Lightweight Vapor-Permeable Plasters for Building Repair Detailed Experimental Analysis of the Functional Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-06582S
Grantová Agentura České Republiky
PubMed
34067857
PubMed Central
PMC8156439
DOI
10.3390/ma14102613
PII: ma14102613
Knihovny.cz E-zdroje
- Klíčová slova
- lightweight plasters, perlite, salt crystallization resistance, vapor permeability, water and salt transport properties,
- Publikační typ
- časopisecké články MeSH
Three types of lightweight plasters for building repair were prepared and tested. The composition of plasters was designed in respect to their compatibility with materials used in the past in historical masonry. For the hardened plasters, detailed testing of microstructural and macrostructural parameters was realized together with the broad experimental campaign focused on the assessment of mechanical, hygric, and thermal properties. As the researched plasters should find use in salt-laden masonry, specific attention was paid to the testing of their durability against salt crystallization. The mechanical resistance, porosity, water vapor transmission properties, and water transport parameters of all the researched plasters safely met criteria of WTA directive 2-9-04/D and standard EN 998-1 imposed on repair mortars. Moreover, the tested materials were ranked as lightweight plasters and due to their low thermal conductivity they can be used for the improvement of thermal performance of repaired masonry. The salt crystallization test caused little or no damage of the plasters, which was due to their high porosity that provided free space for salt crystallization. The developed plasters can be recommended for application in repair of damp and salt masonry and due to their compatible composition also in historical, culture heritage buildings. The added value of plasters is also their good thermal insulation performance.
Zobrazit více v PubMed
Abu-Jdayil B., Mourad A.-H., Hittini W., Hassan M., Hameedi S. Traditional, state-of-the-art and renewable thermal building insulation materials: An overview. Constr. Build. Mater. 2019;214:709–735. doi: 10.1016/j.conbuildmat.2019.04.102. DOI
International Energy Agency Global Status Report for Buildings and Construction 2019. [(accessed on 15 March 2021)]; Available online: https://www.iea.org/reports/global-status-report-for-buildings-and-construction-2019.
European Commission Horizon 2020 Energy Efficiency. [(accessed on 15 March 2021)]; Available online: https://ec.europa.eu/easme/en/section/horizon-2020-energy-efficiency/heating-and-cooling.
Climate & Energy Framework, European Commission European Strategies and Targets. [(accessed on 8 January 2020)]; Available online: https://ec.europa.eu/clima/policies/strategies/2030_en.
Shen X., Li L., Cui W., Feng Y. Thermal and moisture performance of external thermal insulation system with periodic freezing-thawing. Appl. Therm. Eng. 2020;181:115920. doi: 10.1016/j.applthermaleng.2020.115920. DOI
Francke B., Zamorowska R. Resistance of External Thermal Insulation Composite Systems with Rendering (ETICS) to Hail. Materials. 2020;13:2452. doi: 10.3390/ma13112452. PubMed DOI PMC
Michałowski B., Marcinek M., Tomaszewska J., Czernik S., Piasecki M., Geryło R., Michalak J. Influence of Rendering Type on the Environmental Characteristics of Expanded Polystyrene-Based External Thermal Insulation Composite System. Buildings. 2020;10:47. doi: 10.3390/buildings10030047. DOI
Barnat-Hunek D., Grzegorczyk-Frańczak M., Klimek B., Pavlíková M., Pavlík Z. Properties of multi-layer renders with fly ash and boiler slag admixtures for salt-laden masonry. Constr. Build. Mater. 2021;278:122366. doi: 10.1016/j.conbuildmat.2021.122366. DOI
Belayachi N., Hoxha D., Slaimia M. Impact of accelerated climatic aging on the behavior of gypsum plaster-straw material for building thermal insulation. Constr. Build. Mater. 2016;125:912–918. doi: 10.1016/j.conbuildmat.2016.08.120. DOI
Ashour T., Wieland H., Georg H., Bockisch F.-J., Wu W. The influence of natural reinforcement fibres on insulation values of earth plaster for straw bale buildings. Mater. Des. 2010;31:4676–4685. doi: 10.1016/j.matdes.2010.05.026. DOI
Ismail B., Belayachi N., Hoxha D. Optimizing performance of insulation materials based on wheat straw, lime and gypsum plaster composites using natural additives. Constr. Build. Mater. 2020;254:118959. doi: 10.1016/j.conbuildmat.2020.118959. DOI
Maia J., Ramos N.M., De Freitas V.P., Ângela S. Laboratory Tests and Potential of Thermal Insulation Plasters. Energy Procedia. 2015;78:2724–2729. doi: 10.1016/j.egypro.2015.11.613. DOI
Gencel O., del Coz Diaz J.J., Sutcu M., Koksal F., Rabanal F.P.A., Martínez-Barrera G. A novel lightweight gypsum com-posite with diatomite and polypropylene fibers. Constr. Build. Mater. 2016;113:732–740. doi: 10.1016/j.conbuildmat.2016.03.125. DOI
Dylewski R., Adamczyk J. The comparison of thermal insulation types of plaster with cement plaster. J. Clean. Prod. 2014;83:256–262. doi: 10.1016/j.jclepro.2014.07.042. DOI
Corinaldesi V., Donnini J., Nardinocchi A. Lightweight plasters containing plastic waste for sustainable and energy-efficient building. Constr. Build. Mater. 2015;94:337–345. doi: 10.1016/j.conbuildmat.2015.07.069. DOI
Petrella A., Di Mundo R., De Gisi S., Todaro F., Labianca C., Notarnicola M. Environmentally Sustainable Cement Composites Based on End-of-Life Tyre Rubber and Recycled Waste Porous Glass. Materials. 2019;12:3289. doi: 10.3390/ma12203289. PubMed DOI PMC
Buratti C., Moretti E., Belloni E., Agosti F. Development of Innovative Aerogel Based Plasters: Preliminary Thermal and Acoustic Performance Evaluation. Sustainability. 2014;6:5839–5852. doi: 10.3390/su6095839. DOI
Nosrati R.H., Berardi U. Hygrothermal characteristics of aerogel-enhanced insulating materials under different humidity and temperature conditions. Energy Build. 2018;158:698–711. doi: 10.1016/j.enbuild.2017.09.079. DOI
Vyšvařil M., Pavlíková M., Záleská M., Pivák A., Žižlavský T., Rovnaníková P., Bayer P., Pavlík Z. Non-hydrophobized perlite renders for repair and thermal insulation purposes: Influence of different binders on their properties and durability. Constr. Build. Mater. 2020;263:120617. doi: 10.1016/j.conbuildmat.2020.120617. DOI
Fenoglio E., Fantucci S., Serra V., Carbonaro C., Pollo R. Hygrothermal and environmental performance of a perlite-based insulating plaster for the energy retrofit of buildings. Energy Build. 2018;179:26–38. doi: 10.1016/j.enbuild.2018.08.017. DOI
Rashad A.M. A synopsis about perlite as building material-A best practice guide for Civil Engineer. Constr. Build. Mater. 2016;121:338–353. doi: 10.1016/j.conbuildmat.2016.06.001. DOI
Lanas J., Alvarey-Galindo J. Masonry repair lime-based mortars: Factors affecting the mechanical behavior. Cem. Concr. Res. 2003;33:1867–1876. doi: 10.1016/S0008-8846(03)00210-2. DOI
Horn K. Lime Rendering-Sustainable Heritage Report No. 1. Novia Publications and Production; Vaasa, Finland: 2011.
Moropolou A., Cakmak A.S., Lohvyn N. Eartquake resistant construction techniques and materials on Byzantine monuments in Kiew. Soil. Dyn. Eartqu. Eng. 2000;19:603–615. doi: 10.1016/S0267-7261(00)00021-X. DOI
Tenconi M., Karatasios I., Bala’awi F., Kilikoglou V. Technological and microstructural characterization of mortars and plasters from the Roman site of Qasr Azraq, in Jordan. J. Cult. Herit. 2018;33:100–116. doi: 10.1016/j.culher.2018.03.005. DOI
Cazalla O., Rodriguez-Navarro C., Sebastian E., Cultrone G. Aging of lime putty: Effects on traditional lime mortar car-bonation. J. Am. Ceram. Soc. 2000;83:1070–1076. doi: 10.1111/j.1151-2916.2000.tb01332.x. DOI
Methods of Test for Mortar for Masonry . Part 3: Determination of Consistence of Fresh Mortar (by Flow Table) European Committee for Standardization (CEN); Brussels, Belgium: 1999. EN 1015-3.
Krejsová J., Doležalová M., Pernicová R., Vimmrová A. The influence of different aggregates on the behavior and properties of gypsum mortars. Cem. Concr. Compos. 2018;92:188–197. doi: 10.1016/j.cemconcomp.2018.06.007. DOI
Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened Mortar. European Committee for Standardization (CEN); Brussels, Belgium: 1999. EN 1015-10.
Záleská M., Pavlík Z., Čítek D., Jankovský O., Pavlíková M. Eco-friendly concrete with scrap-tyre-rubber-based aggregate-Properties and thermal stability. Constr. Build. Mater. 2019;225:709–722. doi: 10.1016/j.conbuildmat.2019.07.168. DOI
Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. European Committee for Standardization (CEN); Brussels, Belgium: 1999. EN 1015-11.
Pavlík Z., Trník A., Keppert M., Pavlíková M., Žumár J., Černý R. Experimental Investigation of the Properties of Lime-Based Plaster-Containing PCM for Enhancing the Heat-Storage Capacity of Building Envelopes. Int. J. Thermophys. 2014;35:767–782. doi: 10.1007/s10765-013-1550-8. DOI
Mukhopadhyaya P., Kumaran K., Lackey J., Van Reenen D., Kumaran M., Dean S.W., Mukhopadhyaya P. Water Vapor Transmission Measurement and Significance of Corrections. J. ASTM Int. 2007;4:1–12. doi: 10.1520/JAI100621. DOI
Hygrothermal Performance of Building Materials and Product Determination of Water Vapour Transmission Properties. International Organization for Standardization (ISO); Geneva, Switzerland: 2016. EN ISO 12572.
Petersen P.E., Mukhopadhyaya P., Kumaran M., Lackey J. Use of the Modified Cup Method to Determine Temperature Dependency of Water Vapor Transmission Properties of Building Materials. J. Test. Eval. 2005;33:316–322. doi: 10.1520/jte12507. DOI
Jian F., Divagar D., Mhaiki J., Jayas D.S., Fields P.G., White N.D.G. Static and dynamic methods to determine adsorption isotherms of hemp seed with different percentages of dockage. Food Sci. Nutr. 2018;6:1629–1640. doi: 10.1002/fsn3.744. PubMed DOI PMC
Ben Abdelhamid M., Mihoubi D., Sghaier J., Bellagi A. Water Sorption Isotherms and Thermodynamic Characteristics of Hardened Cement Paste and Mortar. Transp. Porous Media. 2016;113:283–301. doi: 10.1007/s11242-016-0694-y. DOI
Methods of Test for Mortar for Masonry-Part 18: Determination of Water Absorption Coefficient Due to Capillarity Action of Hardened Mortar. European Committee for Standardization (CEN); Brussels, Belgium: 2002. EN 1015-18.
Natural Stone Test Methods-Determination of Resistance to Salt Crystallization. European Committee for Standardization (CEN); Brussels, Belgium: 2020. EN 12370.
Lubelli B., van Hees R.P.J., Nijland T.G. Salt crystallization damage: How realistic are existing ageing tests? In Proceedings of the 1st International Conference on Ageing of Materials & Structures Delft University of Technology, Delft, The Netherlands, 26–28 May 2014;
Granneman S.J., Lubelli B., Van Hees R.P. Effect of mixed in crystallization modifiers on the resistance of lime mortar against NaCl and Na2SO4 crystallization. Constr. Build. Mater. 2019;194:62–70. doi: 10.1016/j.conbuildmat.2018.11.006. DOI
Specification for Mortar for Masonry-Part 1: Rendering and Plastering Mortar. European Committee for Standardization (CEN); Brussels, Balgium: 2016. EN 998-1.
WTA Merkblatt 2-9-04/D . Sanierputzsysteme, Wissenschaftlich-Technische Arbeitsgemeinschaft für Bauwerkserhaltung und Denkmalpflege. WTA Publications; Pfaffenhofen an der Ilm, Germany: 2005.
Freire M.T., Veiga M.D.R., Silva A.S., de Brito J. Studies in ancient gypsum based plasters towards their repair: Physical and mechanical properties. Constr. Build. Mater. 2019;202:319–331. doi: 10.1016/j.conbuildmat.2018.12.214. DOI
Romera J.I., Martínez-Ramírez S., Lapuente P., Blanco-Varela M.T., Mercadal M.P.L. Assessment of the physico-mechanical behaviour of gypsum-lime repair mortars as a function of curing time. Environ. Earth Sci. 2013;70:1605–1618. doi: 10.1007/s12665-013-2245-y. DOI
Fusade L., Viles H., Wood C., Burns C. The effect of wood ash on the properties and durability of lime mortar for repointing damp historic buildings. Constr. Build. Mater. 2019;212:500–513. doi: 10.1016/j.conbuildmat.2019.03.326. DOI
Roels S., Carmeliet J., Hens H., Adan O., Brocken H., Cerny R., Pavlik Z., Hall C., Kumaran K., Pel L., et al. Interlaboratory comparison of hygric properties of porous building materials. J. Therm. Envel. Build. Sci. 2004;27:307–325. doi: 10.1177/1097196304042119. DOI
Pavlíková M., Zemanová L., Záleská M., Pokorný J., Lojka M., Jankovský O., Pavlík Z. Ternary blended binder for pro-duction of a novel type of lightweight repair mortar. Materials. 2019;12:996. doi: 10.3390/ma12060996. PubMed DOI PMC
Pavlík Z., Pokorný J., Pavlíková M., Zemanová L., Záleská M., Vyšvařil M., Žižlavský M. Mortars with cushed lava granulate for repair of damp historical buildings. Materials. 2019;12:3557. doi: 10.3390/ma12213557. PubMed DOI PMC
Quenard D., Sallee H. Water vapour adsorption and transfer in cement-based materials: A network simulation. Mater. Struct. 1992;25:515–522. doi: 10.1007/BF02472447. DOI
Johannesson B.F. Prestudy on diffusion and transient condensation of water vapour in cement mortar. Cem. Concr. Res. 2002;32:955–962. doi: 10.1016/S0008-8846(02)00736-6. DOI
Arizzi A., Cultrone G. The water transfer properties and drying shrinkage of aerial lime-based mortars: An assessment of their quality as repair rendering materials. Environ. Earth Sci. 2014;71:1699–1710.
Chennouf N., Agoudjil B., Boudenne A., Benzarti K., Bouras F. Hygrothermal characterization of a new bio-based con-struction material: Concrete reinforced with date palm fibers. Constr. Build. Mater. 2018;192:348–356. doi: 10.1016/j.conbuildmat.2018.10.089. DOI
Silva B., Pinto A.F., Gomes A. Influence of natural hydraulic lime content on the properties of aerial lime-based mortars. Constr. Build. Mater. 2014;72:208–218. doi: 10.1016/j.conbuildmat.2014.09.010. DOI
Nenadálová S., Balík L., Rydval M., Bittner T. Laboratory Verification of Water Vapour Permeability of Plaster Compositions. Procedia Eng. 2016;151:50–57. doi: 10.1016/j.proeng.2016.07.364. DOI
Vares O., Ruus A., Raamets J., Tungel E. Determination of hygrothermal performance of clay-sand plaster: Influence of covering on sorption and water vapour permeability. Energy Procedia. 2017;132:267–272. doi: 10.1016/j.egypro.2017.09.719. DOI
Vares M.-L., Ruus A., Nutt N., Kubjas A., Raamets J. Determination of paper plaster hygrothermal performance: Influence of different types of paper on sorption and moisture buffering. J. Build. Eng. 2021;33:101830. doi: 10.1016/j.jobe.2020.101830. DOI
Mazhoud B., Collet F., Pretot S., Chamoin J. Hygric and thermal properties of hemp-lime plasters. Build. Environ. 2016;96:206–216. doi: 10.1016/j.buildenv.2015.11.013. DOI
Thommes M., Kaneko K., Neimark A.V., Lovier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) Pure Appl. Chem. 2015;87:1051–1069. doi: 10.1515/pac-2014-1117. DOI
Pavlík Z., Fořt J., Pavlíková M., Pokorný J., Trník A., Černý R. Modified lime-cement plasters with enhanced thermal and hygric storage capacity for moderation of interior climate. Energy Build. 2016;126:113–127. doi: 10.1016/j.enbuild.2016.05.004. DOI
Pavlík Z., Žumár J., Medved I., Černý R. Water Vapor Adsorption in Porous Building Materials: Experimental Measurement and Theoretical Analysis. Transp. Porous Media. 2012;91:939–954. doi: 10.1007/s11242-011-9884-9. DOI
Barsoti E., Tan S.P., Piri M., Chen J.-H. Capillary-condensation hysteresis in naturally-occuring nonoporous media. Fuel. 2020;263:116441. doi: 10.1016/j.fuel.2019.116441. DOI
Extrand C. A Thermodynamic Model for Contact Angle Hysteresis. J. Colloid Interface Sci. 1998;207:11–19. doi: 10.1006/jcis.1998.5743. PubMed DOI
Derluyn H., Derome D., Carmeliet J., Stora E., Barbarulo R. Hysteretic moisture behavior of concrete: Modelling and anal-ysis. Cem. Concr. Res. 2012;42:1379–1388. doi: 10.1016/j.cemconres.2012.06.010. DOI
Bessadok A., Marais S., Roudesli S., Lixon C., Métayer M. Influence of chemical modifications on water-sorption and me-chanical properties of Agave fibres. Compos. Part A Appl. Sci. Manuf. 2008;39:29–45. doi: 10.1016/j.compositesa.2007.09.007. DOI