Diatomaceous Earth-Lightweight Pozzolanic Admixtures for Repair Mortars-Complex Chemical and Physical Assessment

. 2022 Oct 03 ; 15 (19) : . [epub] 20221003

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36234222

Grantová podpora
21-06582S Czech Science Foundation
SGS20/153/OHK1/3T/11 Grant Agency of the Czech Technical University in Prague

The presented research is focused on the complex assessment of three different types of diatomaceous earth and evaluation of their ability for application as pozzolana active admixtures applicable in the concrete industry and the production of repair mortars applicable for historical masonry. The comprehensive experimental campaign comprised chemical, mineralogical, microstructural, and physical testing of raw materials, followed by the analyses and characterization of pozzolanic activity, rheology and heat evolution of fresh blended pastes, and testing of macrostructural and mechanical parameters of the hardened 28-days and 90-days samples. The obtained results gave evidence of the different behavior of researched diatomaceous earth when mixed with water and Portland cement. The differences in heat evolution, initial and final setting time, porosity, density, and mechanical parameters were identified based on chemical and phase composition, particle size, specific surface, and morphology of diatomaceous particles. Nevertheless, the researched mineral admixtures yielded a high strength activity index (92.9% to 113.6%), evinced their pozzolanic activity. Three fundamental factors were identified that affect diatomaceous earth's contribution to the mechanical strength of cement blends. These are the filler effect, the pertinent acceleration of OPC hydration, and the pozzolanic reaction of diatomite with Portland cement hydrates. The optimum replacement level of ordinary Portland cement by diatomaceous earth to give maximum long-term strength enhancement is about 10 wt.%., but it might be further enhanced based on the properties of pozzolan.

Zobrazit více v PubMed

Vyšvařil M., Pavlíková M., Záleská M., Pivák A., Žižlavský T., Rovnaníková P., Bayer P., Pavlík Z. Non-hydrophobized perlite renders for repair and thermal insulation purposes: Influence of different binders on their properties and durability. Constr. Build. Mater. 2020;263:120617. doi: 10.1016/j.conbuildmat.2020.120617. DOI

Pavlík Z., Pokorný J., Pavlíková M., Zemanová L., Záleská M., Vyšvăril M., Žižlavský T. Mortars with crushed lava granulate for repair of damp historical buildings. Materials. 2019;12:3557. doi: 10.3390/ma12213557. PubMed DOI PMC

Loureiro A.M.S., Paz S.P.A., Veiga M.R., Angélica R.S. Assessment of compatibility between historic mortars and lime-METAKAOLIN restoration mortars made from amazon industrial waste. Appl. Clay Sci. 2020;198:105843. doi: 10.1016/j.clay.2020.105843. DOI

Callebaut K., Elsen J., van Balen K., Viaene W. Nineteenth century hydraulic restoration mortars in the Saint Michael’s Church (Leuven, Belgium): Natural hydraulic lime or cement? Cem. Concr. Res. 2001;31:397–403. doi: 10.1016/S0008-8846(00)00499-3. DOI

Ayati B., Newport D., Wong H., Cheeseman C. Low-carbon cements: Potential for low-grade calcined clays to form supplementary cementitious materials. Clean. Mater. 2022;5:100099. doi: 10.1016/j.clema.2022.100099. DOI

UN Environment. Scrivener K.L., John V.M., Gartner E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018;114:2–26. doi: 10.1016/j.cemconres.2018.03.015. DOI

Athira G., Bahurudeen A. Rheological properties of cement paste blended with sugarcane bagasse ash and rice straw ash. Constr. Build. Mater. 2022;332:127377. doi: 10.1016/j.conbuildmat.2022.127377. DOI

Fediuk R., Smoliakov A., Stoyushko N. Increase in composite binder activity. IOP Conf. Ser. Mater. Sci. Eng. 2016;156:012042. doi: 10.1088/1757-899X/156/1/012042. DOI

Siddique S., Jang J.G., Gupta T. Developing marble slurry as supplementary cementitious material through calcination: Strength and microstructure study. Constr. Build. Mater. 2021;293:123474. doi: 10.1016/j.conbuildmat.2021.123474. DOI

Biajawi M.I.A., Embong R., Muthusamy K., Ismail N., Obianyo I. Recycled coal bottom ash as sustainable materials for cement replacement in cementitious Composites: A review. Constr. Build. Mater. 2022;338:127624. doi: 10.1016/j.conbuildmat.2022.127624. DOI

Shi C., Fernández-Jimenez A., Palomo A. New cements for 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res. 2011;41:750–763. doi: 10.1016/j.cemconres.2011.03.016. DOI

Zaleska M., Pavlikova M., Pavlik Z., Jankovsky O., Pokorny J., Tydlitat V., Svora P., Cerny R. Physical and chemical characterization of technogenic pozzolans for the application in blended cements. Constr. Build. Mater. 2018;160:106–116. doi: 10.1016/j.conbuildmat.2017.11.021. DOI

Barabanshchikov Y., Usanova K. Influence of silica fume on high-calcium fly ash expansion during hydration. Materials. 2022;15:3544. doi: 10.3390/ma15103544. PubMed DOI PMC

Amran M., Fediuk R., Murali G., Avudaiappan S., Ozbakkaloglu T., Vatin N., Karelina M., Klyuev S., Cholampour A. Flay ash-based eco-efficient concretes: A comprehensive review of the short-term properties. Materials. 2021;14:4264. doi: 10.3390/ma14154264. PubMed DOI PMC

Amran M., Murali G., Khalid N.H.A., Fediuk R., Ozbakkalogiu T., Lee Y.H., Haruna S., Lee Y.Y. Slag uses in making an ecofriendly and sustainable concrete: A review. Constr. Build. Mater. 2021;272:121942. doi: 10.1016/j.conbuildmat.2020.121942. DOI

Zhang Y., Schlangen E., Çopuroğlu O. Effect of slags of different origins and the role of sulfur in slag on the hydration characteristics of cement-slag systems. Constr. Build. Mater. 2022;316:125266. doi: 10.1016/j.conbuildmat.2021.125266. DOI

Siddique S., Kim H., Jang J.G. Properties of high-volume slag cement mortar incorporating circulating fluidized bed combustion fly ash and bottom ash. Constr. Build. Mater. 2021;289:123150. doi: 10.1016/j.conbuildmat.2021.123150. DOI

Kocak Y. Effects of metakaolin on the hydration development of Portland-composite cement. J. Build. Eng. 2020;31:101419. doi: 10.1016/j.jobe.2020.101419. DOI

Bucher R., Cyr M., Escadeillas G. Performance-based evaluation of flash-metakaolin as cement replacement in marine structures-Case of chloride migration and corrosion. Constr. Build. Mater. 2021;267:120926. doi: 10.1016/j.conbuildmat.2020.120926. DOI

Izadifard R.A., Moghadam M.A., Sepahi M.M. Influence of metakaolin as a partial replacement of cement on characteristics of concrete exposed to high temperatures. J. Sust. Cement-Based Mater. 2021;10:336–352. doi: 10.1080/21650373.2021.1877206. DOI

Jankovsky O., Pavlikova M., Sedmidubsky D., Bousa D., Lojka M., Pokorny J., Zaleska M., Pavlik Z. Study on pozzolana activity of wheat straw ash as potential admixture for blended cements. Ceramics-Silikaty. 2017;61:327–339. doi: 10.13168/cs.2017.0032. DOI

Sierra E.J., Miller A., Sakulich A.R., MacKenzie K., Barsoum M.W. Pozzolanic activity of diatomaceous earth. J. Am. Ceram. Soc. 2010;93:3406–3410. doi: 10.1111/j.1551-2916.2010.03886.x. DOI

Flower R.J. Diatoms in Ancient Building Materials: Application of Diatom Analysis to Egyptian Mud Bricks. Nova Hedwigia. 2006;130:245–264.

Paschen S. Diatomaceous earth extraction, processing and application. Erzmetall. 1986;39:158–161.

Reka A.A., Pavlovski B., Fazlija E., Berisha A., Pacarizi M., Daghmehchi M., Sacalis C., Jovanovski G., Makreski P., Oral A. Diatomaceous Earth: Characterization, thermal modification, and application. Open Chem. 2021;19:451–461. doi: 10.1515/chem-2020-0049. DOI

Lemons J.F. Diatomite. Am. Ceramic Soc. Bull. 1997;76:92–95.

Dolley T.P. Diatomite. Ceramic Bull. 1991;70/5:860.

Rodriguez C., Minamo I., Para C., Pujante P., Benito F. Properties of Precast Concrete Using Food Industry-Filtered Recycled Diatoms. Sustainability. 2021;13:3137. doi: 10.3390/su13063137. DOI

Goren R., Bazkara T., Marsoglu M. A study on the purification of diatomite in hydrochloric acid. Scand. J. Metall. 2002;31:115–119. doi: 10.1034/j.1600-0692.2002.310205.x. DOI

Pimraksa K., Chindaprasirt P. Lightweight bricks made of diatomaceous earth, lime and gypsum. Ceram. Int. 2009;35:471–478. doi: 10.1016/j.ceramint.2008.01.013. DOI

Man J., Gao W., Yan S., Liu S., Hao H. Preparation of porous brick from diatomite and sugar filter mud at lower temperature. Constr. Build. Mater. 2017;156:135–1042. doi: 10.1016/j.conbuildmat.2017.09.021. DOI

Jiang F., Ling X., Zhang L., Cang D., Ding Y. Modified diatomite-based porous ceramic to develop shape-stabilized NaNO3 salt with enhanced thermal conductivity for thermal energy storage. Sol. Energy Mater. Sol. Cells. 2021;231:111328. doi: 10.1016/j.solmat.2021.111328. DOI

Han L., Li F., Deng X., Wang J., Zhang H., Zhang S. Foam-gelcasting preparation, microstructure and thermal insulation performance of porous diatomite ceramics with hierarchical pore structures. J. Eur. Ceram. Soc. 2017;37:2717–2725. doi: 10.1016/j.jeurceramsoc.2017.02.032. DOI

Sedlacik M., Nguyen M., Opravil T., Sokolar R. Preparation and characterization of glass-ceramic foam from clay-rich waste diatomaceous earth. Materials. 2022;15:1384. doi: 10.3390/ma15041384. PubMed DOI PMC

Lauermannova A.-M., Lojka M., Jankovsky O., Faltysova I., Pavlikova M., Pivak A., Zaleska M., Pavlik Z. High-performance magnesium oxychloride composites with silica sand and diatomite. J. Mater. Res. Technol. 2021;11:957–969. doi: 10.1016/j.jmrt.2021.01.028. DOI

Xu T., Wu F., Zou T., Li J., Yang J., Zhou X., Liu D., Bie Y. Development of diatomite-based shape-stabilized composite phase change material for use in floor radiant heating. J. Mol. Liq. 2022;348:118372. doi: 10.1016/j.molliq.2021.118372. DOI

Li M. Mechanical and thermal performance assessment of paraffin/expanded vermiculite-diatomite composite phase change materials integrated mortar: Experimental and numerical approach. Sol. Energy. 2021;227:343–353. doi: 10.1016/j.solener.2021.09.014. DOI

Kadscheev I.D., Popov A.G., Ivanov S.E. Improving the thermal insulation of high-temperature furnaces by the use of diatomite. Refract. Ind. Ceram. 2009;50:98–100. doi: 10.1007/s11148-009-9158-z. DOI

Li X.Q., Yu T.Y., Park S.J., Kim Y.H. Reinforcing effects of gypsum composite with basalt fiber and diatomite for improvement of high-temperature endurance. Constr. Build. Mater. 2022;325:126762. doi: 10.1016/j.conbuildmat.2022.126762. DOI

Taoukil D., El meski Y., Lahlaouti M.I., Djedjig R., El bouardi A. Effect of the use of diatomite as partial replacement of sand on thermal and mechanical properties of mortars. J. Build. Eng. 2021;42:103038. doi: 10.1016/j.jobe.2021.103038. DOI

Gunduz L., Kalkan S.O. The effect of different natural porous aggregates on thermal characteristic feature in cementitious lightweight mortars for sustainable buildings. Iranian J. Sci. Technol. Trans. Civ. Eng. 2022 doi: 10.1007/s40996-022-00937-3. DOI

Aruntas H.Y., Tokyay M. The use of diatomite as pozzolanic material in blended cement production. Cem. Concr. World. 1996;1:3–41.

Yilmaz B., Ediz N. The use of raw and calcined diatomite in cement production. Cem. Concr. Compos. 2008;30:202–211. doi: 10.1016/j.cemconcomp.2007.08.003. DOI

Li J., Zhang W., Chen L., Monteiro P.J.M. Green concrete containing diatomaceous earth and limestone: Workability, mechanical properties, and life-cycle assessment. J. Clean. Prod. 2019;223:662–679. doi: 10.1016/j.jclepro.2019.03.077. DOI

Kastis D. Properties and hydration of blended cements with calcareous diatomite. Cem. Concr. Res. 2006;36:1821–1826. doi: 10.1016/j.cemconres.2006.05.005. DOI

dos Santos A.A.M., Cordeiro G.C. Investigation of particle characteristics and enhancing the pozzolanic activity of diatomite by grinding. Mater. Chem. Phys. 2021;270:124799. doi: 10.1016/j.matchemphys.2021.124799. DOI

Aydin A.C., Gül R. Influence of volcanic originated natural materials as additive on the setting time and some mechanical properties of concrete. Constr. Build. Mater. 2007;21:1277–1281. doi: 10.1016/j.conbuildmat.2006.02.011. DOI

Lim N.W., Sabaa B.A. The Pozzolanic Activity of Calcined Diatomite as a Factor of Temperature and Time. Key Eng. Mater. 1991;53:530–535. doi: 10.4028/www.scientific.net/KEM.53-55.530. DOI

Fragoulis D., Stamatkis M.G., Papageorgiou D., Chaniotakis E. The physical and mechanical properties of composite cements manufactured with calacareous and clayey Greek diatomite mixtures. Cem. Concr. Compos. 2005;27:205–209. doi: 10.1016/j.cemconcomp.2004.02.008. DOI

Starnatakis M.G., Fragoulls D., Csirik G., Bedelean I., Pedersen S. The influence of biogenic micro-silica-rich rocks on the properties of blended cements. Cem. Concr. Compos. 2003;25:177–184. doi: 10.1016/S0958-9465(02)00019-7. DOI

Değimenci N., Yilmaz A. Use of diatomite as partial replacement for Portland cement in cement mortars. Constr. Build. Mater. 2009;23:284–288. doi: 10.1016/j.conbuildmat.2007.12.008. DOI

Yilmaz B. A study on the effects of diatomite blend in natural pozzolan-blended cements. Adv. Cem. Res. 2008;20:13–21. doi: 10.1680/adcr.2008.20.1.13. DOI

Cement–Part 1: Composition, Specifications and Conformity Criteria for Common Cements. European Committee for Standardization; Brussels, Belgium: 2011.

Bogue R.H. Calculation of the Compounds in Portland Cement. Ind. Eng. Chem. Anal. 1929;1:192–197. doi: 10.1021/ac50068a006. DOI

Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete. ASTM; Wet Conshohocken, PA, USA: 1998.

Rietveld H.M. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst. 1967;22:151–152. doi: 10.1107/S0365110X67000234. DOI

Fernández-Carrasco L., Torrens-Martín D., Morales L.M., Martínez-Ramírez S. Chapter 19 Infrared Spectroscopy in the Analysis of Building and Construction Materials. In: Theophanides T., editor. Infrared Spectroscopy-Materials Science, Engineering and Technology. BoD–Books on Demand; Norderstedt, Germany: 2012.

Ylmén R., Jäglid U., Steenari B.-M., Panas I. Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques. Cem. Concr. Res. 2009;39:433–439. doi: 10.1016/j.cemconres.2009.01.017. DOI

Ilia I.K., Stamatakis M.G., Perraki T.S. Mineralogy and technical properties of clayey diatomites from north and central Greece. Cent. Eur. J. Geosci. 2009;1/4:393–403. doi: 10.2478/v10085-009-0034-3. DOI

Madejova J., Jnek M., Komadel P., Herbert H.J., Moog H.C. FTIR analyses of water in MX-80 bentonite compacted from high salinary salt solution systems. Appl. Clay Sci. 2002;20:255–271. doi: 10.1016/S0169-1317(01)00067-9. DOI

Fidalgo A., Ilhrco L.M. The defect structure of sol–gel-derived silica/polytetrahydrofuran hybrid films by FTIR. J. Non-Cryst. Solids. 2001;283:144–154. doi: 10.1016/S0022-3093(01)00418-5. DOI

Swan G.E.A., Patwarhan S.V. Application of Transform Infrared Spectroscopy (FTIR) for assessing biogenic silica sample purity in geochemical analyses and palaeoenvironmental research. Clim. Past. 2011;7:65–74. doi: 10.5194/cp-7-65-2011. DOI

Kaczmarska I., Ehrman J.M., Bates S.S. A review of auxospore structure, ontogeny and diatom phylogeny; Proceedings of the 16th International Diatom Symposium; Athens, Greece. 25 August–1 September 2000.

Cavalier-Smith T. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biol. Lett. 2010;6/3:342–345. doi: 10.1098/rsbl.2009.0948. PubMed DOI PMC

Werner D. The Biology of Diatoms. Blackwell; Oxford, UK: 1977.

Round F.M., Crawford R.M., Mann D.G. The Diatoms–Biology and Morphology of the Genera. Cambridge University Press; Cambridge, UK: 1990.

Methods of Testing Cement–Part 6: Determination of Fineness. European Committee for Standardization; Brussels, Belgium: 2010.

Neville A.M., Brooks J.J. Concrete Technology. Longman Scientific and Technical; New York, NY, USA: 1987.

Binici H., Aksogan O., Cagatay I.H., Tokyay M., Emsen E. The effect of particle size distribution on the properties of blended cements incorporating GGBFS and natural pozzolan (NP) Powder Technol. 2007;177:140–147. doi: 10.1016/j.powtec.2007.03.033. DOI

Taylor H.F.W. Cement Chemistry. 2nd ed. Thomas Telford; London, UK: 1997.

Characterisation of Waste-Leaching-Compliance Test for Leaching of Granular Waste Materials and Sludges-Part 2: One stage Batch Test at a Liquid to Solid Ratio of 10 l/kg for Materials with Particle Size below 4 mm (without or with Size Reduction) European Committee for Standardization; Brussels, Belgium: 2002.

Methods of Testing Cement-Part 5: Pozzolanicity Test for Pozzolanic Cement. European Committee for Standardization; Brussels, Belgium: 2011.

Pozzolanic Addition for Concrete-Metakaolin-Definitions, Specifications And Conformity Criteria. Association Française de Normalisation; La Plaine Saint-Denis, France: 2010.

Raverdy M., Brivot F., Paillere A.M., Dron R. Appreciation de L’activite Pouzzolanique des Constituants Secondaires. Volume 3. 7 th International Congress Chemical Cement; Paris, France: 1980. pp. 36–41.

Jun-Yuan H., Scheetz B.E., Roy D.M. Hydration of fly ash-portland cement. Cem. Concr. Res. 1984;14:505–511. doi: 10.1016/0008-8846(84)90126-1. DOI

Methods of Test for Mortar for Masonry-Part 3: Determination of Consistence of Fresh Mortar (by Flow Table) European Committee for Standardization; Brussels, Belgium: 1999.

Methods of Testing Cement-Part 3: Determination of Setting Times and Soundness. European Committee for Standardization; Brussels, Belgium: 1997.

Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 1999.

Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 2020.

Mindess S., Young J.F., Darwin D. Concrete. 2nd ed. Pearson Education Inc.; Upper Saddle River, NJ, USA: 2003.

Bhaskar J.S., Parthasarathy G. Fourier Transform Infrared Spectroscopic Characterization of Kaolinite from Assam and Meghalaya, Northeastern India. J. Mod. Phys. 2010;1:206–210. doi: 10.4236/jmp.2010.14031. DOI

Hughes T.L., Methven C.M., Jones T.G.J., Pelham S.E., Fletcher P., Hall C. Determining cement composition by Fourier transform infrared spectroscopy. Adv. Cem. Bas. Mat. 1995;2:91–104. doi: 10.1016/1065-7355(94)00031-X. DOI

Richard T., Mercurz L., Poulet F., d’Hendecourt L. Diffuse reflectance infrared Fourier transform spectroscopy as a tool to characterise water in adsorption/confinement situations. J. Colloid Interface Sci. 2006;304:125–136. doi: 10.1016/j.jcis.2006.08.036. PubMed DOI

Trezza M.A., Lavat A.E. Analysis of the system 3CaO.Al2O3.CaSO4.2H2O-CaCO3-H2O by FT-IR spectroscopy. Cem Concr. Res. 2001;31:869–872. doi: 10.1016/S0008-8846(01)00502-6. DOI

Silva D.A., Roman H.R., Gleize P.J.P. Evidences of chemical interaction between EVA and hydrating Portland cement. Cem. Concr. Res. 2002;32:1383–1390. doi: 10.1016/S0008-8846(02)00805-0. DOI

Horgnies M., Chen J.J., Bouillon C. Overview about the use of Fourier Transform Infrared spectroscopy to study cementitious materials. WIT Transactions on Engineering Sciences. 2013;77:251–262. doi: 10.2495/MC130221. DOI

Delgado A.H., Paroli R.M., Beaudoin J.J. Comparison of IR Techniques for the Characterization of Construction Cement Minerals and Hydrated Products. Appl. Spectr. 1996;60/8:970–976. doi: 10.1366/0003702963905312. DOI

Liang T., Nanru Y. Hydration products of calcium aluminoferrite in the presence of gypsum. Cem. Concr. Res. 1994;24:150–158. doi: 10.1016/0008-8846(94)90096-5. DOI

Payá J., Monzo J.M., Borrachero M.V., Velazquez S. Pozzolanic reaction rate of fluid catalytic cracking catalyst residue (FC3R) in cement paste. Adv. Cem Res. 2013;25:112–118. doi: 10.1680/adcr.11.00053. DOI

Pavlíková M., Zemanová L., Záleská M., Pokorný J., Lojka M., Jankovský O., Pavlík Z. Ternary blended binder for production of a novel type of lightweight repair mortar. Materials. 2019;12:996. doi: 10.3390/ma12060996. PubMed DOI PMC

Jang-Hyun P., Chang-Bok Y. Properties and durability of cement mortar using calcium stearate and natural pozzolan for concrete surface treatment. Materials. 2022;15:5762. doi: 10.3390/ma15165762. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...