Phytochemical Composition and In Vitro Biological Activity of Iris spp. (Iridaceae): A New Source of Bioactive Constituents for the Inhibition of Oral Bacterial Biofilms
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TN010000048
Technology Agency of the Czech Republic
43760/2015
Czech National Program of Sustainability
RVO 67985939
Czech Academy of Sciences
PubMed
32664528
PubMed Central
PMC7399867
DOI
10.3390/antibiotics9070403
PII: antibiotics9070403
Knihovny.cz E-zdroje
- Klíčová slova
- biofilm, dental plaque, microbial resistance, quorum sensing,
- Publikační typ
- časopisecké články MeSH
The inhibition and eradication of oral biofilms is increasingly focused on the use of plant extracts as mouthwashes and toothpastes adjuvants. Here, we report on the chemical composition and the antibiofilm activity of 15 methanolic extracts of Iris species against both mono-(Pseudomonas aeruginosa, Staphylococcus aureus) and multi-species oral biofilms (Streptococcus gordonii, Veillonella parvula, Fusobacterium nucleatum subsp. nucleatum, and Actinomyces naeslundii). The phytochemical profiles of Iris pallida s.l., Iris versicolor L., Iris lactea Pall., Iris carthaliniae Fomin, and Iris germanica were determined by ultra-high performance liquid chromatography-high-resolution tandem mass spectroscopy (UHPLC-HRMS/MS) analysis, and a total of 180 compounds were identified among Iris species with (iso)flavonoid dominancy. I. pallida, I. versicolor, and I. germanica inhibited both the quorum sensing and adhesion during biofilm formation in a concentration-dependent manner. However, the extracts were less active against maturated biofilms. Of the five tested species, Iris pallida s.l. was the most effective at both inhibiting biofilm formation and disrupting existing biofilms, and the leaf extract exhibited the strongest inhibitory effect compared to the root and rhizome extracts. The cytotoxicity of the extracts was excluded in human fibroblasts. The inhibition of bacterial adhesion significantly correlated with myristic acid content, and quorum sensing inhibition correlated with the 7-β-hydroxystigmast-4-en-3-one content. These findings could be useful for establishing an effective tool for the control of oral biofilms and thus dental diseases.
EcoFuel Laboratories Ltd Ocelářská 9 190 00 Praha Czech Republic
Institute of Botany of the Czech Academy of Sciences Zámek 1 252 43 Průhonice Czech Republic
Zobrazit více v PubMed
Lee D., Seo Y., Khan M.S., Hwang J., Jo Y., Son J., Lee K., Park C., Chavan S., Gilad A.A., et al. Use of nanoscale materials for the effective prevention and extermination of bacterial biofilms. Biotechnol. Bioprocess Eng. 2018;23:1–10. doi: 10.1007/s12257-017-0348-0. DOI
Yu O.Y., Zhao I.S., Mei M.L., Lo E.C., Chu C.H. Dental Biofilm and Laboratory Microbial Culture Models for Cariology Research. Dent. J. 2017;5:21. doi: 10.3390/dj5020021. PubMed DOI PMC
Basavaraju M., Sisnity V.S., Palaparthy R., Addanki P.K. Quorum quenching: signal jamming in dental plaque biofilms. J. Dent. Sci. 2016;11:349–352. doi: 10.1016/j.jds.2016.02.002. PubMed DOI PMC
Kolenbrander P.E., Palmer R.J., Periasamy S., Jakubovics N.S. Oral multispecies biofilm development and the key role of cell-cell distance. Nat. Rev. Microbiol. 2010;8:471–480. doi: 10.1038/nrmicro2381. PubMed DOI
Zuanazzi D., Souto R., Mattos M.B.A., Zuanazzi M.R., Tura B.R., Sansone C., Colombo A.P.V. Prevalence of potential bacterial respiratory pathogens in the oral cavity of hospitalised individuals. Arch. Oral Biol. 2010;55:21–28. doi: 10.1016/j.archoralbio.2009.10.005. PubMed DOI
Da Silva-Boghossian C.M.I., Do Souto R.M., Luiz R.R., Colombo A.P.V. Association of red complex, A. Actinomycetemcomitans and non-oral bacteria with periodontal diseases. Arch. Oral Biol. 2011;56:899–906. doi: 10.1016/j.archoralbio.2011.02.009. PubMed DOI
Al-Jumaili A., Kumar A., Bazaka K., Jacob M.V. Plant secondary metabolite-derived polymers: a potential approach to develop antimicrobial films. Polymers. 2018;10:515. doi: 10.3390/polym10050515. PubMed DOI PMC
Furiga A., Roques C., Badet C. Preventive effects of an original combination of grape seed polyphenols with amine fluoride on dental biofilm formation and oxidative damage by oral bacteria. J. Appl. Microbiol. 2014;116:761–771. doi: 10.1111/jam.12395. PubMed DOI
Furiga A., Lonvaud-Funel A., Dorignac G., Badet C. In vitro anti-bacterial and anti-adherence effects of natural polyphenolic compounds on oral bacteria. J. Appl. Microbiol. 2008;105:1470–1476. doi: 10.1111/j.1365-2672.2008.03882.x. PubMed DOI
Antonio A.G., Iorio N.L.P., Pierro V.S.S., Candreva M.S., Farah A., Dos Santos K.R.N., Maia L.C. Inhibitory properties of Coffea canephora extract against oral bacteria and its effect on demineralisation of deciduous teeth. Arch. Oral Biol. 2011;56:556–564. doi: 10.1016/j.archoralbio.2010.12.001. PubMed DOI
Antonio A., Iorio N.P., Farah A., Dos Santos K.N., Maia L. Effect of Coffea canephora aqueous extract on microbial counts in ex vivo oral biofilms: a case study. Planta Med. 2012;78:755–760. doi: 10.1055/s-0031-1298435. PubMed DOI
Gartenmann S.J., Steppacher S.L., Von Weydlich Y., Heumann C., Attin T., Schmidlin P.R. The effect of green tea on plaque and gingival inflammation: a systematic review. J. Herb. Med. 2020;21:100337. doi: 10.1016/j.hermed.2020.100337. DOI
Moon K.H., Lee Y., Kim J.N. Effects of foreign plant extracts on cell growth and biofilm formation of Streptococcus mutans. J. Life Sci. 2019;29:712–723. doi: 10.5352/JLS.2019.29.6.712. DOI
Burcu B., Aysel U., Nurdan S. Antimicrobial, antioxidant, antimutagenic activities, and phenolic compounds of Iris germanica. Ind. Crop. Prod. 2014;61:526–530. doi: 10.1016/j.indcrop.2014.07.022. DOI
Fang R., Houghton P.J., Hylands P.J. Cytotoxic effects of compounds from Iris tectorum on human cancer cell lines. J. Ethnopharmacol. 2008;118:257–263. doi: 10.1016/j.jep.2008.04.006. PubMed DOI
Ibrahim S.R.M., Mohamed G.A., Al-Musayeib N.M. New constituents from the rhizomes of Egyptian Iris germanica L. Molecules. 2012;17:2587–2598. doi: 10.3390/molecules17032587. PubMed DOI PMC
Kostić A., Gašić U.M., Pešić M.B., Stanojević S.P., Barać M.B., Mačukanović-Jocić M.P., Avramov S.N., Tešić Ž.L. Phytochemical analysis and total antioxidant capacity of rhizome, above-ground vegetative parts and flower of three Iris species. Chem. Biodivers. 2019;16:e1800565. doi: 10.1002/cbdv.201800565. PubMed DOI
Moaket S., Oguzkan S.B., Kilic I.H., Selvi B., Karagoz I.D., Erdem M., Erdoğan N., Tekin H., Ozaslan M. Biological activity of Iris sari Schott ex Baker in Turkey. J. Biol. Sci. 2017;17:136–141. doi: 10.3923/jbs.2017.136.141. DOI
Mocan A., Zengin G., Mollica A., Uysal A., Gunes E., Crişan G., Aktumsek A. Biological effects and chemical characterization of Iris schachtii Markgr extracts: a new source of bioactive constituents. Food Chem. Toxicol. 2018;112:448–457. doi: 10.1016/j.fct.2017.08.004. PubMed DOI
Nadaroğlu H., Demir Y., Demir N. Antioxidant and radical scavenging properties of Iris germanica. Pharm. Chem. J. 2007;41:409–415. doi: 10.1007/s11094-007-0089-z. DOI
Singab A.N.B., Ayoub I.M., El-Shazly M., Korinek M., Wu T.Y., Cheng Y.B., Chang F.R., Wu Y.C. Shedding the light on iridaceae: ethnobotany, phytochemistry and biological activity. Ind. Crop. Prod. 2016;92:308–335. doi: 10.1016/j.indcrop.2016.07.040. DOI
Xie G.Y., Qin X.Y., Liu R., Wang Q., Lin B.B., Wang G.K., Xu G.K., Wen R., Qin M.J. New isoflavones with cytotoxic activity from the rhizomes of Iris germanica L. Nat. Prod. Res. 2013;27:2173–2177. doi: 10.1080/14786419.2013.796468. PubMed DOI
Kaššák P. Secondary metabolites of the chosen genus Iris species. Acta Univ. Agric. Silvic. Mendel. Brun. 2013;60:269–280. doi: 10.11118/actaun201260080269. DOI
Viktorova J., Stranska-Zachariasova M., Fenclova M., Vitek L., Hajslova J., Kren V., Ruml T. Complex evaluation of antioxidant capacity of milk thistle dietary supplements. Antioxidants. 2019;8:317. doi: 10.3390/antiox8080317. PubMed DOI PMC
Pogačnik L., Bergant T., Skrt M., Ulrih N.P., Viktorová J., Ruml T. In Vitro Comparison of the Bioactivities of Japanese and Bohemian Knotweed Ethanol Extracts. Foods. 2020;9:544. doi: 10.3390/foods9050544. PubMed DOI PMC
Viktorová J., Stupák M., Řehořová K., Dobiasová S., Hoang L., Hajšlová J., Van Thanh T., Van Tri L., Van Tuan N., Ruml T. Lemon grass essential oil does not modulate cancer cells multidrug resistance by citral—its dominant and strongly antimicrobial compound. Foods. 2020;9:585. doi: 10.3390/foods9050585. PubMed DOI PMC
Sandberg M.E., Schellmann D., Brunhofer G., Erker T., Busygin I., Leino R., Vuorela P.M., Fallarero A. Pros and cons of using resazurin staining for quantification of viable Staphylococcus aureus biofilms in a screening assay. J. Microbiol. Methods. 2009;78:104–106. doi: 10.1016/j.mimet.2009.04.014. PubMed DOI
Tran V.N., Viktorova J., Augustynkova K., Jelenova N., Dobiasova S., Rehorova K., Fenclova M., Stranska-Zachariasova M., Vitek L., Hajslova J., et al. In silico and in vitro studies of mycotoxins and their cocktails; Their toxicity and its mitigation by silibinin pre-treatment. Toxins. 2020;12:148. doi: 10.3390/toxins12030148. PubMed DOI PMC
Kukula-Koch W., Sieniawska E., Widelski J., Urjin O., Głowniak P., Skalicka-Woźniak K. Major secondary metabolites of Iris spp. Phytochem. Rev. 2015;14:51–80. doi: 10.1007/s11101-013-9333-1. DOI
Roger B., Jeannot V., Fernandez X., Cerantola S., Chahboun J. Characterisation and quantification of flavonoids in Iris germanica L. and Iris pallida Lam. resinoids from Morocco. Phytochem. Anal. 2012;23:450–455. doi: 10.1002/pca.1379. PubMed DOI
Nasim S., Baig I., Jalil S., Orhan I., Sener B., Choudhary M.I. Anti-inflammatory isoflavonoids from the rhizomes of Iris germanica. J. Ethnopharmacol. 2003;86:177–180. doi: 10.1016/S0378-8741(03)00055-2. PubMed DOI
Nasim S., Baig I., Jalil S., Orhan I., Sener B., Choudhary M.I. Isoflavonoid glycosides from the rhizomes of Iris germanica. Chem. Pharm. Bull. 2002;50:1100–1102. doi: 10.1002/chin.200303201. PubMed DOI
Rigano D., Formisano C., Grassia A., Grassia G., Perrone A., Piacente S., Vuotto M.L., Senatore F. Antioxidant flavonoids and isoflavonoids from rhizomes of Iris pseudopumila. Planta Med. 2007;73:93–96. doi: 10.1055/s-2006-957071. PubMed DOI
Krick W., Marner F.-J., Jaenicke L. Isolation and structural determination of a new methylated triterpenoid from rhizomes of Iris versicolor L. Zeitschrift fur Naturforsch C J. Biosci. 1983;38:689–692. doi: 10.1515/znc-1983-9-1003. DOI
Marner F.J., Longerich I. Isolation and structure determination of new iridals from Iris sibirica and Iris versicolor. Liebigs Ann. Chem. 1992:269–272. doi: 10.1002/jlac.199219920146. DOI
Ouyang J., Sun F., Feng W., Sun Y., Qiu X., Xiong L., Liu Y., Chen Y. Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa. J. Appl. Microbiol. 2016;120:966–974. doi: 10.1111/jam.13073. PubMed DOI
Lee J.H., Park J.H., Cho H.S., Joo S.W., Cho M.H., Lee J. Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus. Biofouling. 2013;29:491–499. doi: 10.1080/08927014.2013.788692. PubMed DOI
Wang J., Song M., Pan J., Shen X., Liu W., Zhang X., Li H., Deng X. Quercetin impairs Streptococcus pneumoniae biofilm formation by inhibiting sortase A activity. J. Cell. Mol. Med. 2018;22:6228–6237. doi: 10.1111/jcmm.13910. PubMed DOI PMC
Zeng Y., Nikitkova A., Abdelsalam H., Li J., Xiao J. Activity of quercetin and kaemferol against Streptococcus mutans biofilm. Arch. Oral Biol. 2019;98:9–16. doi: 10.1016/j.archoralbio.2018.11.005. PubMed DOI PMC
Yang W.Y., Kim C.K., Ahn C.H., Kim H., Shin J., Oh K.B. Flavonoid glycosides inhibit sortase A and sortase A-mediated aggregation of Streptococcus mutans, an oral bacterium responsible for human dental caries. J. Microbiol. Biotechnol. 2016;26:1557–1565. doi: 10.4014/jmb.1605.05005. PubMed DOI
Zhang B., Wang X., Wang L., Chen S., Shi D., Wang H. Molecular mechanism of the flavonoid natural product dryocrassin ABBA against Staphylococcus aureus sortase A. Molecules. 2016;21:1428. doi: 10.3390/molecules21111428. PubMed DOI PMC
Mu D., Xiang H., Dong H., Wang D., Wang T. Isovitexin, a potential candidate inhibitor of sortase A of Staphylococcus aureus USA300. J. Microbiol. Biotechnol. 2018;28:1426–1432. doi: 10.4014/jmb.1802.02014. PubMed DOI
Slobodníková L., Fialová S., Rendeková K., Kováč J., Mučaji P. Antibiofilm activity of plant polyphenols. Molecules. 2016;21:1717. doi: 10.3390/molecules21121717. PubMed DOI PMC
Pande G.S.J., Natrah F.M.I., Sorgeloos P., Bossier P., Defoirdt T. The Vibrio campbellii quorum sensing signals have a different impact on virulence of the bacterium towards different crustacean hosts. Vet. Microbiol. 2013;167:540–545. doi: 10.1016/j.vetmic.2013.08.021. PubMed DOI
Asfour H. Anti-quorum sensing natural compounds. J. Microsc. Ultrastruct. 2018;6:1–10. doi: 10.4103/JMAU.JMAU_10_18. PubMed DOI PMC
Gomes L.C., Moreira J.M., Araújo J.D., Mergulhão F.J. Surface conditioning with Escherichia coli cell wall components can reduce biofilm formation by decreasing initial adhesion. AIMS Microbiol. 2017;3:613–628. doi: 10.3934/microbiol.2017.3.613. PubMed DOI PMC
Abd-Alla M.H., Bashandy S.R. Production of quorum sensing inhibitors in growing onion bulbs infected with Pseudomonas aeruginosa E (HQ324110) ISRN Microbiol. 2012;2012:161890. doi: 10.5402/2012/161890. PubMed DOI PMC
Prasath K.G., Sethupathy S., Pandian S.K. Proteomic analysis uncovers the modulation of ergosterol, sphingolipid and oxidative stress pathway by myristic acid impeding biofilm and virulence in Candida albicans. J. Proteom. 2019;208:103503. doi: 10.1016/j.jprot.2019.103503. PubMed DOI
Duckworth R.M., Maguire A., Omid N., Steen I.N., McCracken G.I., Zohoori F.V. Effect of rinsing with mouthwashes after brushing with a fluoridated toothpaste on salivary fluoride concentration. Caries Res. 2009;43:391–396. doi: 10.1159/000239753. PubMed DOI
Selectively Halogenated Flavonolignans-Preparation and Antibacterial Activity