Diatomaceous Earth-Lightweight Pozzolanic Admixtures for Repair Mortars-Complex Chemical and Physical Assessment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-06582S
Czech Science Foundation
SGS20/153/OHK1/3T/11
Grant Agency of the Czech Technical University in Prague
PubMed
36234222
PubMed Central
PMC9573052
DOI
10.3390/ma15196881
PII: ma15196881
Knihovny.cz E-zdroje
- Klíčová slova
- Portland cement substitution, diatomaceous earth, heat release, improvement of mechanical parameters, pozzolanic activity, rheology, strength activity index,
- Publikační typ
- časopisecké články MeSH
The presented research is focused on the complex assessment of three different types of diatomaceous earth and evaluation of their ability for application as pozzolana active admixtures applicable in the concrete industry and the production of repair mortars applicable for historical masonry. The comprehensive experimental campaign comprised chemical, mineralogical, microstructural, and physical testing of raw materials, followed by the analyses and characterization of pozzolanic activity, rheology and heat evolution of fresh blended pastes, and testing of macrostructural and mechanical parameters of the hardened 28-days and 90-days samples. The obtained results gave evidence of the different behavior of researched diatomaceous earth when mixed with water and Portland cement. The differences in heat evolution, initial and final setting time, porosity, density, and mechanical parameters were identified based on chemical and phase composition, particle size, specific surface, and morphology of diatomaceous particles. Nevertheless, the researched mineral admixtures yielded a high strength activity index (92.9% to 113.6%), evinced their pozzolanic activity. Three fundamental factors were identified that affect diatomaceous earth's contribution to the mechanical strength of cement blends. These are the filler effect, the pertinent acceleration of OPC hydration, and the pozzolanic reaction of diatomite with Portland cement hydrates. The optimum replacement level of ordinary Portland cement by diatomaceous earth to give maximum long-term strength enhancement is about 10 wt.%., but it might be further enhanced based on the properties of pozzolan.
Zobrazit více v PubMed
Vyšvařil M., Pavlíková M., Záleská M., Pivák A., Žižlavský T., Rovnaníková P., Bayer P., Pavlík Z. Non-hydrophobized perlite renders for repair and thermal insulation purposes: Influence of different binders on their properties and durability. Constr. Build. Mater. 2020;263:120617. doi: 10.1016/j.conbuildmat.2020.120617. DOI
Pavlík Z., Pokorný J., Pavlíková M., Zemanová L., Záleská M., Vyšvăril M., Žižlavský T. Mortars with crushed lava granulate for repair of damp historical buildings. Materials. 2019;12:3557. doi: 10.3390/ma12213557. PubMed DOI PMC
Loureiro A.M.S., Paz S.P.A., Veiga M.R., Angélica R.S. Assessment of compatibility between historic mortars and lime-METAKAOLIN restoration mortars made from amazon industrial waste. Appl. Clay Sci. 2020;198:105843. doi: 10.1016/j.clay.2020.105843. DOI
Callebaut K., Elsen J., van Balen K., Viaene W. Nineteenth century hydraulic restoration mortars in the Saint Michael’s Church (Leuven, Belgium): Natural hydraulic lime or cement? Cem. Concr. Res. 2001;31:397–403. doi: 10.1016/S0008-8846(00)00499-3. DOI
Ayati B., Newport D., Wong H., Cheeseman C. Low-carbon cements: Potential for low-grade calcined clays to form supplementary cementitious materials. Clean. Mater. 2022;5:100099. doi: 10.1016/j.clema.2022.100099. DOI
UN Environment. Scrivener K.L., John V.M., Gartner E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018;114:2–26. doi: 10.1016/j.cemconres.2018.03.015. DOI
Athira G., Bahurudeen A. Rheological properties of cement paste blended with sugarcane bagasse ash and rice straw ash. Constr. Build. Mater. 2022;332:127377. doi: 10.1016/j.conbuildmat.2022.127377. DOI
Fediuk R., Smoliakov A., Stoyushko N. Increase in composite binder activity. IOP Conf. Ser. Mater. Sci. Eng. 2016;156:012042. doi: 10.1088/1757-899X/156/1/012042. DOI
Siddique S., Jang J.G., Gupta T. Developing marble slurry as supplementary cementitious material through calcination: Strength and microstructure study. Constr. Build. Mater. 2021;293:123474. doi: 10.1016/j.conbuildmat.2021.123474. DOI
Biajawi M.I.A., Embong R., Muthusamy K., Ismail N., Obianyo I. Recycled coal bottom ash as sustainable materials for cement replacement in cementitious Composites: A review. Constr. Build. Mater. 2022;338:127624. doi: 10.1016/j.conbuildmat.2022.127624. DOI
Shi C., Fernández-Jimenez A., Palomo A. New cements for 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res. 2011;41:750–763. doi: 10.1016/j.cemconres.2011.03.016. DOI
Zaleska M., Pavlikova M., Pavlik Z., Jankovsky O., Pokorny J., Tydlitat V., Svora P., Cerny R. Physical and chemical characterization of technogenic pozzolans for the application in blended cements. Constr. Build. Mater. 2018;160:106–116. doi: 10.1016/j.conbuildmat.2017.11.021. DOI
Barabanshchikov Y., Usanova K. Influence of silica fume on high-calcium fly ash expansion during hydration. Materials. 2022;15:3544. doi: 10.3390/ma15103544. PubMed DOI PMC
Amran M., Fediuk R., Murali G., Avudaiappan S., Ozbakkaloglu T., Vatin N., Karelina M., Klyuev S., Cholampour A. Flay ash-based eco-efficient concretes: A comprehensive review of the short-term properties. Materials. 2021;14:4264. doi: 10.3390/ma14154264. PubMed DOI PMC
Amran M., Murali G., Khalid N.H.A., Fediuk R., Ozbakkalogiu T., Lee Y.H., Haruna S., Lee Y.Y. Slag uses in making an ecofriendly and sustainable concrete: A review. Constr. Build. Mater. 2021;272:121942. doi: 10.1016/j.conbuildmat.2020.121942. DOI
Zhang Y., Schlangen E., Çopuroğlu O. Effect of slags of different origins and the role of sulfur in slag on the hydration characteristics of cement-slag systems. Constr. Build. Mater. 2022;316:125266. doi: 10.1016/j.conbuildmat.2021.125266. DOI
Siddique S., Kim H., Jang J.G. Properties of high-volume slag cement mortar incorporating circulating fluidized bed combustion fly ash and bottom ash. Constr. Build. Mater. 2021;289:123150. doi: 10.1016/j.conbuildmat.2021.123150. DOI
Kocak Y. Effects of metakaolin on the hydration development of Portland-composite cement. J. Build. Eng. 2020;31:101419. doi: 10.1016/j.jobe.2020.101419. DOI
Bucher R., Cyr M., Escadeillas G. Performance-based evaluation of flash-metakaolin as cement replacement in marine structures-Case of chloride migration and corrosion. Constr. Build. Mater. 2021;267:120926. doi: 10.1016/j.conbuildmat.2020.120926. DOI
Izadifard R.A., Moghadam M.A., Sepahi M.M. Influence of metakaolin as a partial replacement of cement on characteristics of concrete exposed to high temperatures. J. Sust. Cement-Based Mater. 2021;10:336–352. doi: 10.1080/21650373.2021.1877206. DOI
Jankovsky O., Pavlikova M., Sedmidubsky D., Bousa D., Lojka M., Pokorny J., Zaleska M., Pavlik Z. Study on pozzolana activity of wheat straw ash as potential admixture for blended cements. Ceramics-Silikaty. 2017;61:327–339. doi: 10.13168/cs.2017.0032. DOI
Sierra E.J., Miller A., Sakulich A.R., MacKenzie K., Barsoum M.W. Pozzolanic activity of diatomaceous earth. J. Am. Ceram. Soc. 2010;93:3406–3410. doi: 10.1111/j.1551-2916.2010.03886.x. DOI
Flower R.J. Diatoms in Ancient Building Materials: Application of Diatom Analysis to Egyptian Mud Bricks. Nova Hedwigia. 2006;130:245–264.
Paschen S. Diatomaceous earth extraction, processing and application. Erzmetall. 1986;39:158–161.
Reka A.A., Pavlovski B., Fazlija E., Berisha A., Pacarizi M., Daghmehchi M., Sacalis C., Jovanovski G., Makreski P., Oral A. Diatomaceous Earth: Characterization, thermal modification, and application. Open Chem. 2021;19:451–461. doi: 10.1515/chem-2020-0049. DOI
Lemons J.F. Diatomite. Am. Ceramic Soc. Bull. 1997;76:92–95.
Dolley T.P. Diatomite. Ceramic Bull. 1991;70/5:860.
Rodriguez C., Minamo I., Para C., Pujante P., Benito F. Properties of Precast Concrete Using Food Industry-Filtered Recycled Diatoms. Sustainability. 2021;13:3137. doi: 10.3390/su13063137. DOI
Goren R., Bazkara T., Marsoglu M. A study on the purification of diatomite in hydrochloric acid. Scand. J. Metall. 2002;31:115–119. doi: 10.1034/j.1600-0692.2002.310205.x. DOI
Pimraksa K., Chindaprasirt P. Lightweight bricks made of diatomaceous earth, lime and gypsum. Ceram. Int. 2009;35:471–478. doi: 10.1016/j.ceramint.2008.01.013. DOI
Man J., Gao W., Yan S., Liu S., Hao H. Preparation of porous brick from diatomite and sugar filter mud at lower temperature. Constr. Build. Mater. 2017;156:135–1042. doi: 10.1016/j.conbuildmat.2017.09.021. DOI
Jiang F., Ling X., Zhang L., Cang D., Ding Y. Modified diatomite-based porous ceramic to develop shape-stabilized NaNO3 salt with enhanced thermal conductivity for thermal energy storage. Sol. Energy Mater. Sol. Cells. 2021;231:111328. doi: 10.1016/j.solmat.2021.111328. DOI
Han L., Li F., Deng X., Wang J., Zhang H., Zhang S. Foam-gelcasting preparation, microstructure and thermal insulation performance of porous diatomite ceramics with hierarchical pore structures. J. Eur. Ceram. Soc. 2017;37:2717–2725. doi: 10.1016/j.jeurceramsoc.2017.02.032. DOI
Sedlacik M., Nguyen M., Opravil T., Sokolar R. Preparation and characterization of glass-ceramic foam from clay-rich waste diatomaceous earth. Materials. 2022;15:1384. doi: 10.3390/ma15041384. PubMed DOI PMC
Lauermannova A.-M., Lojka M., Jankovsky O., Faltysova I., Pavlikova M., Pivak A., Zaleska M., Pavlik Z. High-performance magnesium oxychloride composites with silica sand and diatomite. J. Mater. Res. Technol. 2021;11:957–969. doi: 10.1016/j.jmrt.2021.01.028. DOI
Xu T., Wu F., Zou T., Li J., Yang J., Zhou X., Liu D., Bie Y. Development of diatomite-based shape-stabilized composite phase change material for use in floor radiant heating. J. Mol. Liq. 2022;348:118372. doi: 10.1016/j.molliq.2021.118372. DOI
Li M. Mechanical and thermal performance assessment of paraffin/expanded vermiculite-diatomite composite phase change materials integrated mortar: Experimental and numerical approach. Sol. Energy. 2021;227:343–353. doi: 10.1016/j.solener.2021.09.014. DOI
Kadscheev I.D., Popov A.G., Ivanov S.E. Improving the thermal insulation of high-temperature furnaces by the use of diatomite. Refract. Ind. Ceram. 2009;50:98–100. doi: 10.1007/s11148-009-9158-z. DOI
Li X.Q., Yu T.Y., Park S.J., Kim Y.H. Reinforcing effects of gypsum composite with basalt fiber and diatomite for improvement of high-temperature endurance. Constr. Build. Mater. 2022;325:126762. doi: 10.1016/j.conbuildmat.2022.126762. DOI
Taoukil D., El meski Y., Lahlaouti M.I., Djedjig R., El bouardi A. Effect of the use of diatomite as partial replacement of sand on thermal and mechanical properties of mortars. J. Build. Eng. 2021;42:103038. doi: 10.1016/j.jobe.2021.103038. DOI
Gunduz L., Kalkan S.O. The effect of different natural porous aggregates on thermal characteristic feature in cementitious lightweight mortars for sustainable buildings. Iranian J. Sci. Technol. Trans. Civ. Eng. 2022 doi: 10.1007/s40996-022-00937-3. DOI
Aruntas H.Y., Tokyay M. The use of diatomite as pozzolanic material in blended cement production. Cem. Concr. World. 1996;1:3–41.
Yilmaz B., Ediz N. The use of raw and calcined diatomite in cement production. Cem. Concr. Compos. 2008;30:202–211. doi: 10.1016/j.cemconcomp.2007.08.003. DOI
Li J., Zhang W., Chen L., Monteiro P.J.M. Green concrete containing diatomaceous earth and limestone: Workability, mechanical properties, and life-cycle assessment. J. Clean. Prod. 2019;223:662–679. doi: 10.1016/j.jclepro.2019.03.077. DOI
Kastis D. Properties and hydration of blended cements with calcareous diatomite. Cem. Concr. Res. 2006;36:1821–1826. doi: 10.1016/j.cemconres.2006.05.005. DOI
dos Santos A.A.M., Cordeiro G.C. Investigation of particle characteristics and enhancing the pozzolanic activity of diatomite by grinding. Mater. Chem. Phys. 2021;270:124799. doi: 10.1016/j.matchemphys.2021.124799. DOI
Aydin A.C., Gül R. Influence of volcanic originated natural materials as additive on the setting time and some mechanical properties of concrete. Constr. Build. Mater. 2007;21:1277–1281. doi: 10.1016/j.conbuildmat.2006.02.011. DOI
Lim N.W., Sabaa B.A. The Pozzolanic Activity of Calcined Diatomite as a Factor of Temperature and Time. Key Eng. Mater. 1991;53:530–535. doi: 10.4028/www.scientific.net/KEM.53-55.530. DOI
Fragoulis D., Stamatkis M.G., Papageorgiou D., Chaniotakis E. The physical and mechanical properties of composite cements manufactured with calacareous and clayey Greek diatomite mixtures. Cem. Concr. Compos. 2005;27:205–209. doi: 10.1016/j.cemconcomp.2004.02.008. DOI
Starnatakis M.G., Fragoulls D., Csirik G., Bedelean I., Pedersen S. The influence of biogenic micro-silica-rich rocks on the properties of blended cements. Cem. Concr. Compos. 2003;25:177–184. doi: 10.1016/S0958-9465(02)00019-7. DOI
Değimenci N., Yilmaz A. Use of diatomite as partial replacement for Portland cement in cement mortars. Constr. Build. Mater. 2009;23:284–288. doi: 10.1016/j.conbuildmat.2007.12.008. DOI
Yilmaz B. A study on the effects of diatomite blend in natural pozzolan-blended cements. Adv. Cem. Res. 2008;20:13–21. doi: 10.1680/adcr.2008.20.1.13. DOI
Cement–Part 1: Composition, Specifications and Conformity Criteria for Common Cements. European Committee for Standardization; Brussels, Belgium: 2011.
Bogue R.H. Calculation of the Compounds in Portland Cement. Ind. Eng. Chem. Anal. 1929;1:192–197. doi: 10.1021/ac50068a006. DOI
Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete. ASTM; Wet Conshohocken, PA, USA: 1998.
Rietveld H.M. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst. 1967;22:151–152. doi: 10.1107/S0365110X67000234. DOI
Fernández-Carrasco L., Torrens-Martín D., Morales L.M., Martínez-Ramírez S. Chapter 19 Infrared Spectroscopy in the Analysis of Building and Construction Materials. In: Theophanides T., editor. Infrared Spectroscopy-Materials Science, Engineering and Technology. BoD–Books on Demand; Norderstedt, Germany: 2012.
Ylmén R., Jäglid U., Steenari B.-M., Panas I. Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques. Cem. Concr. Res. 2009;39:433–439. doi: 10.1016/j.cemconres.2009.01.017. DOI
Ilia I.K., Stamatakis M.G., Perraki T.S. Mineralogy and technical properties of clayey diatomites from north and central Greece. Cent. Eur. J. Geosci. 2009;1/4:393–403. doi: 10.2478/v10085-009-0034-3. DOI
Madejova J., Jnek M., Komadel P., Herbert H.J., Moog H.C. FTIR analyses of water in MX-80 bentonite compacted from high salinary salt solution systems. Appl. Clay Sci. 2002;20:255–271. doi: 10.1016/S0169-1317(01)00067-9. DOI
Fidalgo A., Ilhrco L.M. The defect structure of sol–gel-derived silica/polytetrahydrofuran hybrid films by FTIR. J. Non-Cryst. Solids. 2001;283:144–154. doi: 10.1016/S0022-3093(01)00418-5. DOI
Swan G.E.A., Patwarhan S.V. Application of Transform Infrared Spectroscopy (FTIR) for assessing biogenic silica sample purity in geochemical analyses and palaeoenvironmental research. Clim. Past. 2011;7:65–74. doi: 10.5194/cp-7-65-2011. DOI
Kaczmarska I., Ehrman J.M., Bates S.S. A review of auxospore structure, ontogeny and diatom phylogeny; Proceedings of the 16th International Diatom Symposium; Athens, Greece. 25 August–1 September 2000.
Cavalier-Smith T. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biol. Lett. 2010;6/3:342–345. doi: 10.1098/rsbl.2009.0948. PubMed DOI PMC
Werner D. The Biology of Diatoms. Blackwell; Oxford, UK: 1977.
Round F.M., Crawford R.M., Mann D.G. The Diatoms–Biology and Morphology of the Genera. Cambridge University Press; Cambridge, UK: 1990.
Methods of Testing Cement–Part 6: Determination of Fineness. European Committee for Standardization; Brussels, Belgium: 2010.
Neville A.M., Brooks J.J. Concrete Technology. Longman Scientific and Technical; New York, NY, USA: 1987.
Binici H., Aksogan O., Cagatay I.H., Tokyay M., Emsen E. The effect of particle size distribution on the properties of blended cements incorporating GGBFS and natural pozzolan (NP) Powder Technol. 2007;177:140–147. doi: 10.1016/j.powtec.2007.03.033. DOI
Taylor H.F.W. Cement Chemistry. 2nd ed. Thomas Telford; London, UK: 1997.
Characterisation of Waste-Leaching-Compliance Test for Leaching of Granular Waste Materials and Sludges-Part 2: One stage Batch Test at a Liquid to Solid Ratio of 10 l/kg for Materials with Particle Size below 4 mm (without or with Size Reduction) European Committee for Standardization; Brussels, Belgium: 2002.
Methods of Testing Cement-Part 5: Pozzolanicity Test for Pozzolanic Cement. European Committee for Standardization; Brussels, Belgium: 2011.
Pozzolanic Addition for Concrete-Metakaolin-Definitions, Specifications And Conformity Criteria. Association Française de Normalisation; La Plaine Saint-Denis, France: 2010.
Raverdy M., Brivot F., Paillere A.M., Dron R. Appreciation de L’activite Pouzzolanique des Constituants Secondaires. Volume 3. 7 th International Congress Chemical Cement; Paris, France: 1980. pp. 36–41.
Jun-Yuan H., Scheetz B.E., Roy D.M. Hydration of fly ash-portland cement. Cem. Concr. Res. 1984;14:505–511. doi: 10.1016/0008-8846(84)90126-1. DOI
Methods of Test for Mortar for Masonry-Part 3: Determination of Consistence of Fresh Mortar (by Flow Table) European Committee for Standardization; Brussels, Belgium: 1999.
Methods of Testing Cement-Part 3: Determination of Setting Times and Soundness. European Committee for Standardization; Brussels, Belgium: 1997.
Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 1999.
Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 2020.
Mindess S., Young J.F., Darwin D. Concrete. 2nd ed. Pearson Education Inc.; Upper Saddle River, NJ, USA: 2003.
Bhaskar J.S., Parthasarathy G. Fourier Transform Infrared Spectroscopic Characterization of Kaolinite from Assam and Meghalaya, Northeastern India. J. Mod. Phys. 2010;1:206–210. doi: 10.4236/jmp.2010.14031. DOI
Hughes T.L., Methven C.M., Jones T.G.J., Pelham S.E., Fletcher P., Hall C. Determining cement composition by Fourier transform infrared spectroscopy. Adv. Cem. Bas. Mat. 1995;2:91–104. doi: 10.1016/1065-7355(94)00031-X. DOI
Richard T., Mercurz L., Poulet F., d’Hendecourt L. Diffuse reflectance infrared Fourier transform spectroscopy as a tool to characterise water in adsorption/confinement situations. J. Colloid Interface Sci. 2006;304:125–136. doi: 10.1016/j.jcis.2006.08.036. PubMed DOI
Trezza M.A., Lavat A.E. Analysis of the system 3CaO.Al2O3.CaSO4.2H2O-CaCO3-H2O by FT-IR spectroscopy. Cem Concr. Res. 2001;31:869–872. doi: 10.1016/S0008-8846(01)00502-6. DOI
Silva D.A., Roman H.R., Gleize P.J.P. Evidences of chemical interaction between EVA and hydrating Portland cement. Cem. Concr. Res. 2002;32:1383–1390. doi: 10.1016/S0008-8846(02)00805-0. DOI
Horgnies M., Chen J.J., Bouillon C. Overview about the use of Fourier Transform Infrared spectroscopy to study cementitious materials. WIT Transactions on Engineering Sciences. 2013;77:251–262. doi: 10.2495/MC130221. DOI
Delgado A.H., Paroli R.M., Beaudoin J.J. Comparison of IR Techniques for the Characterization of Construction Cement Minerals and Hydrated Products. Appl. Spectr. 1996;60/8:970–976. doi: 10.1366/0003702963905312. DOI
Liang T., Nanru Y. Hydration products of calcium aluminoferrite in the presence of gypsum. Cem. Concr. Res. 1994;24:150–158. doi: 10.1016/0008-8846(94)90096-5. DOI
Payá J., Monzo J.M., Borrachero M.V., Velazquez S. Pozzolanic reaction rate of fluid catalytic cracking catalyst residue (FC3R) in cement paste. Adv. Cem Res. 2013;25:112–118. doi: 10.1680/adcr.11.00053. DOI
Pavlíková M., Zemanová L., Záleská M., Pokorný J., Lojka M., Jankovský O., Pavlík Z. Ternary blended binder for production of a novel type of lightweight repair mortar. Materials. 2019;12:996. doi: 10.3390/ma12060996. PubMed DOI PMC
Jang-Hyun P., Chang-Bok Y. Properties and durability of cement mortar using calcium stearate and natural pozzolan for concrete surface treatment. Materials. 2022;15:5762. doi: 10.3390/ma15165762. PubMed DOI PMC