requirements of culture heritage authorities and technical standards.

Zobrazit více v PubMed

Nogueira R., Ferreira Pinto A.P., Gomes A. Design and behavior of traditional lime-based plasters and renders. Review and critical appraisal of strengths and weaknesses. Cem. Concr. Compos. 2018;89:192–204. doi: 10.1016/j.cemconcomp.2018.03.005. DOI

Callebaut K., Elsen J., Van Balen K., Viane W. Nineteenh century hydraulic restoration mortars in the Saint Michael’s Church (Leuven, Belgium) Natural hydraulic lime or cement? Cem. Concr. Res. 2001;31:397–403. doi: 10.1016/S0008-8846(00)00499-3. DOI

Lea F.M. The Chemistry of Cement and Concrete. Edward Arnold; London, UK: 1976.

Degryse P., Elsen J., Waelkens M. Study of ancient mortars from Sagalassos (Turkey) in view of their conservation. Cem. Concr. Res. 2002;32:1457–1463. doi: 10.1016/S0008-8846(02)00807-4. DOI

Borges C., Santos Silva A., Veiga R. Durability of ancient lime mortars in humid environment. Constr. Build. Mater. 2014;66:606–620. doi: 10.1016/j.conbuildmat.2014.05.019. DOI

Ravi R., Thirumalini S., Taher N. Analysis of ancient lime plasters—Reason behind longevity of the Monument Charminar, India a study. J. Build. Eng. 2018;20:30–41. doi: 10.1016/j.jobe.2018.04.010. DOI

Ponce-Antón G., Arizzi A., Cruz Zuluaga M., Cultrone G., Ortega L.A., Mauleon J.A. Mineralogical, textural and physical characterization to determine deterioration susceptibility of Irulegi castle lime mortars (Navarre, Spain) Materials. 2019;12:584. doi: 10.3390/ma12040584. PubMed DOI PMC

Grilo J., Faria P., Veiga R., Silva A.S., Silva V., Velosa A. New natural hydraulic lime mortars—physical and microstructural properties in different curing conditions. Constr. Build. Mater. 2014;54:378–384. doi: 10.1016/j.conbuildmat.2013.12.078. DOI

Zhang D., Zhao J., Wang D., Xu C., Zhai M., Ma X. Comparative study on the properties of three hydraulic lime mortar systems: Natural hydraulic lime mortar, cement-aerial lime-based mortar ad slag-aerial lime-based mortar. Constr. Build. Mater. 2018;186:42–52. doi: 10.1016/j.conbuildmat.2018.07.053. DOI

Silva B.A., Ferreira Pinto A.P., Gomes A. Natural hydraulic lime versus cement for blended lime mortars for restoration works. Constr. Build. Mater. 2015;94:346–360. doi: 10.1016/j.conbuildmat.2015.06.058. DOI

Moropoulou A., Bakolas A., Moundoulas P., Aggelakopoulou E., Anagnostopoulou S. Strength development and lime reaction in mortars for repairing historic masonries. Cem. Concr. Res. 2005;27:289–294. doi: 10.1016/j.cemconcomp.2004.02.017. DOI

Lanas J., Pérez Bernal J.L., Bello M.A., Alvarez Galindo J.I. Mechanical properties of natural hydraulic lime-based mortars. Cem. Concr. Res. 2004;34:2191–2201. doi: 10.1016/j.cemconres.2004.02.005. DOI

Mosquera M.J., Silva B., Prieto B., Ruiz-Herrera E. Addition of cement to lime-based mortars: Effect on pore structure and vapor transport. Cem. Concr. Res. 2006;36:1635–1642. doi: 10.1016/j.cemconres.2004.10.041. DOI

Faria-Rodrigues P., Henriques F.M.A. Current mortars in conservation: An overview. Restor. Build. Monum. 2004;10:609–622.

Elert K., Rodriguez-Navarro C., Pardo E., Hansen H., Cazalla O. Lime mortars for the conservation of historic buildings. Stud. Conserv. 2002;47:62–75. doi: 10.1179/sic.2002.47.1.62. DOI

Barbero-Barrera M., Maldonado-Ramos L., Van Balenb K., García-Santosa A., Neila-González F. Lime render layers: An overview of their properties. J. Cult. Herit. 2014;15:326–330. doi: 10.1016/j.culher.2013.07.004. DOI

Schueremans L., Cizer Ö., Janssens E., Serré G., Van Balen K. Characterization of repair mortars for the assessment of their compatibility in restoration projects: Research and practice. Constr. Build. Mater. 2011;25:4338–4350. doi: 10.1016/j.conbuildmat.2011.01.008. DOI

Arrizi A., Viles H., Cultrone G. Experimental testing of the durability of lime-based mortars used for rendering historic buildings. Constr. Build. Mater. 2012;28:807–818. doi: 10.1016/j.conbuildmat.2011.10.059. DOI

Hendry A.W. Masonry walls: Materials and construction. Constr. Build. Mater. 2001;15:323–330. doi: 10.1016/S0950-0618(01)00019-8. DOI

Lubelli B., Nijland T.G., van Hees R.P.J., Hacquerbord A. Effect of mixed in crystallization inhibitor on resistance of lime-cement mortar against NaCl crystallization. Constr. Build. Mater. 2010;24:2466–2472. doi: 10.1016/j.conbuildmat.2010.06.010. DOI

Lanas J., Sirera R., Alvarez J.I. Study of the mechanical behavior of masonry repair lime-based mortars cured and exposed under different conditions. Cem. Concr. Res. 2006;36:961–970. doi: 10.1016/j.cemconres.2005.12.003. DOI

Mosquera M.J., Benitez D., Perry S.H. Pore structure in mortars applied on restoration: Effects on properties relevant to decay of granite buildings. Cem. Concr. Res. 2002;32:1883–1888. doi: 10.1016/S0008-8846(02)00887-6. DOI

Arandigoyen M., Alvarez J.I. Pore structure and mechanical properties of cement-lime mortars. Cem. Concr. Res. 2007;37:767–775. doi: 10.1016/j.cemconres.2007.02.023. DOI

Arandigoyen M., Alvarez J.I. Blended pastes of cement and lime: Pore structure and capillary porosity. Appl. Surf. Sci. 2006;252:8077–8085. doi: 10.1016/j.apsusc.2005.10.019. DOI

Záleská M., Pavlík Z., Pavlíková M., Scheinherrová L., Pokorný J., Trník A., Svora P., Fořt J., Jankovský O., Suchorab O., et al. Biomass ash-based mineral admixture prepared from municipal sewage sludge and its application in cement composites. Clean Technol. Environ. Policy. 2018;20:159–171. doi: 10.1007/s10098-017-1465-3. DOI

Donatello S., Tyrer M., Cheeseman C.R. Comparison of test methods to assess pozzolanic activity. Cem. Concr. Compos. 2010;32:121–127. doi: 10.1016/j.cemconcomp.2009.10.008. DOI

Chia-Jung T., Ran H., Wei-Ting L., His-Ning W. Mechanical and cementitious characteristics of ground granulated blast furnace slag and basic oxygen furnace slag blended mortar. Mater. Des. 2014;60:267–273. doi: 10.1016/j.matdes.2014.04.002. DOI

Borges A., Flores-Colen I., de Brito J. Physical and mechanical performance of cement-based renders with different contents of fly ash, expanded cork granules and expanded clay. Constr. Build. Mater. 2018;191:535–543. doi: 10.1016/j.conbuildmat.2018.10.043. DOI

Balbuena J., Sínchez L., Cruy-Yusta M. Use of steel industry wastes for the preparation of self-cleaning mortars. Materials. 2019;12:621. doi: 10.3390/ma12040621. PubMed DOI PMC

Sala E., Giustina I., Plizzari G.A. Lime mortar with natural pozzolana: Historical issues and mechanical behaviour. In: D’Ayala D., Fodde E., editors. Structural Analysis of Historic Construction. Taylor & Francis Group; London, UK: 2008. pp. 957–963.

Pavia S., Aly M. Influence of aggregate and supplementary cementitious materials on the properties of hydrated lime (CL90s) mortar. Mater. Constr. 2016;66:e104. doi: 10.3989/mc.2016.01716. DOI

Ulukaya S., Yuzer N. Assessment of pozzolanicity of clay bricks fired at different temperatures for use in repair mortar. J. Mater. Civ. Eng. 2016;28:04015052. doi: 10.1061/(ASCE)MT.1943-5533.0001560. DOI

Stefanidou M. Use of natural pozzolans with lime for producing repair mortars. Environ. Earth Sci. 2016;75:758. doi: 10.1007/s12665-016-5444-5. DOI

Pavlíková M., Zemonová L., Pokorný J., Záleská M., Jankovský O., Lojka M., Sedmidubský D., Pavlík Z. Valorization of wood chips ash as an eco-friendly mineral admixture in mortar mix design. Waste Manag. 2018;80:89–100. doi: 10.1016/j.wasman.2018.09.004. PubMed DOI

Sklivaniti V., Tsakiridis P.E., Katsiotis N.S., Velissariou D., Pistofidis N., Papageorgiou D., Beazi M. Valorisation of woody biomass bottom ash in Portland cement: A characterization and hydration study. J. Environ. Chem. Eng. 2017;5:205–213. doi: 10.1016/j.jece.2016.11.042. DOI

Salvo M., Rizzo S., Caldirola M., Novajra G., Canonico F., Bianchi M., Ferraris M. Biomass ash as supplementary cementitious material (SCM) Adv. Appl. Ceram. 2015;114:3–10. doi: 10.1179/1743676115Y.0000000043. DOI

El-Diadamony H., Amer A.A., Sokkary T.M., El-Hoseny S. Hydration and characterisitcs of metakaolin pozzolanic cement pastes. HBRC J. 2016;14:150–158. doi: 10.1016/j.hbrcj.2015.05.005. DOI

Nunes C., Mácová P., Frankeová D., Ševčík R., Viani A. Influence of linseed oil on the microstructure and composition of lime and lime-metakaolin pastes after a long curing time. Constr. Build. Mater. 2018;189:787–796. doi: 10.1016/j.conbuildmat.2018.09.054. DOI

Bakolas A., Aggelakopoulou E., Moropoulou A., Anagnostopoulou S. Evaluation of pozzolanic activity and physicomechanical characteristics in metakaolin-lime pastes. J. Therm. Anal. Calorim. 2006;84:157–163. doi: 10.1007/s10973-005-7262-y. DOI

Aggelakopoulou E., Bakolas A., Moropoulou A. Properties of lime–metakolin mortars for the restoration of historic masonries. Appl. Clay Sci. 2011;53:15–19. doi: 10.1016/j.clay.2011.04.005. DOI

Methods of Testing Cement—Part. 6: Determination of Fineness. European Committee for Standardization; Brussels, Belgium: 2010. EN 196-6.

Pozzolanic Addition for Concrete—Metakaolin. Definitions, Specifications and Conformity Criteria. Association Française de Normalisation; La Plaine Saint-Denis, France: 2010. NF P 18-513.

Methods of Test for Mortar for Masonry—Part. 10: Determination of Dry Bulk Density of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 2000. EN 1015-10.

Methods of Test for Mortar for Masonry—Part. 10: Determination of Flexural and Compressive Strength of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 1999. EN 1015-11.

Fly Ash for Concrete—Part. 1: Definition, Specifications and Conformity Criteria. European Committee for Standardization; Brussels, Belgium: 2012. EN 450-1.

Záleská M., Pavlíková M., Pavlík Z., Jankovský O., Pokorný J., Tydlitát V., Svora P., Černý R. Physical and chemical characterization of technogenic pozzolans for the application in blended cements. Constr. Build. Mater. 2018;16:106–116. doi: 10.1016/j.conbuildmat.2017.11.021. DOI

Hall C. Water sorptivity of mortars and concretes: A review. Mag. Concr. Res. 2002;41:51–61. doi: 10.1680/macr.1989.41.147.51. DOI

Methods of Test for Mortar for Masonry—Part. 18: Determination of Water-Absorption Coefficient Due to Capillary Action of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 2002. EN 1015-18.

Kumaran M.K. Moisture diffusivity of building materials from water absorption measurements. J. Therm. Env. Build. Sci. 1999;22:349–355. doi: 10.1177/109719639902200409. DOI

Hygrothermal Performance of Building Materials and Products—Determination of Water Vapor Transmission Properties. International Organization for Standardization; Geneva, Switzerland: 2001. ISO 12572.

Raverdy M., Brivot F., Paillére A.M., Dron R. Appréciation de I’Activité Pouzzolanique des Constituants Secondaires; Proceedings of the 7th International Congress on the Chemistry of Cement; Paris, France. 1980; pp. 36–41.

Martins C.H., de Castro T.R., Gallo C.C. Characterization of mixed mortars with partial replacement of sand with sugarcane bagasse ash (SCBA) Open J. Civ. Eng. 2016;6:410–419. doi: 10.4236/ojce.2016.63035. DOI

Collepardi M. Degradation and restoration of masonry walls of historical buildings. Mater. Struct. 1990;23:81–102. doi: 10.1007/BF02472568. DOI

Bianco N., Calia A., Denotarpietro G., Negro P. Hydraulic mortar and problems related to the suaitabilitz for restoration. Periodico Mineral. 2013;82:529–542. doi: 10.2451/2013PM0031. DOI

Robert L., Burwell J.R. Manual of symbols and terminology for physicochemical quantities and units, appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry—Part I. Pure Appl. Chem. 1976;46:71–90. doi: 10.1016/B978-0-08-021360-6.50005-X. DOI

Aligizaki K.K. In: Pore Structure of Cement-Based Materials: Testing, Interpretation, and Requirements. Bentur A., Mindess S., editors. CRC Press; New York, NY, USA: 2006. (Modern Concrete Technology Series).

Santos A.R., do Rosário Weiga M., Silva A.S., de Brito J., Álvarez J.I. Evolution of the microstructure of lime based mortars and influence on the mechanical behavior: The role of the aggregates. Constr. Build. Mater. 2018;187:907–922. doi: 10.1016/j.conbuildmat.2018.07.223. DOI

Valverde J.M., Perejon A., Medina S., Perez-Maquedad L.A. Thermal decomposition of dolomite under CO2: Insights from TGA and in isute XRD analysis. Phys. Chem. Chem. Phys. 2015;17:30162–30176. doi: 10.1039/C5CP05596B. PubMed DOI

Westgate P., Ball R.J., Paine K. Olivine as a reactive aggregate in lime mortars. Constr. Build. Mater. 2019;195:115–126. doi: 10.1016/j.conbuildmat.2018.11.062. DOI

Roels S., Carmeliet J., Hens H., Adan O., Brocken H., Cerny R., Pavlik Z., Hall C., Kumaran K., Pel L., Plagge R. Interlaboratory comparison of hygric properties of porous building materials. J. Therm. Envelope Build. Sci. 2004;27:307–325. doi: 10.1177/1097196304042119. DOI

Barnat-Hunek D., Siddique R., Klimek B., Franus M. The use of zeolite, lightweight aggregate and boiler slag in restoration renders. Constr. Build. Mater. 2017;142:162–174. doi: 10.1016/j.conbuildmat.2017.03.079. DOI

Specification for Mortar for Masonry—Part. 1: Rendering and Plastering Mortar. European Committee for Standardization; Brussels, Belgium: 2016. EN 998-1.

Jiřičková M., Pavlík Z., Fiala L., Černý R. Thermal properties of mineral wool materials partially saturated by water. Int. J. Thermophys. 2006;27:1214–1227. doi: 10.1007/s10765-006-0076-8. DOI

Pavlík Z., Čáchová M., Vejmelková E., Korecký T., Fořt J., Pavlíková M., Černý R. Thermal properties of lime-pozzolan plasters for application in hollow bricks systems. Int. J. Civ. Environ. Eng. 2013;7:823–827.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...