Lightweight Vapor-Permeable Plasters for Building Repair Detailed Experimental Analysis of the Functional Properties

. 2021 May 17 ; 14 (10) : . [epub] 20210517

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34067857

Grantová podpora
21-06582S Grantová Agentura České Republiky

Three types of lightweight plasters for building repair were prepared and tested. The composition of plasters was designed in respect to their compatibility with materials used in the past in historical masonry. For the hardened plasters, detailed testing of microstructural and macrostructural parameters was realized together with the broad experimental campaign focused on the assessment of mechanical, hygric, and thermal properties. As the researched plasters should find use in salt-laden masonry, specific attention was paid to the testing of their durability against salt crystallization. The mechanical resistance, porosity, water vapor transmission properties, and water transport parameters of all the researched plasters safely met criteria of WTA directive 2-9-04/D and standard EN 998-1 imposed on repair mortars. Moreover, the tested materials were ranked as lightweight plasters and due to their low thermal conductivity they can be used for the improvement of thermal performance of repaired masonry. The salt crystallization test caused little or no damage of the plasters, which was due to their high porosity that provided free space for salt crystallization. The developed plasters can be recommended for application in repair of damp and salt masonry and due to their compatible composition also in historical, culture heritage buildings. The added value of plasters is also their good thermal insulation performance.

Zobrazit více v PubMed

Abu-Jdayil B., Mourad A.-H., Hittini W., Hassan M., Hameedi S. Traditional, state-of-the-art and renewable thermal building insulation materials: An overview. Constr. Build. Mater. 2019;214:709–735. doi: 10.1016/j.conbuildmat.2019.04.102. DOI

International Energy Agency Global Status Report for Buildings and Construction 2019. [(accessed on 15 March 2021)]; Available online: https://www.iea.org/reports/global-status-report-for-buildings-and-construction-2019.

European Commission Horizon 2020 Energy Efficiency. [(accessed on 15 March 2021)]; Available online: https://ec.europa.eu/easme/en/section/horizon-2020-energy-efficiency/heating-and-cooling.

Climate & Energy Framework, European Commission European Strategies and Targets. [(accessed on 8 January 2020)]; Available online: https://ec.europa.eu/clima/policies/strategies/2030_en.

Shen X., Li L., Cui W., Feng Y. Thermal and moisture performance of external thermal insulation system with periodic freezing-thawing. Appl. Therm. Eng. 2020;181:115920. doi: 10.1016/j.applthermaleng.2020.115920. DOI

Francke B., Zamorowska R. Resistance of External Thermal Insulation Composite Systems with Rendering (ETICS) to Hail. Materials. 2020;13:2452. doi: 10.3390/ma13112452. PubMed DOI PMC

Michałowski B., Marcinek M., Tomaszewska J., Czernik S., Piasecki M., Geryło R., Michalak J. Influence of Rendering Type on the Environmental Characteristics of Expanded Polystyrene-Based External Thermal Insulation Composite System. Buildings. 2020;10:47. doi: 10.3390/buildings10030047. DOI

Barnat-Hunek D., Grzegorczyk-Frańczak M., Klimek B., Pavlíková M., Pavlík Z. Properties of multi-layer renders with fly ash and boiler slag admixtures for salt-laden masonry. Constr. Build. Mater. 2021;278:122366. doi: 10.1016/j.conbuildmat.2021.122366. DOI

Belayachi N., Hoxha D., Slaimia M. Impact of accelerated climatic aging on the behavior of gypsum plaster-straw material for building thermal insulation. Constr. Build. Mater. 2016;125:912–918. doi: 10.1016/j.conbuildmat.2016.08.120. DOI

Ashour T., Wieland H., Georg H., Bockisch F.-J., Wu W. The influence of natural reinforcement fibres on insulation values of earth plaster for straw bale buildings. Mater. Des. 2010;31:4676–4685. doi: 10.1016/j.matdes.2010.05.026. DOI

Ismail B., Belayachi N., Hoxha D. Optimizing performance of insulation materials based on wheat straw, lime and gypsum plaster composites using natural additives. Constr. Build. Mater. 2020;254:118959. doi: 10.1016/j.conbuildmat.2020.118959. DOI

Maia J., Ramos N.M., De Freitas V.P., Ângela S. Laboratory Tests and Potential of Thermal Insulation Plasters. Energy Procedia. 2015;78:2724–2729. doi: 10.1016/j.egypro.2015.11.613. DOI

Gencel O., del Coz Diaz J.J., Sutcu M., Koksal F., Rabanal F.P.A., Martínez-Barrera G. A novel lightweight gypsum com-posite with diatomite and polypropylene fibers. Constr. Build. Mater. 2016;113:732–740. doi: 10.1016/j.conbuildmat.2016.03.125. DOI

Dylewski R., Adamczyk J. The comparison of thermal insulation types of plaster with cement plaster. J. Clean. Prod. 2014;83:256–262. doi: 10.1016/j.jclepro.2014.07.042. DOI

Corinaldesi V., Donnini J., Nardinocchi A. Lightweight plasters containing plastic waste for sustainable and energy-efficient building. Constr. Build. Mater. 2015;94:337–345. doi: 10.1016/j.conbuildmat.2015.07.069. DOI

Petrella A., Di Mundo R., De Gisi S., Todaro F., Labianca C., Notarnicola M. Environmentally Sustainable Cement Composites Based on End-of-Life Tyre Rubber and Recycled Waste Porous Glass. Materials. 2019;12:3289. doi: 10.3390/ma12203289. PubMed DOI PMC

Buratti C., Moretti E., Belloni E., Agosti F. Development of Innovative Aerogel Based Plasters: Preliminary Thermal and Acoustic Performance Evaluation. Sustainability. 2014;6:5839–5852. doi: 10.3390/su6095839. DOI

Nosrati R.H., Berardi U. Hygrothermal characteristics of aerogel-enhanced insulating materials under different humidity and temperature conditions. Energy Build. 2018;158:698–711. doi: 10.1016/j.enbuild.2017.09.079. DOI

Vyšvařil M., Pavlíková M., Záleská M., Pivák A., Žižlavský T., Rovnaníková P., Bayer P., Pavlík Z. Non-hydrophobized perlite renders for repair and thermal insulation purposes: Influence of different binders on their properties and durability. Constr. Build. Mater. 2020;263:120617. doi: 10.1016/j.conbuildmat.2020.120617. DOI

Fenoglio E., Fantucci S., Serra V., Carbonaro C., Pollo R. Hygrothermal and environmental performance of a perlite-based insulating plaster for the energy retrofit of buildings. Energy Build. 2018;179:26–38. doi: 10.1016/j.enbuild.2018.08.017. DOI

Rashad A.M. A synopsis about perlite as building material-A best practice guide for Civil Engineer. Constr. Build. Mater. 2016;121:338–353. doi: 10.1016/j.conbuildmat.2016.06.001. DOI

Lanas J., Alvarey-Galindo J. Masonry repair lime-based mortars: Factors affecting the mechanical behavior. Cem. Concr. Res. 2003;33:1867–1876. doi: 10.1016/S0008-8846(03)00210-2. DOI

Horn K. Lime Rendering-Sustainable Heritage Report No. 1. Novia Publications and Production; Vaasa, Finland: 2011.

Moropolou A., Cakmak A.S., Lohvyn N. Eartquake resistant construction techniques and materials on Byzantine monuments in Kiew. Soil. Dyn. Eartqu. Eng. 2000;19:603–615. doi: 10.1016/S0267-7261(00)00021-X. DOI

Tenconi M., Karatasios I., Bala’awi F., Kilikoglou V. Technological and microstructural characterization of mortars and plasters from the Roman site of Qasr Azraq, in Jordan. J. Cult. Herit. 2018;33:100–116. doi: 10.1016/j.culher.2018.03.005. DOI

Cazalla O., Rodriguez-Navarro C., Sebastian E., Cultrone G. Aging of lime putty: Effects on traditional lime mortar car-bonation. J. Am. Ceram. Soc. 2000;83:1070–1076. doi: 10.1111/j.1151-2916.2000.tb01332.x. DOI

Methods of Test for Mortar for Masonry . Part 3: Determination of Consistence of Fresh Mortar (by Flow Table) European Committee for Standardization (CEN); Brussels, Belgium: 1999. EN 1015-3.

Krejsová J., Doležalová M., Pernicová R., Vimmrová A. The influence of different aggregates on the behavior and properties of gypsum mortars. Cem. Concr. Compos. 2018;92:188–197. doi: 10.1016/j.cemconcomp.2018.06.007. DOI

Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened Mortar. European Committee for Standardization (CEN); Brussels, Belgium: 1999. EN 1015-10.

Záleská M., Pavlík Z., Čítek D., Jankovský O., Pavlíková M. Eco-friendly concrete with scrap-tyre-rubber-based aggregate-Properties and thermal stability. Constr. Build. Mater. 2019;225:709–722. doi: 10.1016/j.conbuildmat.2019.07.168. DOI

Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. European Committee for Standardization (CEN); Brussels, Belgium: 1999. EN 1015-11.

Pavlík Z., Trník A., Keppert M., Pavlíková M., Žumár J., Černý R. Experimental Investigation of the Properties of Lime-Based Plaster-Containing PCM for Enhancing the Heat-Storage Capacity of Building Envelopes. Int. J. Thermophys. 2014;35:767–782. doi: 10.1007/s10765-013-1550-8. DOI

Mukhopadhyaya P., Kumaran K., Lackey J., Van Reenen D., Kumaran M., Dean S.W., Mukhopadhyaya P. Water Vapor Transmission Measurement and Significance of Corrections. J. ASTM Int. 2007;4:1–12. doi: 10.1520/JAI100621. DOI

Hygrothermal Performance of Building Materials and Product Determination of Water Vapour Transmission Properties. International Organization for Standardization (ISO); Geneva, Switzerland: 2016. EN ISO 12572.

Petersen P.E., Mukhopadhyaya P., Kumaran M., Lackey J. Use of the Modified Cup Method to Determine Temperature Dependency of Water Vapor Transmission Properties of Building Materials. J. Test. Eval. 2005;33:316–322. doi: 10.1520/jte12507. DOI

Jian F., Divagar D., Mhaiki J., Jayas D.S., Fields P.G., White N.D.G. Static and dynamic methods to determine adsorption isotherms of hemp seed with different percentages of dockage. Food Sci. Nutr. 2018;6:1629–1640. doi: 10.1002/fsn3.744. PubMed DOI PMC

Ben Abdelhamid M., Mihoubi D., Sghaier J., Bellagi A. Water Sorption Isotherms and Thermodynamic Characteristics of Hardened Cement Paste and Mortar. Transp. Porous Media. 2016;113:283–301. doi: 10.1007/s11242-016-0694-y. DOI

Methods of Test for Mortar for Masonry-Part 18: Determination of Water Absorption Coefficient Due to Capillarity Action of Hardened Mortar. European Committee for Standardization (CEN); Brussels, Belgium: 2002. EN 1015-18.

Natural Stone Test Methods-Determination of Resistance to Salt Crystallization. European Committee for Standardization (CEN); Brussels, Belgium: 2020. EN 12370.

Lubelli B., van Hees R.P.J., Nijland T.G. Salt crystallization damage: How realistic are existing ageing tests? In Proceedings of the 1st International Conference on Ageing of Materials & Structures Delft University of Technology, Delft, The Netherlands, 26–28 May 2014;

Granneman S.J., Lubelli B., Van Hees R.P. Effect of mixed in crystallization modifiers on the resistance of lime mortar against NaCl and Na2SO4 crystallization. Constr. Build. Mater. 2019;194:62–70. doi: 10.1016/j.conbuildmat.2018.11.006. DOI

Specification for Mortar for Masonry-Part 1: Rendering and Plastering Mortar. European Committee for Standardization (CEN); Brussels, Balgium: 2016. EN 998-1.

WTA Merkblatt 2-9-04/D . Sanierputzsysteme, Wissenschaftlich-Technische Arbeitsgemeinschaft für Bauwerkserhaltung und Denkmalpflege. WTA Publications; Pfaffenhofen an der Ilm, Germany: 2005.

Freire M.T., Veiga M.D.R., Silva A.S., de Brito J. Studies in ancient gypsum based plasters towards their repair: Physical and mechanical properties. Constr. Build. Mater. 2019;202:319–331. doi: 10.1016/j.conbuildmat.2018.12.214. DOI

Romera J.I., Martínez-Ramírez S., Lapuente P., Blanco-Varela M.T., Mercadal M.P.L. Assessment of the physico-mechanical behaviour of gypsum-lime repair mortars as a function of curing time. Environ. Earth Sci. 2013;70:1605–1618. doi: 10.1007/s12665-013-2245-y. DOI

Fusade L., Viles H., Wood C., Burns C. The effect of wood ash on the properties and durability of lime mortar for repointing damp historic buildings. Constr. Build. Mater. 2019;212:500–513. doi: 10.1016/j.conbuildmat.2019.03.326. DOI

Roels S., Carmeliet J., Hens H., Adan O., Brocken H., Cerny R., Pavlik Z., Hall C., Kumaran K., Pel L., et al. Interlaboratory comparison of hygric properties of porous building materials. J. Therm. Envel. Build. Sci. 2004;27:307–325. doi: 10.1177/1097196304042119. DOI

Pavlíková M., Zemanová L., Záleská M., Pokorný J., Lojka M., Jankovský O., Pavlík Z. Ternary blended binder for pro-duction of a novel type of lightweight repair mortar. Materials. 2019;12:996. doi: 10.3390/ma12060996. PubMed DOI PMC

Pavlík Z., Pokorný J., Pavlíková M., Zemanová L., Záleská M., Vyšvařil M., Žižlavský M. Mortars with cushed lava granulate for repair of damp historical buildings. Materials. 2019;12:3557. doi: 10.3390/ma12213557. PubMed DOI PMC

Quenard D., Sallee H. Water vapour adsorption and transfer in cement-based materials: A network simulation. Mater. Struct. 1992;25:515–522. doi: 10.1007/BF02472447. DOI

Johannesson B.F. Prestudy on diffusion and transient condensation of water vapour in cement mortar. Cem. Concr. Res. 2002;32:955–962. doi: 10.1016/S0008-8846(02)00736-6. DOI

Arizzi A., Cultrone G. The water transfer properties and drying shrinkage of aerial lime-based mortars: An assessment of their quality as repair rendering materials. Environ. Earth Sci. 2014;71:1699–1710.

Chennouf N., Agoudjil B., Boudenne A., Benzarti K., Bouras F. Hygrothermal characterization of a new bio-based con-struction material: Concrete reinforced with date palm fibers. Constr. Build. Mater. 2018;192:348–356. doi: 10.1016/j.conbuildmat.2018.10.089. DOI

Silva B., Pinto A.F., Gomes A. Influence of natural hydraulic lime content on the properties of aerial lime-based mortars. Constr. Build. Mater. 2014;72:208–218. doi: 10.1016/j.conbuildmat.2014.09.010. DOI

Nenadálová S., Balík L., Rydval M., Bittner T. Laboratory Verification of Water Vapour Permeability of Plaster Compositions. Procedia Eng. 2016;151:50–57. doi: 10.1016/j.proeng.2016.07.364. DOI

Vares O., Ruus A., Raamets J., Tungel E. Determination of hygrothermal performance of clay-sand plaster: Influence of covering on sorption and water vapour permeability. Energy Procedia. 2017;132:267–272. doi: 10.1016/j.egypro.2017.09.719. DOI

Vares M.-L., Ruus A., Nutt N., Kubjas A., Raamets J. Determination of paper plaster hygrothermal performance: Influence of different types of paper on sorption and moisture buffering. J. Build. Eng. 2021;33:101830. doi: 10.1016/j.jobe.2020.101830. DOI

Mazhoud B., Collet F., Pretot S., Chamoin J. Hygric and thermal properties of hemp-lime plasters. Build. Environ. 2016;96:206–216. doi: 10.1016/j.buildenv.2015.11.013. DOI

Thommes M., Kaneko K., Neimark A.V., Lovier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) Pure Appl. Chem. 2015;87:1051–1069. doi: 10.1515/pac-2014-1117. DOI

Pavlík Z., Fořt J., Pavlíková M., Pokorný J., Trník A., Černý R. Modified lime-cement plasters with enhanced thermal and hygric storage capacity for moderation of interior climate. Energy Build. 2016;126:113–127. doi: 10.1016/j.enbuild.2016.05.004. DOI

Pavlík Z., Žumár J., Medved I., Černý R. Water Vapor Adsorption in Porous Building Materials: Experimental Measurement and Theoretical Analysis. Transp. Porous Media. 2012;91:939–954. doi: 10.1007/s11242-011-9884-9. DOI

Barsoti E., Tan S.P., Piri M., Chen J.-H. Capillary-condensation hysteresis in naturally-occuring nonoporous media. Fuel. 2020;263:116441. doi: 10.1016/j.fuel.2019.116441. DOI

Extrand C. A Thermodynamic Model for Contact Angle Hysteresis. J. Colloid Interface Sci. 1998;207:11–19. doi: 10.1006/jcis.1998.5743. PubMed DOI

Derluyn H., Derome D., Carmeliet J., Stora E., Barbarulo R. Hysteretic moisture behavior of concrete: Modelling and anal-ysis. Cem. Concr. Res. 2012;42:1379–1388. doi: 10.1016/j.cemconres.2012.06.010. DOI

Bessadok A., Marais S., Roudesli S., Lixon C., Métayer M. Influence of chemical modifications on water-sorption and me-chanical properties of Agave fibres. Compos. Part A Appl. Sci. Manuf. 2008;39:29–45. doi: 10.1016/j.compositesa.2007.09.007. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...