Phytochemical Composition and In Vitro Biological Activity of Iris spp. (Iridaceae): A New Source of Bioactive Constituents for the Inhibition of Oral Bacterial Biofilms

. 2020 Jul 11 ; 9 (7) : . [epub] 20200711

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32664528

Grantová podpora
TN010000048 Technology Agency of the Czech Republic
43760/2015 Czech National Program of Sustainability
RVO 67985939 Czech Academy of Sciences

The inhibition and eradication of oral biofilms is increasingly focused on the use of plant extracts as mouthwashes and toothpastes adjuvants. Here, we report on the chemical composition and the antibiofilm activity of 15 methanolic extracts of Iris species against both mono-(Pseudomonas aeruginosa, Staphylococcus aureus) and multi-species oral biofilms (Streptococcus gordonii, Veillonella parvula, Fusobacterium nucleatum subsp. nucleatum, and Actinomyces naeslundii). The phytochemical profiles of Iris pallida s.l., Iris versicolor L., Iris lactea Pall., Iris carthaliniae Fomin, and Iris germanica were determined by ultra-high performance liquid chromatography-high-resolution tandem mass spectroscopy (UHPLC-HRMS/MS) analysis, and a total of 180 compounds were identified among Iris species with (iso)flavonoid dominancy. I. pallida, I. versicolor, and I. germanica inhibited both the quorum sensing and adhesion during biofilm formation in a concentration-dependent manner. However, the extracts were less active against maturated biofilms. Of the five tested species, Iris pallida s.l. was the most effective at both inhibiting biofilm formation and disrupting existing biofilms, and the leaf extract exhibited the strongest inhibitory effect compared to the root and rhizome extracts. The cytotoxicity of the extracts was excluded in human fibroblasts. The inhibition of bacterial adhesion significantly correlated with myristic acid content, and quorum sensing inhibition correlated with the 7-β-hydroxystigmast-4-en-3-one content. These findings could be useful for establishing an effective tool for the control of oral biofilms and thus dental diseases.

Zobrazit více v PubMed

Lee D., Seo Y., Khan M.S., Hwang J., Jo Y., Son J., Lee K., Park C., Chavan S., Gilad A.A., et al. Use of nanoscale materials for the effective prevention and extermination of bacterial biofilms. Biotechnol. Bioprocess Eng. 2018;23:1–10. doi: 10.1007/s12257-017-0348-0. DOI

Yu O.Y., Zhao I.S., Mei M.L., Lo E.C., Chu C.H. Dental Biofilm and Laboratory Microbial Culture Models for Cariology Research. Dent. J. 2017;5:21. doi: 10.3390/dj5020021. PubMed DOI PMC

Basavaraju M., Sisnity V.S., Palaparthy R., Addanki P.K. Quorum quenching: signal jamming in dental plaque biofilms. J. Dent. Sci. 2016;11:349–352. doi: 10.1016/j.jds.2016.02.002. PubMed DOI PMC

Kolenbrander P.E., Palmer R.J., Periasamy S., Jakubovics N.S. Oral multispecies biofilm development and the key role of cell-cell distance. Nat. Rev. Microbiol. 2010;8:471–480. doi: 10.1038/nrmicro2381. PubMed DOI

Zuanazzi D., Souto R., Mattos M.B.A., Zuanazzi M.R., Tura B.R., Sansone C., Colombo A.P.V. Prevalence of potential bacterial respiratory pathogens in the oral cavity of hospitalised individuals. Arch. Oral Biol. 2010;55:21–28. doi: 10.1016/j.archoralbio.2009.10.005. PubMed DOI

Da Silva-Boghossian C.M.I., Do Souto R.M., Luiz R.R., Colombo A.P.V. Association of red complex, A. Actinomycetemcomitans and non-oral bacteria with periodontal diseases. Arch. Oral Biol. 2011;56:899–906. doi: 10.1016/j.archoralbio.2011.02.009. PubMed DOI

Al-Jumaili A., Kumar A., Bazaka K., Jacob M.V. Plant secondary metabolite-derived polymers: a potential approach to develop antimicrobial films. Polymers. 2018;10:515. doi: 10.3390/polym10050515. PubMed DOI PMC

Furiga A., Roques C., Badet C. Preventive effects of an original combination of grape seed polyphenols with amine fluoride on dental biofilm formation and oxidative damage by oral bacteria. J. Appl. Microbiol. 2014;116:761–771. doi: 10.1111/jam.12395. PubMed DOI

Furiga A., Lonvaud-Funel A., Dorignac G., Badet C. In vitro anti-bacterial and anti-adherence effects of natural polyphenolic compounds on oral bacteria. J. Appl. Microbiol. 2008;105:1470–1476. doi: 10.1111/j.1365-2672.2008.03882.x. PubMed DOI

Antonio A.G., Iorio N.L.P., Pierro V.S.S., Candreva M.S., Farah A., Dos Santos K.R.N., Maia L.C. Inhibitory properties of Coffea canephora extract against oral bacteria and its effect on demineralisation of deciduous teeth. Arch. Oral Biol. 2011;56:556–564. doi: 10.1016/j.archoralbio.2010.12.001. PubMed DOI

Antonio A., Iorio N.P., Farah A., Dos Santos K.N., Maia L. Effect of Coffea canephora aqueous extract on microbial counts in ex vivo oral biofilms: a case study. Planta Med. 2012;78:755–760. doi: 10.1055/s-0031-1298435. PubMed DOI

Gartenmann S.J., Steppacher S.L., Von Weydlich Y., Heumann C., Attin T., Schmidlin P.R. The effect of green tea on plaque and gingival inflammation: a systematic review. J. Herb. Med. 2020;21:100337. doi: 10.1016/j.hermed.2020.100337. DOI

Moon K.H., Lee Y., Kim J.N. Effects of foreign plant extracts on cell growth and biofilm formation of Streptococcus mutans. J. Life Sci. 2019;29:712–723. doi: 10.5352/JLS.2019.29.6.712. DOI

Burcu B., Aysel U., Nurdan S. Antimicrobial, antioxidant, antimutagenic activities, and phenolic compounds of Iris germanica. Ind. Crop. Prod. 2014;61:526–530. doi: 10.1016/j.indcrop.2014.07.022. DOI

Fang R., Houghton P.J., Hylands P.J. Cytotoxic effects of compounds from Iris tectorum on human cancer cell lines. J. Ethnopharmacol. 2008;118:257–263. doi: 10.1016/j.jep.2008.04.006. PubMed DOI

Ibrahim S.R.M., Mohamed G.A., Al-Musayeib N.M. New constituents from the rhizomes of Egyptian Iris germanica L. Molecules. 2012;17:2587–2598. doi: 10.3390/molecules17032587. PubMed DOI PMC

Kostić A., Gašić U.M., Pešić M.B., Stanojević S.P., Barać M.B., Mačukanović-Jocić M.P., Avramov S.N., Tešić Ž.L. Phytochemical analysis and total antioxidant capacity of rhizome, above-ground vegetative parts and flower of three Iris species. Chem. Biodivers. 2019;16:e1800565. doi: 10.1002/cbdv.201800565. PubMed DOI

Moaket S., Oguzkan S.B., Kilic I.H., Selvi B., Karagoz I.D., Erdem M., Erdoğan N., Tekin H., Ozaslan M. Biological activity of Iris sari Schott ex Baker in Turkey. J. Biol. Sci. 2017;17:136–141. doi: 10.3923/jbs.2017.136.141. DOI

Mocan A., Zengin G., Mollica A., Uysal A., Gunes E., Crişan G., Aktumsek A. Biological effects and chemical characterization of Iris schachtii Markgr extracts: a new source of bioactive constituents. Food Chem. Toxicol. 2018;112:448–457. doi: 10.1016/j.fct.2017.08.004. PubMed DOI

Nadaroğlu H., Demir Y., Demir N. Antioxidant and radical scavenging properties of Iris germanica. Pharm. Chem. J. 2007;41:409–415. doi: 10.1007/s11094-007-0089-z. DOI

Singab A.N.B., Ayoub I.M., El-Shazly M., Korinek M., Wu T.Y., Cheng Y.B., Chang F.R., Wu Y.C. Shedding the light on iridaceae: ethnobotany, phytochemistry and biological activity. Ind. Crop. Prod. 2016;92:308–335. doi: 10.1016/j.indcrop.2016.07.040. DOI

Xie G.Y., Qin X.Y., Liu R., Wang Q., Lin B.B., Wang G.K., Xu G.K., Wen R., Qin M.J. New isoflavones with cytotoxic activity from the rhizomes of Iris germanica L. Nat. Prod. Res. 2013;27:2173–2177. doi: 10.1080/14786419.2013.796468. PubMed DOI

Kaššák P. Secondary metabolites of the chosen genus Iris species. Acta Univ. Agric. Silvic. Mendel. Brun. 2013;60:269–280. doi: 10.11118/actaun201260080269. DOI

Viktorova J., Stranska-Zachariasova M., Fenclova M., Vitek L., Hajslova J., Kren V., Ruml T. Complex evaluation of antioxidant capacity of milk thistle dietary supplements. Antioxidants. 2019;8:317. doi: 10.3390/antiox8080317. PubMed DOI PMC

Pogačnik L., Bergant T., Skrt M., Ulrih N.P., Viktorová J., Ruml T. In Vitro Comparison of the Bioactivities of Japanese and Bohemian Knotweed Ethanol Extracts. Foods. 2020;9:544. doi: 10.3390/foods9050544. PubMed DOI PMC

Viktorová J., Stupák M., Řehořová K., Dobiasová S., Hoang L., Hajšlová J., Van Thanh T., Van Tri L., Van Tuan N., Ruml T. Lemon grass essential oil does not modulate cancer cells multidrug resistance by citral—its dominant and strongly antimicrobial compound. Foods. 2020;9:585. doi: 10.3390/foods9050585. PubMed DOI PMC

Sandberg M.E., Schellmann D., Brunhofer G., Erker T., Busygin I., Leino R., Vuorela P.M., Fallarero A. Pros and cons of using resazurin staining for quantification of viable Staphylococcus aureus biofilms in a screening assay. J. Microbiol. Methods. 2009;78:104–106. doi: 10.1016/j.mimet.2009.04.014. PubMed DOI

Tran V.N., Viktorova J., Augustynkova K., Jelenova N., Dobiasova S., Rehorova K., Fenclova M., Stranska-Zachariasova M., Vitek L., Hajslova J., et al. In silico and in vitro studies of mycotoxins and their cocktails; Their toxicity and its mitigation by silibinin pre-treatment. Toxins. 2020;12:148. doi: 10.3390/toxins12030148. PubMed DOI PMC

Kukula-Koch W., Sieniawska E., Widelski J., Urjin O., Głowniak P., Skalicka-Woźniak K. Major secondary metabolites of Iris spp. Phytochem. Rev. 2015;14:51–80. doi: 10.1007/s11101-013-9333-1. DOI

Roger B., Jeannot V., Fernandez X., Cerantola S., Chahboun J. Characterisation and quantification of flavonoids in Iris germanica L. and Iris pallida Lam. resinoids from Morocco. Phytochem. Anal. 2012;23:450–455. doi: 10.1002/pca.1379. PubMed DOI

Nasim S., Baig I., Jalil S., Orhan I., Sener B., Choudhary M.I. Anti-inflammatory isoflavonoids from the rhizomes of Iris germanica. J. Ethnopharmacol. 2003;86:177–180. doi: 10.1016/S0378-8741(03)00055-2. PubMed DOI

Nasim S., Baig I., Jalil S., Orhan I., Sener B., Choudhary M.I. Isoflavonoid glycosides from the rhizomes of Iris germanica. Chem. Pharm. Bull. 2002;50:1100–1102. doi: 10.1002/chin.200303201. PubMed DOI

Rigano D., Formisano C., Grassia A., Grassia G., Perrone A., Piacente S., Vuotto M.L., Senatore F. Antioxidant flavonoids and isoflavonoids from rhizomes of Iris pseudopumila. Planta Med. 2007;73:93–96. doi: 10.1055/s-2006-957071. PubMed DOI

Krick W., Marner F.-J., Jaenicke L. Isolation and structural determination of a new methylated triterpenoid from rhizomes of Iris versicolor L. Zeitschrift fur Naturforsch C J. Biosci. 1983;38:689–692. doi: 10.1515/znc-1983-9-1003. DOI

Marner F.J., Longerich I. Isolation and structure determination of new iridals from Iris sibirica and Iris versicolor. Liebigs Ann. Chem. 1992:269–272. doi: 10.1002/jlac.199219920146. DOI

Ouyang J., Sun F., Feng W., Sun Y., Qiu X., Xiong L., Liu Y., Chen Y. Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa. J. Appl. Microbiol. 2016;120:966–974. doi: 10.1111/jam.13073. PubMed DOI

Lee J.H., Park J.H., Cho H.S., Joo S.W., Cho M.H., Lee J. Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus. Biofouling. 2013;29:491–499. doi: 10.1080/08927014.2013.788692. PubMed DOI

Wang J., Song M., Pan J., Shen X., Liu W., Zhang X., Li H., Deng X. Quercetin impairs Streptococcus pneumoniae biofilm formation by inhibiting sortase A activity. J. Cell. Mol. Med. 2018;22:6228–6237. doi: 10.1111/jcmm.13910. PubMed DOI PMC

Zeng Y., Nikitkova A., Abdelsalam H., Li J., Xiao J. Activity of quercetin and kaemferol against Streptococcus mutans biofilm. Arch. Oral Biol. 2019;98:9–16. doi: 10.1016/j.archoralbio.2018.11.005. PubMed DOI PMC

Yang W.Y., Kim C.K., Ahn C.H., Kim H., Shin J., Oh K.B. Flavonoid glycosides inhibit sortase A and sortase A-mediated aggregation of Streptococcus mutans, an oral bacterium responsible for human dental caries. J. Microbiol. Biotechnol. 2016;26:1557–1565. doi: 10.4014/jmb.1605.05005. PubMed DOI

Zhang B., Wang X., Wang L., Chen S., Shi D., Wang H. Molecular mechanism of the flavonoid natural product dryocrassin ABBA against Staphylococcus aureus sortase A. Molecules. 2016;21:1428. doi: 10.3390/molecules21111428. PubMed DOI PMC

Mu D., Xiang H., Dong H., Wang D., Wang T. Isovitexin, a potential candidate inhibitor of sortase A of Staphylococcus aureus USA300. J. Microbiol. Biotechnol. 2018;28:1426–1432. doi: 10.4014/jmb.1802.02014. PubMed DOI

Slobodníková L., Fialová S., Rendeková K., Kováč J., Mučaji P. Antibiofilm activity of plant polyphenols. Molecules. 2016;21:1717. doi: 10.3390/molecules21121717. PubMed DOI PMC

Pande G.S.J., Natrah F.M.I., Sorgeloos P., Bossier P., Defoirdt T. The Vibrio campbellii quorum sensing signals have a different impact on virulence of the bacterium towards different crustacean hosts. Vet. Microbiol. 2013;167:540–545. doi: 10.1016/j.vetmic.2013.08.021. PubMed DOI

Asfour H. Anti-quorum sensing natural compounds. J. Microsc. Ultrastruct. 2018;6:1–10. doi: 10.4103/JMAU.JMAU_10_18. PubMed DOI PMC

Gomes L.C., Moreira J.M., Araújo J.D., Mergulhão F.J. Surface conditioning with Escherichia coli cell wall components can reduce biofilm formation by decreasing initial adhesion. AIMS Microbiol. 2017;3:613–628. doi: 10.3934/microbiol.2017.3.613. PubMed DOI PMC

Abd-Alla M.H., Bashandy S.R. Production of quorum sensing inhibitors in growing onion bulbs infected with Pseudomonas aeruginosa E (HQ324110) ISRN Microbiol. 2012;2012:161890. doi: 10.5402/2012/161890. PubMed DOI PMC

Prasath K.G., Sethupathy S., Pandian S.K. Proteomic analysis uncovers the modulation of ergosterol, sphingolipid and oxidative stress pathway by myristic acid impeding biofilm and virulence in Candida albicans. J. Proteom. 2019;208:103503. doi: 10.1016/j.jprot.2019.103503. PubMed DOI

Duckworth R.M., Maguire A., Omid N., Steen I.N., McCracken G.I., Zohoori F.V. Effect of rinsing with mouthwashes after brushing with a fluoridated toothpaste on salivary fluoride concentration. Caries Res. 2009;43:391–396. doi: 10.1159/000239753. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...