Lemon Grass Essential Oil Does not Modulate Cancer Cells Multidrug Resistance by Citral-Its Dominant and Strongly Antimicrobial Compound
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-00150S
Czech Science Foundation
692195
European Union Horizon 2020 research and innovation Programme
INTER-COST LTC19007 (COST Action CA17104 STRATAGEM)
Czech Ministry of Education, Youth and Sports
LM2018100
METROFOOD-CZ research infrastructure project
LO1601
Czech National Program of Sustainability
PubMed
32380674
PubMed Central
PMC7278871
DOI
10.3390/foods9050585
PII: foods9050585
Knihovny.cz E-zdroje
- Klíčová slova
- MRSA, biofilm, doxorubicin, multidrug resistance, quorum sensing,
- Publikační typ
- časopisecké články MeSH
With strong antimicrobial properties, citral has been repeatedly reported to be the dominant component of lemongrass essential oil. Here, we report on a comparison of the antimicrobial and anticancer activity of citral and lemongrass essential oil. The lemongrass essential oil was prepared by the vacuum distillation of fresh Cymbopogon leaves, with a yield of 0.5% (w/w). Citral content was measured by gas chromatography/high-resolution mass spectrometry (GC-HRMS) and determined to be 63%. Antimicrobial activity was tested by the broth dilution method, showing strong activity against all tested bacteria and fungi. Citral was up to 100 times more active than the lemongrass essential oil. Similarly, both citral and essential oils inhibited bacterial communication and adhesion during P. aeruginosa and S. aureus biofilm formation; however, the biofilm prevention activity of citral was significantly higher. Both the essential oil and citral disrupted the maturated P. aeruginosa biofilm with the IC50 7.3 ± 0.4 and 0.1 ± 0.01 mL/L, respectively. Although it may seem that the citral is the main biologically active compound of lemongrass essential oil and the accompanying components have instead antagonistic effects, we determined that the lemongrass essential oil-sensitized methicillin-resistant S. aureus (MRSA) and doxorubicin-resistant ovarian carcinoma cells and that this activity was not caused by citral. A 1 mL/L dose of oil-sensitized MRSA to methicillin up to 9.6 times and a dose of 10 µL/L-sensitized ovarian carcinoma to doxorubicin up to 1.8 times. The mode of multidrug resistance modulation could be due to P-glycoprotein efflux pump inhibition. Therefore, the natural mixture of compounds present in the lemongrass essential oil provides beneficial effects and its direct use may be preferred to its use as a template for citral isolation.
Vietnam Essential Oil Bai Dai Street Tien Xuan Commune Thach That District Hanoi 100000 Vietnam
Vietnam University of Traditional Medicine No 2 Tran Phu Ha Dong Hanoi 100000 Vietnam
Zobrazit více v PubMed
Ekpenyong C.E., Akpan E.E. Use of Cymbopogon citratus essential oil in food preservation: Recent advances and future perspectives. Crit. Rev. Food Sci. Nutr. 2017;57:2541–2559. doi: 10.1080/10408398.2015.1016140. PubMed DOI
Ekpenyong C.E., Akpan E., Nyoh A. Ethnopharmacology, phytochemistry, and biological activities of Cymbopogon citratus (dc.) stapf extracts. Chin. J. Nat. Med. 2015;13:321–337. doi: 10.1016/S1875-5364(15)30023-6. PubMed DOI
Ganjewala D. Cymbopogon essential oils: Chemical compositions and bioactivities. Int. J. Essent. Oil Ther. 2009;3:56–65.
Avoseh O., Oyedeji O., Rungqu P., Nkeh-Chungag B., Oyedeji A. Cymbopogon species; ethnopharmacology, phytochemistry and the pharmacological importance. Molecules. 2015;20:7438–7453. doi: 10.3390/molecules20057438. PubMed DOI PMC
Bieski I.G., Leonti M., Arnason J.T., Ferrier J., Rapinski M., Violante I.M., Balogun S.O., Pereira J.F., Figueiredo Rde C., Lopes C.R., et al. Ethnobotanical study of medicinal plants by population of valley of juruena region, legal amazon, mato grosso, brazil. J. Ethnopharmacol. 2015;173:383–423. doi: 10.1016/j.jep.2015.07.025. PubMed DOI
De Santana B.F., Voeks R.A., Funch L.S. Ethnomedicinal survey of a maroon community in brazil’s atlantic tropical forest. J. Ethnopharmacol. 2016;181:37–49. doi: 10.1016/j.jep.2016.01.014. PubMed DOI
Fongnzossie E.F., Tize Z., Fogang Nde P.J., Nyangono Biyegue C.F., Bouelet Ntsama I.S., Dibong S.D., Nkongmeneck B.A. Ethnobotany and pharmacognostic perspective of plant species used as traditional cosmetics and cosmeceuticals among the gbaya ethnic group in eastern cameroon. S. Afr. J. Bot. 2017;112:29–39. doi: 10.1016/j.sajb.2017.05.013. DOI
Ochwang’i D.O., Kimwele C.N., Oduma J.A., Gathumbi P.K., Mbaria J.M., Kiama S.G. Medicinal plants used in treatment and management of cancer in kakamega county, kenya. J. Ethnopharmacol. 2014;151:1040–1055. doi: 10.1016/j.jep.2013.11.051. PubMed DOI
Rehecho S., Uriarte-Pueyo I., Calvo J., Vivas L.A., Calvo M.I. Ethnopharmacological survey of medicinal plants in nor-yauyos, a part of the landscape reserve nor-yauyos-cochas, peru. J. Ethnopharmacol. 2011;133:75–85. doi: 10.1016/j.jep.2010.09.006. PubMed DOI
Shi C., Sun Y., Liu Z., Guo D., Sun H., Sun Z., Chen S., Zhang W., Wen Q., Peng X., et al. Inhibition of Cronobacter sakazakii virulence factors by citral. Sci. Rep. 2017;7:43243. doi: 10.1038/srep43243. PubMed DOI PMC
Souza P.M., Goulart F.R.V., Marques J.M., Bizzo H.R., Blank A.F., Groposo C., Sousa M.P., Volaro V., Alviano C.S., Moreno D.S.A., et al. Growth inhibition of sulfate-reducing bacteria in produced water from the petroleum industry using essential oils. Molecules. 2017;22:648. doi: 10.3390/molecules22040648. PubMed DOI PMC
Korenblum E., Regina de Vasconcelos Goulart F., de Almeida Rodrigues I., Abreu F., Lins U., Alves P.B., Blank A.F., Valoni E., Sebastian G.V., Alviano D.S., et al. Antimicrobial action and anti-corrosion effect against sulfate reducing bacteria by lemongrass (Cymbopogon citratus) essential oil and its major component, the citral. AMB Express. 2013;3:1–8. doi: 10.1186/2191-0855-3-44. PubMed DOI PMC
Madeira P.L.B., Carvalho L.T., Paschoal M.A.B., de Sousa E.M., Moffa E.B., da Silva M.A.D.S., Tavarez R.D.J.R., Gonçalves L.M. In vitro effects of lemongrass extract on Candida albicans biofilms, human cells viability, and denture surface. Front. Cell. Infect. Microbiol. 2016;6:71. doi: 10.3389/fcimb.2016.00071. PubMed DOI PMC
Khan M.S., Ahmad I. Biofilm inhibition by cymbopogon citratus and syzygium aromaticum essential oils in the strains of candida albicans. J. Ethnopharmacol. 2012;140:416–423. doi: 10.1016/j.jep.2012.01.045. PubMed DOI
Kumari P., Mishra R., Arora N., Chatrath A., Gangwar R., Roy P., Prasad R. Antifungal and anti-biofilm activity of essential oil active components against Cryptococcus neoformans and Cryptococcus laurentii. Front. Microbiol. 2017;8:2161. doi: 10.3389/fmicb.2017.02161. PubMed DOI PMC
Singh P., Shukla R., Kumar A., Prakash B., Singh S., Dubey N.K. Effect of Citrus reticulata and Cymbopogon citratus essential oils on Aspergillus flavus growth and aflatoxin production on Asparagus racemosus. Mycopathologia. 2010;170:195–202. doi: 10.1007/s11046-010-9311-8. PubMed DOI
Chukwuocha U.M., Fernandez-Rivera O., Legorreta-Herrera M. Exploring the antimalarial potential of whole Cymbopogon citratus plant therapy. J. Ethnopharmacol. 2016;193:517–523. doi: 10.1016/j.jep.2016.09.056. PubMed DOI
Santos Serafim Machado M., Ferreira Silva H.B., Rios R., Pires de Oliveira A., Vilany Queiroz Carneiro N., Santos Costa R., Santos Alves W., Meneses Souza F.L., da Silva Velozo E., Alves de Souza S., et al. The anti-allergic activity of Cymbopogon citratus is mediated via inhibition of nuclear factor kappa b (nf-kappab) activation. BMC Complement. Altern. Med. 2015;15:168. doi: 10.1186/s12906-015-0702-8. PubMed DOI PMC
Akono Ntonga P., Baldovini N., Mouray E., Mambu L., Belong P., Grellier P. Activity of Ocimum basilicum, Ocimum canum, and Cymbopogon citratus essential oils against Plasmodium falciparum and mature-stage larvae of anopheles funestus s.S. Parasite. 2014;21:33. doi: 10.1051/parasite/2014033. PubMed DOI PMC
Chauhan N., Malik A., Sharma S., Dhiman R.C. Larvicidal potential of essential oils against Musca domestica and Anopheles stephensi. Parasitol. Res. 2016;115:2223–2231. doi: 10.1007/s00436-016-4965-x. PubMed DOI
Soonwera M., Phasomkusolsil S. Effect of Cymbopogon citratus (lemongrass) and Syzygium aromaticum (clove) oils on the morphology and mortality of Aedes aegypti and Anopheles dirus larvae. Parasitol. Res. 2016;115:1691–1703. doi: 10.1007/s00436-016-4910-z. PubMed DOI
Baldacchino F., Tramut C., Salem A., Liénard E., Delétré E., Franc M., Martin T., Duvallet G., Jay-Robert P. The repellency of lemongrass oil against stable flies, tested using video tracking. Parasite. 2013;20:21. doi: 10.1051/parasite/2013021. PubMed DOI PMC
Chambers C.S., Viktorova J., Rehorova K., Biedermann D., Turkova L., Macek T., Kren V., Valentova K. Defying multidrug resistance! Modulation of related transporters by flavonoids and flavonolignans. J. Agric. Food Chem. 2020;68:1763–1779. doi: 10.1021/acs.jafc.9b00694. PubMed DOI
Mirghani M., Liyana Y., Jamal P. Bioactivity analysis of lemongrass (Cymbopogan citratus) essential oil. Int. Food Res. J. 2012;19:569–575.
Adukwu E.C., Bowles M., Edwards-Jones V., Bone H. Antimicrobial activity, cytotoxicity and chemical analysis of lemongrass essential oil (Cymbopogon flexuosus) and pure citral. Appl. Microbiol. Biotechnol. 2016;100:9619–9627. doi: 10.1007/s00253-016-7807-y. PubMed DOI PMC
Haney E.F., Trimble M.J., Cheng J.T., Valle Q., Hancock R.E.W. Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides. Biomolecules. 2018;8 doi: 10.3390/biom8020029. PubMed DOI PMC
Bassler B., Greenberg E., Stevens A. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J. Bacteriol. 1997;179:4043–4045. doi: 10.1128/JB.179.12.4043-4045.1997. PubMed DOI PMC
Bezek K., Kurinčič M., Knauder E., Klančnik A., Raspor P., Bucar F., Smole Možina S. Attenuation of adhesion, biofilm formation and quorum sensing of Campylobacter jejuni by Euodia ruticarpa. Phytother. Res. 2016;30:1527–1532. doi: 10.1002/ptr.5658. PubMed DOI
Viktorova J., Dobiasova S., Rehorova K., Biedermann D., Kanova K., Seborova K., Vaclavikova R., Valentova K., Ruml T., Kren V., et al. Antioxidant, anti-inflammatory, and multidrug resistance modulation activity of silychristin derivatives. Antioxidants. 2019;8 doi: 10.3390/antiox8080303. PubMed DOI PMC
Riss T.L., Moravec R.A., Niles A.L., Duellman S., Benink H.A., Worzella T.J., Minor L. In: Assay Guidance Manual. Sittampalam G.S., Brimacombe K., Grossman A., Arkin M., Auld D., Austin C.P., Baell J., Bejcek B., Caaveiro J.M.M., Chung T.D.Y., et al., editors. Eli Lilly & Company and the National Center for Advancing Translational Sciences; Bethesda, MD, USA: 2013. PubMed
Berdejo D., Chueca B., Pagán E., Renzoni A., Kelley W.L., Pagán R., Garcia-Gonzalo D. Sub-inhibitory doses of individual constituents of essential oils can select for Staphylococcus aureus resistant mutants. Molecules. 2019;24:170. doi: 10.3390/molecules24010170. PubMed DOI PMC
Chueca B., Berdejo D., Gomes-Neto N.J., Pagan R., Garcia-Gonzalo D. Emergence of hyper-resistant Escherichia coli mg1655 derivative strains after applying sub-inhibitory doses of individual constituents of essential oils. Front. Microbiol. 2016;7:273. doi: 10.3389/fmicb.2016.00273. PubMed DOI PMC
Espina L., Pagán R., López D., García-Gonzalo D. Individual constituents from essential oils inhibit biofilm mass production by multi-drug resistant Staphylococcus aureus. Molecules. 2015;20:11357–11372. doi: 10.3390/molecules200611357. PubMed DOI PMC
Mitrakul K., Srisatjaluk R., Srisukh V., Lomarat P., Vongsawan K., Kosanwat T. Cymbopogon citratus (lemongrass oil) oral sprays as inhibitors of mutans Streptococci biofilm formation. J. Clin. Diagn. Res. 2018;12:6–12. doi: 10.7860/jcdr/2018/37459.12342. DOI
Zhang H.M., Zhou W.Y., Zhang W.Y., Yang A.L., Liu Y.L., Jiang Y., Huang S.S., Su J.Y. Inhibitory effects of citral, cinnamaldehyde, and tea polyphenols on mixed biofilm formation by foodborne Staphylococcus aureus and Salmonella enteritidis. J. Food Prot. 2014;77:927–933. doi: 10.4315/0362-028X.JFP-13-497. PubMed DOI
Sun Y., Guo D., Hua Z., Sun H., Zheng Z., Xia X., Shi C. Attenuation of multiple Vibrio parahaemolyticus virulence factors by citral. Front. Microbiol. 2019;10:894. doi: 10.3389/fmicb.2019.00894. PubMed DOI PMC
Zhang W., Lim L.-Y. Effects of spice constituents on P-glycoprotein-mediated transport and cyp3a4-mediated metabolism in vitro. Drug Metab. Dispos. 2008;36:1283–1290. doi: 10.1124/dmd.107.019737. PubMed DOI
Nabekura T., Yamaki T., Kitagawa S. Effects of chemopreventive citrus phytochemicals on human P-glycoprotein and multidrug resistance protein 1. Eur. J. Pharmacol. 2008;600:45–49. doi: 10.1016/j.ejphar.2008.10.025. PubMed DOI
Wortelboer H.M., Usta M., van Zanden J.J., van Bladeren P.J., Rietjens I.M., Cnubben N.H. Inhibition of multidrug resistance proteins mrp1 and mrp2 by a series of alpha,beta-unsaturated carbonyl compounds. Biochem. Pharmacol. 2005;69:1879–1890. doi: 10.1016/j.bcp.2005.04.001. PubMed DOI
Queiroz R.M., Takiya C.M., Guimaraes L.P., Rocha Gda G., Alviano D.S., Blank A.F., Alviano C.S., Gattass C.R. Apoptosis-inducing effects of Melissa officinalis l. Essential oil in glioblastoma multiforme cells. Cancer Investig. 2014;32:226–235. doi: 10.3109/07357907.2014.905587. PubMed DOI
Tyagi A.K., Malik A. Liquid and vapour-phase antifungal activities of selected essential oils against Candida albicans: Microscopic observations and chemical characterization of Cymbopogon citratus. BMC Complement. Altern. Med. 2010;10:65. doi: 10.1186/1472-6882-10-65. PubMed DOI PMC
Sacchetti G., Maietti S., Muzzoli M., Scaglianti M., Manfredini S., Radice M., Bruni R. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem. 2005;91:621–632. doi: 10.1016/j.foodchem.2004.06.031. DOI
Onawunmi G. Evaluation of the antimicrobial activity of citral. Lett. Appl. Microbiol. 2008;9:105–108. doi: 10.1111/j.1472-765X.1989.tb00301.x. DOI
Gupta A. A study on antimicrobial activities of essential oils of different cultivars of lemongrass (Cymbopogon flexuosus) Pharm. Sci. 2016;22:164–169. doi: 10.15171/PS.2016.26. DOI
Boukhatem M.N., Ferhat M.A., Kameli A., Saidi F., Kebir H.T. Lemon grass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drugs. Libyan J. Med. 2014;9 doi: 10.3402/ljm.v9.25431. PubMed DOI PMC
Mohamed Hanaa A.R., Sallam Y.I., El-Leithy A.S., Aly S.E. Lemongrass (Cymbopogon citratus) essential oil as affected by drying methods. Ann. Agric. Sci. 2012;57:113–116. doi: 10.1016/j.aoas.2012.08.004. DOI
Saraswathi V., Thara Saraswathi K.J. Evaluation of polar and non-polar fractions of essential oil from Cymbopogon citratus (dc.) stapf. Int. J. Green Herb. Chem. 2013;2:923–929.
Kpoviessi S., Bero J., Agbani P., Gbaguidi F., Kpadonou-Kpoviessi B., Sinsin B., Accrombessi G., Frederich M., Moudachirou M., Quetin-Leclercq J. Chemical composition, cytotoxicity and in vitro antitrypanosomal and antiplasmodial activity of the essential oils of four Cymbopogon species from benin. J. Ethnopharmacol. 2014;151:652–659. doi: 10.1016/j.jep.2013.11.027. PubMed DOI
Shaikh M., Suryawanshi Y., Mokat D. Volatile profiling and essential oil yield of Cymbopogon citratus (dc.) stapf treated with rhizosphere fungi and some important fertilizers. J. Essent. Oil Bear. Plants. 2019;22:1–7. doi: 10.1080/0972060X.2019.1613933. DOI