Zeolite Lightweight Repair Renders: Effect of Binder Type on Properties and Salt Crystallization Resistance

. 2021 Jul 05 ; 14 (13) : . [epub] 20210705

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34279331

Grantová podpora
21-06582S Grantová Agentura České Republiky

Rendering mortars with lightweight zeolite aggregates were designed and tested. The effect of the type of binder used was also researched. For the hardened mortars, macrostructural parameters, mechanical characteristics, hygric and thermal properties were assessed. Specific attention was paid to the analysis of the salt crystallization resistance of the developed rendering mortars. Quartz sand was fully replaced in the composition of mortars with zeolite gave materials with low density, high porosity, sufficient mechanical strength, high water vapor permeability and high water absorption coefficient, which are technical parameters required for repair rendering mortars as prescribed in the WTA directive 2-9-04/D and EN 998-1. Moreover, the zeolite enhanced mortars exhibit good thermal insulation performance and high sorption capacity. The examined rendering mortars were found to be well durable against salt crystallization, which supports their applicability in salt-laden masonry. Based on the compatibility of the repair materials with those originally used, the lime and natural hydraulic lime zeolite mortars can be used as rendering mortars for the repair of historical and heritage buildings. The cement-lime zeolite render is applicable for repair purposes only in the case of the renewal of masonry in which Portland cement-based materials were originally used.

Zobrazit více v PubMed

Chu V., Regev L., Weiner S., Boaretto E. Differentiating between anthropogenic calcite in plaster, ash and natural calcite using infrared spectroscopy: Implications in archaeology. J. Archaeol. Sci. 2008;35:905–911. doi: 10.1016/j.jas.2007.06.024. DOI

Veiga M.R., Silva A.S., Tavares M., Santos A.R., Lampreia N. Characterization of renders and plasters from a 16th century portuguese military structure: Chronology and durability. Restor. Build. Monum. 2013;19:223–238. doi: 10.1515/rbm-2013-6603. DOI

Veiga M.R., Fragata A., Tavares M., Magalhães A.C., Ferreira N. Inglesinhos convent: Compatible renders and other measures to mitigate water capillary rising problems. J. Build. Apprais. 2009;5:171–185. doi: 10.1057/jba.2009.28. DOI

Maravelaki-Kalaitzaki P., Bakolas A., Moropoulou A. Physico-chemical study of Cretan ancient mortars. Cem. Concr. Res. 2003;33:651–661. doi: 10.1016/S0008-8846(02)01030-X. DOI

Silva A.S., Borsoi G., Veiga M.R., Fragata A., Tavares M., Llera F., Barreiros B., Teixeira T. Diagnosis, characterization and restoration of the internal renders of Santíssimo Sacramento church in Lisbon. In: Válek J., Hughes J., editors. Historic Mortars: Characterisation, Assessment and Repair. RILEM Bookseries. Volume 7. Springer; Dordrecht, The Netherlands: 2012. pp. 175–194. DOI

Papayianni I., Stefanidou M. Durability aspects of ancient mortars of the archeological site of Olynthos. J. Cult. Herit. 2007;8:193–196. doi: 10.1016/j.culher.2007.03.001. DOI

Hughes J.J., Van Balen K., Bicer-Simsir B., Binda L., Elsen J., van Hees R., von Konow T., Lindqvist J.E., Maurenbrecher P., Papayanni I., et al. RILEM TC 203-RHM: Repair mortars for historic masonry. Mater. Struct. 2012;45:1287–1294. doi: 10.1617/s11527-012-9847-9. DOI

Loureiro A.M.S., Paz S.P.A., Veiga M.R., Angélica R.S. Assessment of compatibility between historic mortars and lime-METAKAOLIN restoration mortars made from amazon industrial waste. Appl. Clay Sci. 2020;198:105843. doi: 10.1016/j.clay.2020.105843. DOI

Callebaut K., Elsen J., van Balen K., Viaene W. Nineteenth century hydraulic restoration mortars in the Saint Michael’s Church (Leuven, Belgium): Natural hydraulic lime or cement? Cem. Concr. Res. 2001;31:397–403. doi: 10.1016/S0008-8846(00)00499-3. DOI

Giosuè C., Pierpaoli M., Mobili A., Ruello M.L., Tittarelli F. Multifunctional lightweight mortars for indoor applications to improve comfort and health of occupants: Thermal properties and photocatalytic efficiency. Front. Mater. 2020;7:255. doi: 10.3389/fmats.2020.00255. DOI

Amanatidis G. European Policies on Climate and Energy Towards 2020, 2030 and 2050. [(accessed on 22 March 2021)]; Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2019/631047/IPOL_BRI(2019)631047_EN.pdf.

Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings. [(accessed on 21 March 2021)]; Available online: http://data.europa.eu/eli/dir/2010/31/oj.

Fleiter T., Steinbach J., Ragwitz M., Arens M., Aydemir A., Elsland R., Fleiter T., Frassine C., Herbst A., Hirze S., et al. Mapping and Analyses of the Current and Future (2020–2030) Heating/Cooling Fuel Deployment (Fossil/Renewables): Executive Summary. [(accessed on 22 March 2021)]; Available online: https://ec.europa.eu/energy/sites/default/files/documents/mapping-hc-excecutivesummary.pdf.

Barbero-Barrera M.M., González F.J.N., Ramos L.M., García Santos A., van Balen K. Energy Renovation by Lime Renders. Historic Mortars and RILEM TC 203-RHM Final Workshop HMC2010. In: Válek J., Groot C., Hughes J.J., editors. Proceedings of the 2nd Historic Mortars Conference HMC2010 and RILEM TC 203-RHM Final Workshop; Prague, Czech Republic. 22–24 September 2010; Bagneux, France: RILEM Publications, S.A.R.L.; 2010. pp. 891–898.

Kolokotsa D., Maravelaki-Kalaitzaki P., Papantoniou S., Vangeloglou E., Saliari M., Karlessi T., Santamouris M. Development and analysis of mineral based coatings for buildings and urban structures. Sol. Energy. 2012;86:1648–1659. doi: 10.1016/j.solener.2012.02.032. DOI

van Hees R., Veiga R., Slížková Z. Consolidation of renders and plasters. Mater. Struct. 2017;50 doi: 10.1617/s11527-016-0894-5. DOI

Sanierputzsysteme, Wissenschaftlich-Technische Arbeitsgemeinschaft für Bauwerkserhaltung und Denkmalpflege e.V. WTA Publications; Karlsruhe, Germany: 2005. WTA Merkblatt 2-9-04/D; Vertrieb.

Barnat-Hunek D., Siddique R., Klimek B., Franus M. The use of zeolite, lightweight aggregate and boiler slag in restoration renders. Constr. Build. Mater. 2017;142:162–174. doi: 10.1016/j.conbuildmat.2017.03.079. DOI

Pavlík Z.M., Pavlíková M.L., Balík L., Černý R. In-situ analysis of hygric performance of piaristic monastery building. AIP Conf. Proc. 2015;1648:410006. doi: 10.1063/1.4912635. DOI

Groot C.R., van Hees R., T. Wijffels T. Selection of plasters and renders for salt laden masonry substrates. Constr. Build. Mater. 2009;23:1743–1750. doi: 10.1016/j.conbuildmat.2008.09.013. DOI

Petkovic J., Huinink H.P., Pel L., Kopinga K., van Hees R.P.J. Moisture and salt transport in three-layer plaster/substrate systems. Constr. Build. Mater. 2010;24:118–127. doi: 10.1016/j.conbuildmat.2009.08.014. DOI

Gonçalves T.D., Pel L., Delgado Rodrigues J. Worsening of dampness and salt damage after restoration interventions: Use of water-repellent additives in plasters and renders; Proceedings of the 1st Historical Mortars Conference (HMC08); Portugal, Lisbon. 24–26 September 2008.

Fragata A., Veiga M.R., Velosa A.L. Salt Crystallization in Substitution Renderd for Historical Constructions. Historic Mortars and RILEM TC 203-RHM Final Workshop HMC2010. In: Válek J., Groot C., Hughes J.J., editors. Proceedings of the 2nd Historic Mortars Conference HMC2010 and RILEM TC 203-RHM Final Workshop; Prague, Czech Republic. 22–24 September 2010; Bagneux, France: RILEM Publications, S.A.R.L.; 2010. pp. 983–992.

Lubelli B., Nijland T.G., van Hees R.P.J. Self-healing of lime based mortars: Microscopy observations on case studies. Heron. 2011;56:75–91.

de Freitas V.P., Gonçalves P.F. Specification and time required for the application of a lime-based render inside historic buildings. Conserv. Patrim. 2008;8:67–72. doi: 10.14568/cp8_9. DOI

Veiga R. Air lime mortars: What else do we need to know to apply them in conservation and rehabilitation interventions? A review. Constr. Build. Mater. 2017;157:132–140. doi: 10.1016/j.conbuildmat.2017.09.080. DOI

Nogueira R., Pinto A.P.F., Gomes A. Design and behavior of traditional lime-based plasters and renders. Review and critical appraisal of strengths and weaknesses. Cem. Concr. Compos. 2018;89:192–204. doi: 10.1016/j.cemconcomp.2018.03.005. DOI

Gulbe L., Vitina I., Setina J. The influence of cement on properties of lime mortars. Procedia Eng. 2017;172:325–332. doi: 10.1016/j.proeng.2017.02.030. DOI

Pacheco-Torgal F., Faria J., Jalali S. Some considerations about the use of lime–cement mortars for building conservation purposes in Portugal: A reprehensible option or a lesser evil? Constr. Build. Mater. 2012;30:488–494. doi: 10.1016/j.conbuildmat.2011.12.003. DOI

Vyšvařil M., Pavlíková M., Záleská M., Pivák A., Žižlavský T., Rovnaníková P., Bayer P., Pavlík Z. Non-hydrophobized perlite renders for repair and thermal insulation purposes: Influence of different binders on their properties and durability. Constr. Build. Mater. 2020;263:120617. doi: 10.1016/j.conbuildmat.2020.120617. DOI

Arizzi A., Viles H., Cultrone G. Experimental testing of the durability of lime-based mortars used for rendering historic buildings. Constr. Build. Mater. 2012;28:807–818. doi: 10.1016/j.conbuildmat.2011.10.059. DOI

Andrejkovičová S., Velosa A.L., Ferraz E., Rocha F. Influence of clay minerals addition on mechanical properties of air lime–metakaolin mortars. Constr. Build. Mater. 2014;65:132–139. doi: 10.1016/j.conbuildmat.2014.04.118. DOI

Santos A.R., Veiga M.R., Matias L., Silva A.S., De Brito J. Durability and compatibility of lime-based mortars: The effect of aggregates. Infrastructures. 2018;34:34. doi: 10.3390/infrastructures3030034. DOI

Pavlík Z., Pokorný J., Pavlíková M., Zemanová L., Záleská M., Vyšvařil M., Žižlavský T. Mortars with crushed lava granulate for repair of damp historical buildings. Materials. 2019;12:3557. doi: 10.3390/ma12213557. PubMed DOI PMC

Beycan Tatanoğlu Ö., Kockal N.U. Utilization of pumice of Burdur region and zeolite of Bigadiç-Balıkesir region as fine aggregate in construction materials. Bull. Min. Res. Exp. 2020;161:191–200. doi: 10.19111/bulletinofmre.593558. DOI

Klimek B., Szulej J., Ogrodnik P. The effect of replacing sand with aggregate from sanitary ceramic waste on the durability of stucco mortars. Clean Technol. Envir. 2020;22:1929–1941. doi: 10.1007/s10098-020-01932-w. DOI

Abadou Y., Kettab R., Ghrieb A. Durability of a repaired dune sand mortar modified by ceramic waste. Eng. Struct. Technol. 2018;10:1–9. doi: 10.3846/2029882X.2018.1445038. DOI

Styczeń J., Barnat-Hunek D., Panek R., Franus W. The microstructural and physical properties of renovation renders with clinoptilolite, Na-P1 and Na-X zeolites. Constr. Build. Mater. 2020;261:120016. doi: 10.1016/j.conbuildmat.2020.120016. DOI

Sun X., Liu H., Tian Z., Ma Y., Wang Z., Fan H. Feasibility and economic evaluation of grouting materials containing binary and ternary industrial waste. Constr. Build. Mater. 2021;274:122021. doi: 10.1016/j.conbuildmat.2020.122021. DOI

Ahmadi B., Shekarchi M. Use of natural zeolite as a supplementary cementitious material. Cem. Concr. Compos. 2010;32:134–141. doi: 10.1016/j.cemconcomp.2009.10.006. DOI

Aškrabić M., Vyšvařil M., Zakić D., Savić A., Stevanović B. Effects of natural zeolite addition on the properties of lime putty-based rendering mortars. Constr. Build. Mater. 2021;270:121363. doi: 10.1016/j.conbuildmat.2020.121363. DOI

Pavlík V., Užáková M. Effect of curing conditions on the properties of lime, lime–metakaolin and lime–zeolite mortars. Constr. Build. Mater. 2016;102:14–25. doi: 10.1016/j.conbuildmat.2015.10.128. DOI

Lanas J., Alvarey-Galindo J. Masonry repair lime-based mortars: Factors affecting the mechanical behavior. Cem. Concr. Res. 2003;33:1867–1876. doi: 10.1016/S0008-8846(03)00210-2. DOI

Horn K. Lime Rendering-Sustainable Heritage Report No. 1. Novia Publications and Production; Vaasa, Finland: 2011.

Tenconi M., Karatasios I., Bala’awi F., Kilikoglou V. Technological and microstructural characterization of mortars and plasters from the Roman site of Qasr Azraq, in Jordan. J. Cult. Herit. 2018;33:100–116. doi: 10.1016/j.culher.2018.03.005. DOI

Cazalla O., Rodriguez-Navarro C., Sebastian E., Cultrone G. Aging of lime putty: Effects on traditional lime mortar carbonation. J. Am. Ceram. Soc. 2000;83:1070–1076. doi: 10.1111/j.1151-2916.2000.tb01332.x. DOI

Methods of Test for Mortar for Masonry . Part 3: Determination of Consistence of Fresh Mortar (by Flow Table) European Committee for Standardization (CEN); Brussels, Belgium: 1999. EN 1015-3.

Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened Mortar. European Committee for Standardization (CEN); Brussels, Belgium: 1999. EN 1015-10.

Záleská M., Pavlík Z., Čítek D., Jankovský O., Pavlíková M. Eco-friendly concrete with scrap-tyre-rubber-based aggregate—Properties and thermal stability. Constr. Build. Mater. 2019;225:709–722. doi: 10.1016/j.conbuildmat.2019.07.168. DOI

Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. European Committee for Standardization (CEN); Brussels, Belgium: 1999. EN 1015-11.

Methods of Test for Mortar for Masonry-Part 18: Determination of Water Absorption Coefficient Due to Capillarity Action of Hardened Mortar. European Committee for Standardization (CEN); Brussels, Belgium: 2002. EN 1015-18.

Feng C., Guimarães A.S., Ramos N., Sun L., Gawin D., Konca P., Hall C., Zhao J., Hirsch H., Grunewald J., et al. Hygric properties of porous building materials (VI): A round robin campaign. Build. Environ. 2020;185:107242. doi: 10.1016/j.buildenv.2020.107242. DOI

Lauermannová A.-M., Lojka M., Jankovský O., Faltysová I., Pavlíková M., Pivák A., Záleská M., Pavlík Z. High-performance magnesium oxychloride composites with silica sand and diatomite. J. Mater. Res. Technol. 2021;11:957–969. doi: 10.1016/j.jmrt.2021.01.028. DOI

Kumaran M. Moisture diffusivity of building materials from water absorption measurements. J. Therm. Envelope Build. Sci. 1999;22:349–355. doi: 10.1177/109719639902200409. DOI

Hygrothermal Performance of Building Materials and Product Determination of Water Vapour Transmission Properties. International Organization for Standardization (ISO); Geneva, Switzerland: 2016. EN ISO 12572.

Pavlík Z., Trník A., Keppert M., Pavlíková M., Žumár J., Černý R. Experimental investigation of the Properties of lime-based plaster-containing pcm for enhancing the heat-storage capacity of building envelopes. Int. J. Thermophys. 2014;35:767–782. doi: 10.1007/s10765-013-1550-8. DOI

Natural Stone Test Methods—Determination of Resistance to Salt Crystallization. European Committee for Standardization (CEN); Brussels, Belgium: 2020. EN 12370.

Lubelli B., van Hees R.P.J., Nijland T.G. Salt crystallization damage: How realistic are existing ageing tests?. In: van Breugel K., Koenders A.E.B., editors. Proceedings of the 1st International Conference on Ageing of Materials & Structures Delft University of Technology; Delft, The Netherlands. 26–28 May 2014; Delft, The Netherlands: Delft University of Technology; 2014.

Granneman S.J.C., Lubelli B., van Hees R.P.J. Effect of mixed in crystallization modifiers on the resistance of lime mortar against NaCl and Na2SO4 crystallization. Constr. Build. Mater. 2019;194:62–70. doi: 10.1016/j.conbuildmat.2018.11.006. DOI

Specification for Mortar for Masonry—Part 1: Rendering and Plastering Mortar. European Committee for Standardization (CEN); Brussels, Belgium: 2016. EN 998-1.

Veiga M., Aguiar J., Silva A.S., Carvalho S.F. Methodologies for characterisation and repair of mortars of ancient buildings. In: Lourenço P., Roca P., editors. Historical Constructions. University of Minho; Guimarães: Portugal: 2001.

Silva B.A., Ferreira Pinto A.P., Gomes A. Natural hydraulic lime versus cement for blended lime mortars for restoration works. Constr. Build. Mater. 2015;94:346–360. doi: 10.1016/j.conbuildmat.2015.06.058. DOI

Moropoulou A., Bakolas A., Moundoulas P., Aggelakopoulou E., Anagnostopoulou S. Strength development and lime reaction in mortars for repairing historic masonries. Cem. Concr. Res. 2005;27:289–294. doi: 10.1016/j.cemconcomp.2004.02.017. DOI

Faria-Rodrigues P., Henriques F.M.A. Current mortars in conservation: An overview. Restor. Build. Monum. 2004;10:609–622. doi: 10.1515/rbm-2004-5901. DOI

Ventolà L., Vendrell M., Giraldez P., Merino L. Traditional organic additives improve lime mortars: New old materials for restoration and building natural stone fabrics. Constr. Build. Mater. 2011;25:3313–3318. doi: 10.1016/j.conbuildmat.2011.03.020. DOI

Papayianni I. The longevity of old mortars. Appl. Phys. A. 2006;83:685–688. doi: 10.1007/s00339-006-3523-2. DOI

Papayianni I. In: Design and Manufacture of Repair Mortars for Interventions on Monuments and Historical Buildings. Groot C., editor. RILEM Publications SARL; Paris, France: 2005. pp. 292–304. Workshop Repair Mortars for Historic Masonry.

Silva B.A., Ferreira Pinto A.P., Augusto G. Infleunce of natural hzdraulic lime content on the properties of aerial lime-based mortars. Constr. Build. Mater. 2014;72:208–218. doi: 10.1016/j.conbuildmat.2014.09.010. DOI

Parcesepe E., De Masi R.F., Lima C., Mauro G.M., Pecce M.R., Maddaloni G. Assessmet of mechanical and thermal properties of hem-lime mortar. Materials. 2021;14:882. doi: 10.3390/ma14040882. PubMed DOI PMC

Roels S., Carmeliet J., Hens H., Adan O., Brocken H., Cerny R., Pavlik Z., Hall C., Kumaran K., Pel L., et al. Interlaboratory comparison of hygric properties of porous building materials. J. Therm. Envel. Build. Sci. 2004;27:307–325. doi: 10.1177/1097196304042119. DOI

Pavlíková M., Zemanová L., Záleská M., Pokorný J., Lojka M., Jankovský O., Pavlík Z. Ternary blended binder for production of a novel type of lightweight repair mortar. Materials. 2019;12:996. doi: 10.3390/ma12060996. PubMed DOI PMC

Hens H.S.L.C. The vapor diffusion resistance and air permeance of masonry and roofing systems. Build. Environ. 2006;41:745–755. doi: 10.1016/j.buildenv.2005.03.004. DOI

Darr J.P., Davis S.Q., Kohno Y., McKenna K., Morales P. Morphological effects on the hygroscopic properties of sodium chloride–sodium sulfate aerosols. J. Aerosol Sci. 2014;77:158–167. doi: 10.1016/j.jaerosci.2014.08.002. DOI

Martin S.T. Phase transitions of aqueous atmospheric particles. Chem. Rev. 2000;100:3403–3453. doi: 10.1021/cr990034t. PubMed DOI

Biskos G., Malinowski A., Russll L.M., Busseck P.R., Martin S.T. Nanosize effect on the deliquescence and the efflorescence of sodium chloride particels. Aerosol Sci. Technol. 2006;40:97–106. doi: 10.1080/02786820500484396. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...