Mycotoxins: Biotransformation and Bioavailability Assessment Using Caco-2 Cell Monolayer
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
INTER-COST LTC20015
Ministerstvo Školství, Mládeže a Tělovýchovy - International
NPU I (LO1601, MSMT-43760/2015)
Czech National Program of Sustainability - International
PubMed
33008111
PubMed Central
PMC7601793
DOI
10.3390/toxins12100628
PII: toxins12100628
Knihovny.cz E-zdroje
- Klíčová slova
- bioavailability, biotransformation, cytochrome, intestinal transport, metabolism, mycotoxins, permeability,
- MeSH
- biologická dostupnost MeSH
- Caco-2 buňky MeSH
- epitelové buňky enzymologie MeSH
- hodnocení rizik MeSH
- intestinální absorpce * MeSH
- lidé MeSH
- metabolická aktivace MeSH
- metabolická inaktivace MeSH
- mykotoxiny metabolismus toxicita MeSH
- permeabilita MeSH
- střevní sliznice enzymologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- mykotoxiny MeSH
The determination of mycotoxins content in food is not sufficient for the prediction of their potential in vivo cytotoxicity because it does not reflect their bioavailability and mutual interactions within complex matrices, which may significantly alter the toxic effects. Moreover, many mycotoxins undergo biotransformation and metabolization during the intestinal absorption process. Biotransformation is predominantly the conversion of mycotoxins meditated by cytochrome P450 and other enzymes. This should transform the toxins to nontoxic metabolites but it may possibly result in unexpectedly high toxicity. Therefore, the verification of biotransformation and bioavailability provides valuable information to correctly interpret occurrence data and biomonitoring results. Among all of the methods available, the in vitro models using monolayer formed by epithelial cells from the human colon (Caco-2 cell) have been extensively used for evaluating the permeability, bioavailability, intestinal transport, and metabolism of toxic and biologically active compounds. Here, the strengths and limitations of both in vivo and in vitro techniques used to determine bioavailability are reviewed, along with current detailed data about biotransformation of mycotoxins. Furthermore, the molecular mechanism of mycotoxin effects is also discussed regarding the disorder of intestinal barrier integrity induced by mycotoxins.
Zobrazit více v PubMed
De Boevre M., Graniczkowska K., Saeger S. De Metabolism of modified mycotoxins studied through in vitro and in vivo models: An overview. Toxicol. Lett. 2015;233:24–28. doi: 10.1016/j.toxlet.2014.12.011. PubMed DOI
Smith M.C., Gheux A., Coton M., Madec S., Hymery N., Coton E. In vitro co-culture models to evaluate acute cytotoxicity of individual and combined mycotoxin exposures on Caco-2, THP-1 and HepaRG human cell lines. Chem. Biol. Interact. 2018;281:51–59. doi: 10.1016/j.cbi.2017.12.004. PubMed DOI
Kebede H., Liu X., Jin J., Xing F. Current status of major mycotoxins contamination in food and feed in Africa. Food Control. 2020;110:106975. doi: 10.1016/j.foodcont.2019.106975. DOI
Fernández-Blanco C., Elmo L., Waldner T., Ruiz M.J. Cytotoxic effects induced by patulin, deoxynivalenol and toxin T2 individually and in combination in hepatic cells (HepG2) Food Chem. Toxicol. 2018;120:12–23. doi: 10.1016/j.fct.2018.06.019. PubMed DOI
Pankaj S.K., Shi H., Keener K.M. A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends Food Sci. Technol. 2018;71:73–83. doi: 10.1016/j.tifs.2017.11.007. DOI
Seyed Toutounchi N., Hogenkamp A., Varasteh S., van’t Land B., Garssen J., Kraneveld A.D., Folkerts G., Braber S. Fusarium Mycotoxins Disrupt the Barrier and Induce IL-6 Release in a Human Placental Epithelium Cell Line. Toxins. 2019;11:665. doi: 10.3390/toxins11110665. PubMed DOI PMC
Stanciu O., Loghin F., Filip L., Cozma A., Miere D., Mañes J., Banc R. Occurence of Fusarium Mycotoxins in Wheat from Europe—A Review. Acta Univ. Cibiniensis. Ser. E Food Technol. 2015;19:35–60. doi: 10.1515/aucft-2015-0005. DOI
Raghubeer S., Nagiah S., Chuturgoon A. Ochratoxin A upregulates biomarkers associated with hypoxia and transformation in human kidney cells. Toxicol. In Vitro. 2019;57:211–216. doi: 10.1016/j.tiv.2019.03.016. PubMed DOI
Hymery N., Mounier J., Coton E. Effect of Penicillium roqueforti mycotoxins on Caco-2 cells: Acute and chronic exposure. Toxicol. In Vitro. 2018;48:188–194. doi: 10.1016/j.tiv.2018.01.017. PubMed DOI
Assunção R., Ferreira M., Martins C., Diaz I., Padilla B., Dupont D., Bragança M., Alvito P. Applicability of in vitro methods to study patulin bioaccessibility and its effects on intestinal membrane integrity. J. Toxicol. Environ. Heal. Part A Curr. Issues. 2014;77:983–992. doi: 10.1080/15287394.2014.911138. PubMed DOI
Hussain S., Asi M.R., Iqbal M., Khalid N., Wajih-ul-Hassan S., Ariño A. Patulin Mycotoxin in Mango and Orange Fruits, Juices, Pulps, and Jams Marketed in Pakistan. Toxins. 2020;12:52. doi: 10.3390/toxins12010052. PubMed DOI PMC
Moss M.O. Risk assessment for aflatoxins in foodstuffs. Int. Biodeterior. Biodegrad. 2002;50:137–142. doi: 10.1016/S0964-8305(02)00078-1. DOI
Rushing B.R., Selim M.I. Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem. Toxicol. 2019;124:81–100. doi: 10.1016/j.fct.2018.11.047. PubMed DOI
Rodríguez-Carrasco Y., Mañes J., Berrada H., Juan C. Development and validation of a LC-ESI-MS/MS method for the determination of alternaria toxins alternariol, alternariol methyl-ether and tentoxin in tomato and tomato-based products. Toxins. 2016;8:328. doi: 10.3390/toxins8110328. PubMed DOI PMC
Gotthardt M., Kanawati B., Schmidt F., Asam S., Hammerl R., Frank O., Hofmann T., Schmitt-Kopplin P., Rychlik M. Comprehensive Analysis of the Alternaria Mycobolome Using Mass Spectrometry Based Metabolomics. Mol. Nutr. Food Res. 2020;64:1900558. doi: 10.1002/mnfr.201900558. PubMed DOI
De Angelis E., Monaci L., Mackie A., Salt L., Visconti A. Reprint of “bioaccessibility of T-2 and HT-2 toxins in mycotoxin contaminated bread models submitted to in vitro human digestion”. Innov. Food Sci. Emerg. Technol. 2013;25:88–96. doi: 10.1016/j.ifset.2014.07.009. DOI
Ling A., Sun L., Guo W., Sun S., Yang J., Zhao Z. Individual and combined cytotoxic effects of T-2 toxin and its four metabolites on porcine Leydig cells. Food Chem. Toxicol. 2020;139:111277. doi: 10.1016/j.fct.2020.111277. PubMed DOI
Huang Z., Wang Y., Qiu M., Sun L., Liao J., Wang R., Sun X., Bi S., Gooneratne R. Effect of T-2 toxin-injected shrimp muscle extracts on mouse macrophage cells (RAW264.7) Drug Chem. Toxicol. 2018;41:16–21. doi: 10.1080/01480545.2016.1278227. PubMed DOI
Kang R., Perveen A., Li C. Effects of maternal T-2 toxin exposure on the hepatic glycolipid metabolism in young mice. Ecotoxicol. Environ. Saf. 2020;196:110530. doi: 10.1016/j.ecoenv.2020.110530. PubMed DOI
Kasimir M., Behrens M., Schulz M., Kuchenbuch H., Focke C., Humpf H.-U. Intestinal Metabolism of α- and β-Glucosylated Modified Mycotoxins T-2 and HT-2 Toxin in the Pig Cecum Model. J. Agric. Food Chem. 2020 doi: 10.1021/acs.jafc.0c00576. PubMed DOI
Schuhmacher-Wolz U., Heine K., Schneider K. Report on toxicity data on trichothecene mycotoxins HT-2 and T-2 toxins. EFSA Support. Publ. 2010;7 doi: 10.2903/sp.efsa.2010.EN-65. DOI
Zhou H., George S., Hay C., Lee J., Qian H., Sun X. Individual and combined effects of Aflatoxin B1, Deoxynivalenol and Zearalenone on HepG2 and RAW 264.7 cell lines. Food Chem. Toxicol. 2017;103:18–27. doi: 10.1016/j.fct.2017.02.017. PubMed DOI
Fernández-Blanco C., Font G., Ruiz M.J. Interaction effects of enniatin B, deoxinivalenol and alternariol in Caco-2 cells. Toxicol. Lett. 2016;241:38–48. doi: 10.1016/j.toxlet.2015.11.005. PubMed DOI
García G.R., Payros D., Pinton P., Dogi C.A., Laffitte J., Neves M., González Pereyra M.L., Cavaglieri L.R., Oswald I.P. Intestinal toxicity of deoxynivalenol is limited by Lactobacillus rhamnosus RC007 in pig jejunum explants. Arch. Toxicol. 2018;92:983–993. doi: 10.1007/s00204-017-2083-x. PubMed DOI
Pestka J.J. Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2008;25:1128–1140. doi: 10.1080/02652030802056626. PubMed DOI PMC
Pestka J.J., Smolinski A.T. Deoxynivalenol: Toxicology and potential effects on humans. J. Toxicol. Environ. Heal. Part B Crit. Rev. 2005;8:39–69. doi: 10.1080/10937400590889458. PubMed DOI
Wang H.W., Wang J.Q., Zheng B.Q., Li S.L., Zhang Y.D., Li F.D., Zheng N. Cytotoxicity induced by ochratoxin A, zearalenone, and α-zearalenol: Effects of individual and combined treatment. Food Chem. Toxicol. 2014;71:217–224. doi: 10.1016/j.fct.2014.05.032. PubMed DOI
Yang D., Jiang X., Sun J., Li X., Li X., Jiao R., Peng Z., Li Y., Bai W. Toxic effects of zearalenone on gametogenesis and embryonic development: A molecular point of review. Food Chem. Toxicol. 2018;119:24–30. doi: 10.1016/j.fct.2018.06.003. PubMed DOI
Zinedine A., Soriano J.M., Moltó J.C., Mañes J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food Chem. Toxicol. 2007;45:1–18. doi: 10.1016/j.fct.2006.07.030. PubMed DOI
Ruiz M.J., Macáková P., Juan-García A., Font G. Cytotoxic effects of mycotoxin combinations in mammalian kidney cells. Food Chem. Toxicol. 2011;49:2718–2724. doi: 10.1016/j.fct.2011.07.021. PubMed DOI
Mallebrera B., Prosperini A., Font G., Ruiz M.J. In vitro mechanisms of Beauvericin toxicity: A review. Food Chem. Toxicol. 2018;111:537–545. doi: 10.1016/j.fct.2017.11.019. PubMed DOI
Maranghi F., Tassinari R., Narciso L., Tait S., Rocca C.L., Felice G.D., Butteroni C., Corinti S., Barletta B., Cordelli E., et al. In vivo toxicity and genotoxicity of beauvericin and enniatins. Combined approach to study in vivo toxicity and genotoxicity of mycotoxins beauvericin (BEA) and enniatin B (ENNB) EFSA Support. Publ. 2018;15:1406E. doi: 10.2903/sp.efsa.2018.EN-1406. DOI
Prosperini A., Berrada H., Ruiz M.J., Caloni F., Coccini T., Spicer L.J., Perego M.C., Lafranconi A. A Review of the Mycotoxin Enniatin B. Front. Public Health. 2017;5:1–11. doi: 10.3389/fpubh.2017.00304. PubMed DOI PMC
Wen J., Mu P., Deng Y. Mycotoxins: Cytotoxicity and biotransformation in animal cells. Toxicol. Res. 2016;5:377–387. doi: 10.1039/C5TX00293A. PubMed DOI PMC
Fernández-Blanco C., Juan-García A., Juan C., Font G., Ruiz M.J. Alternariol induce toxicity via cell death and mitochondrial damage on Caco-2 cells. Food Chem. Toxicol. 2016;88:32–39. doi: 10.1016/j.fct.2015.11.022. PubMed DOI
Solhaug A., Eriksen G.S., Holme J.A. Mechanisms of Action and Toxicity of the Mycotoxin Alternariol: A Review. Basic Clin. Pharmacol. Toxicol. 2016;119:533–539. doi: 10.1111/bcpt.12635. PubMed DOI
Nawaz S., Scudamore K.A., Rainbird S.C. Mycotoxins in ingredients of animal feeding stuffs: I. determination of Alternaria mycotoxins in oilseed rape meal and sunflower seed meal. Food Addit. Contam. 1997;14:249–262. doi: 10.1080/02652039709374522. PubMed DOI
Aichinger G., Puntscher H., Beisl J., Kütt M.L., Warth B., Marko D. Delphinidin protects colon carcinoma cells against the genotoxic effects of the mycotoxin altertoxin II. Toxicol. Lett. 2018;284:136–142. doi: 10.1016/j.toxlet.2017.12.002. PubMed DOI
da Motta S., Valente Soares L.M. Survey of Brazilian tomato products for alternariol, alternariol monomethyl ether, tenuazonic acid and cyclopiazonic acid. Food Addit. Contam. 2001;18:630–634. doi: 10.1080/02652030117707. PubMed DOI
Gruber-Dorninger C., Novak B., Nagl V., Berthiller F. Emerging Mycotoxins: Beyond Traditionally Determined Food Contaminants. J. Agric. Food Chem. 2017;65:7052–7070. doi: 10.1021/acs.jafc.6b03413. PubMed DOI
Ge N., Xu J., Peng B., Pan S. Adsorption mechanism of tenuazonic acid using inactivated lactic acid bacteria. Food Control. 2017;82:274–282. doi: 10.1016/j.foodcont.2017.07.009. DOI
Kumari A., Tirkey N.N. Recent Trends in Human and Animal Mycology. Springer; Singapore: 2019. Tenuazonic Acid: A Potent Mycotoxin; pp. 203–211.
Di Gregorio M.C., Bordin K., de Castro Souto P.C.M., Corassin C.H., Oliveira C.A.F. Comparative biotransformation of aflatoxin B 1 in swine, domestic fowls, and humans. Toxin Rev. 2015;34:142–150. doi: 10.3109/15569543.2015.1091979. DOI
Wu T.Y., Fridley B.L., Jenkins G.D., Batzler A., Wang L., Weinshilboum R.M. Mycophenolic acid response biomarkers: A cell line model system-based genome-wide screen. Int. Immunopharmacol. 2011;11:1057–1064. doi: 10.1016/j.intimp.2011.02.027. PubMed DOI PMC
Marin S., Ramos A.J., Cano-Sancho G., Sanchis V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013;60:218–237. doi: 10.1016/j.fct.2013.07.047. PubMed DOI
Fraeyman S., Croubels S., Devreese M., Antonissen G. Emerging fusarium and alternaria mycotoxins: Occurrence, toxicity and toxicokinetics. Toxins. 2017;9:228. doi: 10.3390/toxins9070228. PubMed DOI PMC
González-Arias C.A., Crespo-Sempere A., Marín S., Sanchis V., Ramos A.J. Modulation of the xenobiotic transformation system and inflammatory response by ochratoxin A exposure using a co-culture system of Caco-2 and HepG2 cells. Food Chem. Toxicol. 2015;86:245–252. doi: 10.1016/j.fct.2015.10.007. PubMed DOI
Bellí N., Marín S., Sanchis V., Ramos A.J. Ochratoxin A (OTA) in Wines, Musts and Grape Juices: Occurrence, Regulations and Methods of Analysis. Food Sci. Technol. Int. 2002;8:325–335. doi: 10.1177/108201302129174892. DOI
Fernández-Cruz M.L., Mansilla M.L., Tadeo J.L. Mycotoxins in fruits and their processed products: Analysis, occurrence and health implications. J. Adv. Res. 2010;1:113–122. doi: 10.1016/j.jare.2010.03.002. DOI
Orlando B., Grignon G., Vitry C., Kashefifard K., Valade R. Fusarium species and enniatin mycotoxins in wheat, durum wheat, triticale and barley harvested in France. Mycotoxin Res. 2019;35:369–380. doi: 10.1007/s12550-019-00363-x. PubMed DOI
Tibola C.S., de Miranda M.Z., Paiva F.F., Fernandes J.M.C., Guarienti E.M., Nicolau M. Effect of breadmaking process on mycotoxin content in white and whole wheat breads. Cereal Chem. 2018;95:660–665. doi: 10.1002/cche.10079. DOI
Mousavi Khaneghah A., Fakhri Y., Sant’Ana A.S. Impact of unit operations during processing of cereal-based products on the levels of deoxynivalenol, total aflatoxin, ochratoxin A, and zearalenone: A systematic review and meta-analysis. Food Chem. 2018;268:611–624. doi: 10.1016/j.foodchem.2018.06.072. PubMed DOI
Pascari X., Maul R., Kemmlein S., Marin S., Sanchis V. The fate of several trichothecenes and zearalenone during roasting and enzymatic treatment of cereal flour applied in cereal-based infant food production. Food Control. 2020;114:107245. doi: 10.1016/j.foodcont.2020.107245. DOI
Generotti S., Cirlini M., Šarkanj B., Sulyok M., Berthiller F., Dall’Asta C., Suman M. Formulation and processing factors affecting trichothecene mycotoxins within industrial biscuit-making. Food Chem. 2017;229:597–603. doi: 10.1016/j.foodchem.2017.02.115. PubMed DOI
Kuchenbuch H.S., Becker S., Schulz M., Cramer B., Humpf H.U. Thermal stability of t-2 and ht-2 toxins during biscuit-and crunchy muesli-making and roasting. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2018;35:2158–2167. doi: 10.1080/19440049.2018.1530456. PubMed DOI
Serrano A.B., Font G., Mañes J., Ferrer E. Effects of technological processes on enniatin levels in pasta. J. Sci. Food Agric. 2016;96:1756–1763. doi: 10.1002/jsfa.7282. PubMed DOI
Tolosa J., Font G., Mañes J., Ferrer E. Mitigation of enniatins in edible fish tissues by thermal processes and identification of degradation products. Food Chem. Toxicol. 2017;101:67–74. doi: 10.1016/j.fct.2016.12.039. PubMed DOI
Estiarte N., Crespo-Sempere A., Marín S., Ramos A.J., Worobo R.W. Stability of alternariol and alternariol monomethyl ether during food processing of tomato products. Food Chem. 2018;245:951–957. doi: 10.1016/j.foodchem.2017.11.078. PubMed DOI
Stadler D., Berthiller F., Suman M., Schuhmacher R., Krska R. Novel analytical methods to study the fate of mycotoxins during thermal food processing. Anal. Bioanal. Chem. 2020;412:9–16. doi: 10.1007/s00216-019-02101-9. PubMed DOI PMC
Schaarschmidt S., Fauhl-Hassek C. Mycotoxins during the processes of nixtamalization and tortilla production. Toxins. 2019;11:227. doi: 10.3390/toxins11040227. PubMed DOI PMC
Morcia C., Tumino G., Ghizzoni R., Badeck F.W., Lattanzio V.M.T., Pascale M., Terzi V. Occurrence of Fusarium langsethiae and T-2 and HT-2 toxins in Italian malting barley. Toxins. 2016;8:247. doi: 10.3390/toxins8080247. PubMed DOI PMC
Agriopoulou S., Stamatelopoulou E., Varzakas T. Control Strategies: Prevention and Detoxification in Foods. Foods. 2020;9:137. doi: 10.3390/foods9020137. PubMed DOI PMC
Abrunhosa L., Morales H., Soares C., Calado T., Vila-Chã A.S., Pereira M., Venâncio A. A Review of Mycotoxins in Food and Feed Products in Portugal and Estimation of Probable Daily Intakes. Crit. Rev. Food Sci. Nutr. 2016;56:249–265. doi: 10.1080/10408398.2012.720619. PubMed DOI
Ayelign A., De Saeger S. Mycotoxins in Ethiopia: Current status, implications to food safety and mitigation strategies. Food Control. 2020;113:107163. doi: 10.1016/j.foodcont.2020.107163. DOI
Balendres M.A.O., Karlovsky P., Cumagun C.J.R. Mycotoxigenic fungi and mycotoxins in agricultural crop commodities in the Philippines: A review. Foods. 2019;8:249. doi: 10.3390/foods8070249. PubMed DOI PMC
Puntscher H., Cobankovic I., Marko D., Warth B. Quantitation of free and modified Alternaria mycotoxins in European food products by LC-MS/MS. Food Control. 2019;102:157–165. doi: 10.1016/j.foodcont.2019.03.019. DOI
Meca G., Mañes J., Font G., Ruiz M.J. Study of the potential toxicity of enniatins A, A 1, B, B 1 by evaluation of duodenal and colonic bioavailability applying an invitro method by Caco-2 cells. Toxicon. 2012;59:1–11. doi: 10.1016/j.toxicon.2011.10.004. PubMed DOI
Fernández-García E., Carvajal-Lérida I., Pérez-Gálvez A. In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutr. Res. 2009;29:751–760. doi: 10.1016/j.nutres.2009.09.016. PubMed DOI
González-Arias C.A., Marín S., Sanchis V., Ramos A.J. Mycotoxin bioaccessibility/absorption assessment using in vitro digestion models: A review. World Mycotoxin J. 2013;6:167–184. doi: 10.3920/WMJ2012.1521. DOI
Brandon E.F.A., Oomen A.G., Rompelberg C.J.M., Versantvoort C.H.M., Van Engelen J.G.M., Sips A.J.A.M. Consumer product in vitro digestion model: Bioaccessibility of contaminants and its application in risk assessment. Regul. Toxicol. Pharmacol. 2006;44:161–171. doi: 10.1016/j.yrtph.2005.10.002. PubMed DOI
Tran V.N., Viktorova J., Augustynkova K., Jelenova N., Dobiasova S., Rehorova K., Fenclova M., Stranska-Zachariasova M., Vitek L., Hajslova J., et al. In silico and in vitro studies of mycotoxins and their cocktails; Their toxicity and its mitigation by silibinin pre-treatment. Toxins. 2020;12:148. doi: 10.3390/toxins12030148. PubMed DOI PMC
Bordin K., Saladino F., Fernández-Blanco C., Ruiz M.J., Mañes J., Fernández-Franzón M., Meca G., Luciano F.B. Reaction of zearalenone and α-zearalenol with allyl isothiocyanate, characterization of reaction products, their bioaccessibility and bioavailability in vitro. Food Chem. 2017;217:648–654. doi: 10.1016/j.foodchem.2016.09.044. PubMed DOI
Kabak B., Brandon E.F.A., Var I., Blokland M., Sips A.J.A.M. Effects of probiotic bacteria on the bioaccessibility of aflatoxin B1 and ochratoxin A using an in vitro digestion model under fed conditions. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes. 2009;44:472–480. doi: 10.1080/03601230902935154. PubMed DOI
CenciČ A., Langerholc T. Functional cell models of the gut and their applications in food microbiology—A review. Int. J. Food Microbiol. 2010;141:S4–S14. doi: 10.1016/j.ijfoodmicro.2010.03.026. PubMed DOI PMC
Artursson P., Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun. 1991;175:880–885. doi: 10.1016/0006-291X(91)91647-U. PubMed DOI
Brandon E.F.A., Bosch T.M., Deenen M.J., Levink R., van der Wal E., van Meerveld J.B.M., Bijl M., Beijnen J.H., Schellens J.H.M., Meijerman I. Validation of in vitro cell models used in drug metabolism and transport studies; genotyping of cytochrome P450, phase II enzymes and drug transporter polymorphisms in the human hepatoma (HepG2), ovarian carcinoma (IGROV-1) and colon carcinoma (CaCo-2, LS180) cell lines. Toxicol. Appl. Pharmacol. 2006;211:1–10. PubMed
Lněničková K., Šadibolová M., Matoušková P., Szotáková B., Skálová L., Boušová I. The Modulation of Phase II Drug-Metabolizing Enzymes in Proliferating and Differentiated CaCo-2 Cells by Hop-Derived Prenylflavonoids. Nutrients. 2020;12:2138. doi: 10.3390/nu12072138. PubMed DOI PMC
Schaut A., De Saeger S., Sergent T., Schneider Y.-J., Larondelle Y., Pussemier L., Van Peteghem C. Study of the gastrointestinal biotransformation of zearalenone in a Caco-2 cell culture system with liquid chromatographic methods. J. Appl. Toxicol. 2008;28:966–973. doi: 10.1002/jat.1362. PubMed DOI
Cizkova K. Expression of cytochrome P450 epoxygenases and soluble epoxide hydrolase is regulated by hypolipidemic drugs in dose-dependent manner. Toxicol. Appl. Pharmacol. 2018;355:156–163. doi: 10.1016/j.taap.2018.06.025. PubMed DOI
Šemeláková M., Jendželovský R., Fedoročko P. Drug membrane transporters and CYP3A4 are affected by hypericin, hyperforin or aristoforin in colon adenocarcinoma cells. Biomed. Pharmacother. 2016;81:38–47. doi: 10.1016/j.biopha.2016.03.045. PubMed DOI
Odenthal J., van Heumen B.W.H., Roelofs H.M.J., te Morsche R.H.M., Marian B., Nagengast F.M., Peters W.H.M. The Influence of Curcumin, Quercetin, and Eicosapentaenoic Acid on the Expression of Phase II Detoxification Enzymes in the Intestinal Cell Lines HT-29, Caco-2, HuTu 80, and LT97. Nutr. Cancer. 2012;64:856–863. doi: 10.1080/01635581.2012.700994. PubMed DOI
Langerholc T., Maragkoudakis P.A., Wollgast J., Gradisnik L., Cencic A. Novel and established intestinal cell line models—An indispensable tool in food science and nutrition. Trends Food Sci. Technol. 2011;22:S11–S20. doi: 10.1016/j.tifs.2011.03.010. PubMed DOI PMC
Haslam I.S., Jones K., Coleman T., Simmons N.L. Induction of P-glycoprotein expression and function in human intestinal epithelial cells (T84) Biochem. Pharmacol. 2008;76:850–861. doi: 10.1016/j.bcp.2008.07.020. PubMed DOI
Naruhashi K., Kurahashi Y., Fujita Y., Kawakita E., Yamasaki Y., Hattori K., Nishimura A., Shibata N. Comparison of the Expression and Function of ATP Binding Cassette Transporters in Caco-2 and T84 cells on Stimulation by Selected Endogenous Compounds and Xenobiotics. Drug Metab. Pharmacokinet. 2011;26:145–153. doi: 10.2133/dmpk.DMPK-10-RG-075. PubMed DOI
Theodoropoulos C., Demers C., Delvin E., Menard D., Gascon-Barre M. Calcitriol regulates the expression of the genes encoding the three key vitamin D3 hydroxylases and the drug-metabolizing enzyme CYP3A4 in the human fetal intestine. Clin. Endocrinol. 2003;58:489–499. doi: 10.1046/j.1365-2265.2003.01743.x. PubMed DOI
Saaby L., Helms H.C.C., Brodin B. IPEC-J2 MDR1, a Novel High-Resistance Cell Line with Functional Expression of Human P-glycoprotein (ABCB1) for Drug Screening Studies. Mol. Pharm. 2016;13:640–652. doi: 10.1021/acs.molpharmaceut.5b00874. PubMed DOI
Palócz O., Szita G., Csikó G. Alteration in Inflammatory Responses and Cytochrome P450 Expression of Porcine Jejunal Cells by Drinking Water Supplements. Mediators Inflamm. 2019;2019 doi: 10.1155/2019/5420381. PubMed DOI PMC
Loi M., Fanelli F., Liuzzi V.C., Logrieco A.F., Mulè G. Mycotoxin biotransformation by native and commercial enzymes: Present and future perspectives. Toxins. 2017;9:111. doi: 10.3390/toxins9040111. PubMed DOI PMC
Beyerle J., Frei E., Stiborova M., Habermann N., Ulrich C.M. Biotransformation of xenobiotics in the human colon and rectum and its association with colorectal cancer. Drug Metab. Rev. 2015;47:199–221. doi: 10.3109/03602532.2014.996649. PubMed DOI
Gajecka M., Jakimiuk E., Zielonka L., Obremski K., Gajecka M. The Biotransformation of Chosen Mycotoxins. Pol. J. Vet Sci. 2009;12:293–303. PubMed
Galtier P. Biotransformation and Fate of Mycotoxins. J. Toxicol. Toxin Rev. 1999;18:295–312.
Sergent T., Ribonnet L., Kolosova A., Garsou S., Schaut A., De Saeger S., Van Peteghem C., Larondelle Y., Pussemier L., Schneider Y.J. Molecular and cellular effects of food contaminants and secondary plant components and their plausible interactions at the intestinal level. Food Chem. Toxicol. 2008;46:813–841. doi: 10.1016/j.fct.2007.12.006. PubMed DOI
Lin N.N., Chen J., Xu B., Wei X., Guo L., Xie J.W. The roles of carboxylesterase and CYP isozymes on the in vitro metabolism of T-2 toxin. Mil. Med. Res. 2015;2:13. doi: 10.1186/s40779-015-0041-6. PubMed DOI PMC
Wang J., Jiang J., Zhang H., Wang J., Cai H., Li C., Li K., Liu J., Guo X., Zou G., et al. Integrated transcriptional and proteomic analysis with in vitro biochemical assay reveal the important role of CYP3A46 in T-2 toxin hydroxylation in porcine primary hepatocytes. Mol. Cell. Proteom. 2011;10 doi: 10.1074/mcp.M111.008748. PubMed DOI PMC
Wu Q., Huang L., Liu Z., Yao M., Wang Y., Dai M., Yuan Z. A comparison of hepatic in vitro metabolism of T-2 toxin in rats, pigs, chickens, and carp. Xenobiotica. 2011;41:863–873. doi: 10.3109/00498254.2011.593206. PubMed DOI
Ge X., Wang J., Liu J., Jiang J., Lin H., Wu J., Ouyang M., Tang X., Zheng M., Liao M., et al. The catalytic activity of cytochrome P450 3A22 is critical for the metabolism of T-2 toxin in porcine reservoirs. Catal. Commun. 2010;12:71–75. doi: 10.1016/j.catcom.2010.08.003. DOI
Yuan Y., Zhou X., Yang J., Li M., Qiu X. T-2 toxin is hydroxylated by chicken CYP3A37. Food Chem. Toxicol. 2013;62:622–627. doi: 10.1016/j.fct.2013.09.031. PubMed DOI
Shang S., Jiang J., Deng Y. Chicken cytochrome P450 1A5 is the key enzyme for metabolizing T-2 toxin to 3′OH-T-2. Int. J. Mol. Sci. 2013;14:10809–10818. doi: 10.3390/ijms140610809. PubMed DOI PMC
Dai D., Pan Y., Zeng C.P., Liu S., Yan Y., Wu X., Xu Z., Zhang L. Activated FXR promotes xenobiotic metabolism of T-2 toxin and attenuates oxidative stress in broiler chicken liver. Chem. Biol. Interact. 2020;316:108912. doi: 10.1016/j.cbi.2019.108912. PubMed DOI
Deng Y., Wang Y., Sun L., Lu P., Wang R., Ye L., Xu D., Ye R., Liu Y., Bi S., et al. Biotransformation enzyme activities and phase I metabolites analysis in Litopenaeus vannamei following intramuscular administration of T-2 toxin. Drug Chem. Toxicol. 2018;41:113–122. doi: 10.1080/01480545.2017.1320407. PubMed DOI
Wang Y., Wang G., Dai Y., Wang Y., Lee Y.W., Shi J., Xu J. Biodegradation of Deoxynivalenol by a Novel Microbial Consortium. Front. Microbiol. 2020;10:2964. doi: 10.3389/fmicb.2019.02964. PubMed DOI PMC
Wu Q.H., Wang X., Yang W., Nüssler A.K., Xiong L.Y., Kuča K., Dohnal V., Zhang X.J., Yuan Z.H. Oxidative stress-mediated cytotoxicity and metabolism of T-2 toxin and deoxynivalenol in animals and humans: An update. Arch. Toxicol. 2014;88:1309–1326. doi: 10.1007/s00204-014-1280-0. PubMed DOI
Catteuw A., Broekaert N., De Baere S., Lauwers M., Gasthuys E., Huybrechts B., Callebaut A., Ivanova L., Uhlig S., De Boevre M., et al. Insights into in Vivo Absolute Oral Bioavailability, Biotransformation, and Toxicokinetics of Zearalenone, α-Zearalenol, β-Zearalenol, Zearalenone-14-glucoside, and Zearalenone-14-sulfate in Pigs. J. Agric. Food Chem. 2019;67:3448–3458. doi: 10.1021/acs.jafc.8b05838. PubMed DOI
Malekinejad H., Maas-Bakker R., Fink-Gremmels J. Species differences in the hepatic biotransformation of zearalenone. Vet. J. 2006;172:96–102. doi: 10.1016/j.tvjl.2005.03.004. PubMed DOI
Malekinejad H., Maas-Bakker R.F., Fink-Gremmels J. Bioactivation of zearalenone by porcine hepatic biotransformation. Vet. Res. 2005;36:799–810. doi: 10.1051/vetres:2005034. PubMed DOI
Ayed-Boussema I., Pascussi J.M., Maurel P., Bacha H., Hassen W. Zearalenone activates pregnane X receptor, constitutive androstane receptor and aryl hydrocarbon receptor and corresponding phase I target genes mRNA in primary cultures of human hepatocytes. Environ. Toxicol. Pharmacol. 2011;31:79–87. doi: 10.1016/j.etap.2010.09.008. PubMed DOI
Rodríguez-Carrasco Y., Heilos D., Richter L., Süssmuth R.D., Heffeter P., Sulyok M., Kenner L., Berger W., Dornetshuber-Fleiss R. Mouse tissue distribution and persistence of the food-born fusariotoxins Enniatin B and Beauvericin. Toxicol. Lett. 2016;247:35–44. doi: 10.1016/j.toxlet.2016.02.008. PubMed DOI PMC
Mei L., Zhang L., Dai R. An inhibition study of beauvericin on human and rat cytochrome P450 enzymes and its pharmacokinetics in rats. J. Enzym. Inhib. Med. Chem. 2009;24:753–762. doi: 10.1080/14756360802362041. PubMed DOI
Fæste C.K., Ivanova L., Uhlig S. In vitro metabolism of the mycotoxin enniatin B in different species and cytochrome P450 enzyme phenotyping by chemical inhibitors. Drug Metab. Dispos. 2011;39:1768–1776. doi: 10.1124/dmd.111.039529. PubMed DOI
Ivanova L., Fæste C.K., Uhlig S. In vitro phase i metabolism of the depsipeptide enniatin B. Anal. Bioanal. Chem. 2011;400:2889–2901. doi: 10.1007/s00216-011-4964-9. PubMed DOI
Ivanova L., Fæste C.K., Van Pamel E., Daeseleire E., Callebaut A., Uhlig S. Presence of enniatin B and its hepatic metabolites in plasma and liver samples from broilers and eggs from laying hens. World Mycotoxin J. 2014;7:167–175. doi: 10.3920/WMJ2013.1609. DOI
Ivanova L., Denisov I.G., Grinkova Y.V., Sligar S.G., Fæste C.K. Biotransformation of the Mycotoxin Enniatin B1 by CYP P450 3A4 and Potential for Drug-Drug Interactions. Metabolites. 2019;9:158. doi: 10.3390/metabo9080158. PubMed DOI PMC
Ivanova L., Uhlig S., Devreese M., Croubels S., Fæste C.K. Biotransformation of the mycotoxin enniatin B1 in pigs: A comparative in vitro and in vivo approach. Food Chem. Toxicol. 2017;105:506–517. doi: 10.1016/j.fct.2017.04.041. PubMed DOI
Debevere S., Cools A., De Baere S., Haesaert G., Rychlik M., Croubels S., Fievez V. In Vitro Rumen Simulations Show a Reduced Disappearance of Deoxynivalenol, Nivalenol and Enniatin B at Conditions of Rumen Acidosis and Lower Microbial Activity. Toxins. 2020;12:101. doi: 10.3390/toxins12020101. PubMed DOI PMC
Fraeyman S., Devreese M., Antonissen G., De Baere S., Rychlik M., Croubels S. Comparative Oral Bioavailability, Toxicokinetics, and Biotransformation of Enniatin B1 and Enniatin B in Broiler Chickens. J. Agric. Food Chem. 2016;64:7259–7264. doi: 10.1021/acs.jafc.6b02913. PubMed DOI
Müller S., Dekant W., Mally A. Fumonisin B 1 and the kidney: Modes of action for renal tumor formation by fumonisin B 1 in rodents. Food Chem. Toxicol. 2012;50:3833–3846. doi: 10.1016/j.fct.2012.06.053. PubMed DOI
Schreck I., Deigendesch U., Burkhardt B., Marko D., Weiss C. The Alternaria mycotoxins alternariol and alternariol methyl ether induce cytochrome P450 1A1 and apoptosis in murine hepatoma cells dependent on the aryl hydrocarbon receptor. Arch. Toxicol. 2012;86:625–632. doi: 10.1007/s00204-011-0781-3. PubMed DOI
Aichinger G., Krüger F., Puntscher H., Preindl K., Warth B., Marko D. Naturally occurring mixtures of Alternaria toxins: Anti-estrogenic and genotoxic effects in vitro. Arch. Toxicol. 2019;93:3021–3031. doi: 10.1007/s00204-019-02545-z. PubMed DOI
Burkhardt B., Pfeiffer E., Metzler M. Absorption and metabolism of the mycotoxins alternariol and alternariol-9-methyl ether in Caco-2 cells in vitro. Mycotoxin Res. 2009;25:149–157. doi: 10.1007/s12550-009-0022-2. PubMed DOI
Scheibenzuber S., Hoffmann T., Effenberger I., Schwab W., Asam S., Rychlik M. Enzymatic synthesis of modified alternaria mycotoxins using a whole-cell biotransformation system. Toxins. 2020;12:264. doi: 10.3390/toxins12040264. PubMed DOI PMC
Puntscher H., Hankele S., Tillmann K., Attakpah E., Braun D., Kütt M.L., Del Favero G., Aichinger G., Pahlke G., Höger H., et al. First insights into Alternaria multi-toxin in vivo metabolism. Toxicol. Lett. 2019;301:168–178. doi: 10.1016/j.toxlet.2018.10.006. PubMed DOI
Yang X.J., Lu H.Y., Li Z.Y., Bian Q., Qiu L.L., Li Z., Liu Q., Li J., Wang X., Wang S.L. Cytochrome P450 2A13 mediates aflatoxin B1-induced cytotoxicity and apoptosis in human bronchial epithelial cells. Toxicology. 2012;300:138–148. doi: 10.1016/j.tox.2012.06.010. PubMed DOI
Deng J., Zhao L., Zhang N.Y., Karrow N.A., Krumm C.S., Qi D.S., Sun L.H. Aflatoxin B 1 metabolism: Regulation by phase I and II metabolizing enzymes and chemoprotective agents. Mutat. Res. Rev. Mutat. Res. 2018;778:79–89. doi: 10.1016/j.mrrev.2018.10.002. PubMed DOI
Ayed-Boussema I., Pascussi J.M., Zaied C., Maurel P., Bacha H., Hassen W. Ochratoxin A induces CYP3A4, 2B6, 3A5, 2C9, 1A1, and CYP1A2 gene expression in primary cultured human hepatocytes: A possible activation of nuclear receptors. Drug Chem. Toxicol. 2012;35:71–80. doi: 10.3109/01480545.2011.589438. PubMed DOI
Shin H.S., Lee H.J., Pyo M.C., Ryu D., Lee K.W. Ochratoxin a-induced hepatotoxicity through phase i and phase ii reactions regulated by ahr in liver cells. Toxins. 2019;11:377. doi: 10.3390/toxins11070377. PubMed DOI PMC
Tao Y., Xie S., Xu F., Liu A., Wang Y., Chen D., Pan Y., Huang L., Peng D., Wang X., et al. Ochratoxin A: Toxicity, oxidative stress and metabolism. Food Chem. Toxicol. 2018;112:320–331. doi: 10.1016/j.fct.2018.01.002. PubMed DOI
Gross-Steinmeyer K., Weymann J., Hege H.G., Metzler M. Metabolism and lack of DNA reactivity of the mycotoxin ochratoxin A in cultured rat and human primary hepatocytes. J. Agric. Food Chem. 2002;50:938–945. doi: 10.1021/jf0111817. PubMed DOI
Tozlovanu M., Canadas D., Pfohl-Leszkowicz A., Frenette C., Paugh R.J., Manderville R.A. Glutathione conjugates of ochratoxin a as biomarkers of exposure. Arh. Hig. Rada Toksikol. 2012;63:417–425. doi: 10.2478/10004-1254-63-2012-2202. PubMed DOI
Kőszegi T., Poór M. Ochratoxin a: Molecular interactions, mechanisms of toxicity and prevention at the molecular level. Toxins. 2016;8:111. doi: 10.3390/toxins8040111. PubMed DOI PMC
Ayed-Boussema I., Pascussi J.M., Rjiba K., Maurel P., Bacha H., Hassen W. The mycotoxin, patulin, increases the expression of PXR and AhR and their target cytochrome P450s in primary cultured human hepatocytes. Drug Chem. Toxicol. 2012;35:241–250. doi: 10.3109/01480545.2011.592194. PubMed DOI
Ji C., Fan Y., Zhao L. Review on biological degradation of mycotoxins. Anim. Nutr. 2016;2:127–133. doi: 10.1016/j.aninu.2016.07.003. PubMed DOI PMC
Young J.C., Zhou T., Yu H., Zhu H., Gong J. Degradation of trichothecene mycotoxins by chicken intestinal microbes. Food Chem. Toxicol. 2007;45:136–143. doi: 10.1016/j.fct.2006.07.028. PubMed DOI
Pierron A., Mimoun S., Murate L.S., Loiseau N., Lippi Y., Bracarense A.P.F.L., Schatzmayr G., He J.W., Zhou T., Moll W.D., et al. Microbial biotransformation of DON: Molecular basis for reduced toxicity. Sci. Rep. 2016;6:29105. doi: 10.1038/srep29105. PubMed DOI PMC
Du K., Wang C., Liu P., Li Y., Ma X. Effects of Dietary Mycotoxins on Gut Microbiome. Protein Pept. Lett. 2017;24:397–405. doi: 10.2174/0929866524666170223095207. PubMed DOI
Antonissen G., Devreese M., De Baere S., Martel A., Van Immerseel F., Croubels S. Impact of Fusarium mycotoxins on hepatic and intestinal mRNA expression of cytochrome P450 enzymes and drug transporters, and on the pharmacokinetics of oral enrofloxacin in broiler chickens. Food Chem. Toxicol. 2017;101:75–83. doi: 10.1016/j.fct.2017.01.006. PubMed DOI
Murcia H.W., Diaz G.J. In vitro hepatic aflatoxicol production is related to a higher resistance to aflatoxin B1 in poultry. Sci. Rep. 2020;10:5508. doi: 10.1038/s41598-020-62415-y. PubMed DOI PMC
Gross-Steinmeyer K., Eaton D.L. Dietary modulation of the biotransformation and genotoxicity of aflatoxin B1. Toxicology. 2012;299:69–79. doi: 10.1016/j.tox.2012.05.016. PubMed DOI
Peles F., Sipos P., Győri Z., Pfliegler W.P., Giacometti F., Serraino A., Pagliuca G., Gazzotti T., Pócsi I. Adverse Effects, Transformation and Channeling of Aflatoxins Into Food Raw Materials in Livestock. Front. Microbiol. 2019;10:1–26. doi: 10.3389/fmicb.2019.02861. PubMed DOI PMC
Wu J., Xu W., Zhang C., Chang Q., Tang X., Li K., Deng Y. Trp266 determines the binding specificity of a porcine aflatoxin B 1 aldehyde reductase for aflatoxin B1-dialdehyde. Biochem. Pharmacol. 2013;86:1357–1365. doi: 10.1016/j.bcp.2013.08.014. PubMed DOI
Lyagin I., Efremenko E. Enzymes for Detoxification of Various Mycotoxins: Origins and Mechanisms of Catalytic Action. Molecules. 2019;24:2362. doi: 10.3390/molecules24132362. PubMed DOI PMC
Schrenk D., Bodin L., Chipman J.K., del Mazo J., Grasl-Kraupp B., Hogstrand C., Hoogenboom L. (Ron), Leblanc J., Nebbia C.S., Nielsen E., et al. Risk assessment of ochratoxin A in food. EFSA J. 2020;18 doi: 10.2903/j.efsa.2020.6113. PubMed DOI PMC
Li P., Su R., Yin R., Lai D., Wang M., Liu Y., Zhou L. Detoxification of mycotoxins through biotransformation. Toxins. 2020;12:121. doi: 10.3390/toxins12020121. PubMed DOI PMC
Ringot D., Chango A., Schneider Y.-J., Larondelle Y. Toxicokinetics and toxicodynamics of ochratoxin A, an update. Chem. Biol. Interact. 2006;159:18–46. doi: 10.1016/j.cbi.2005.10.106. PubMed DOI
Wu Q., Dohnal V., Huang L., Kuca K., Wang X., Chen G., Yuan Z. Metabolic Pathways of Ochratoxin A. Curr. Drug Metab. 2011;12:1–10. doi: 10.2174/138920011794520026. PubMed DOI
Schelstraete W., Devreese M., Croubels S. Impact of subacute exposure to T-2 toxin and zearalenone on the pharmacokinetics of midazolam as CYP3A probe drug in a porcine animal model: A pilot study. Front. Pharmacol. 2019;10:399. doi: 10.3389/fphar.2019.00399. PubMed DOI PMC
Payros D., Alassane-Kpembi I., Pierron A., Loiseau N., Pinton P., Oswald I.P. Toxicology of deoxynivalenol and its acetylated and modified forms. Arch. Toxicol. 2016;90:2931–2957. doi: 10.1007/s00204-016-1826-4. PubMed DOI
Springler A., Hessenberger S., Reisinger N., Kern C., Nagl V., Schatzmayr G., Mayer E. Deoxynivalenol and its metabolite deepoxy-deoxynivalenol: Multi-parameter analysis for the evaluation of cytotoxicity and cellular effects. Mycotoxin Res. 2017;33:25–37. doi: 10.1007/s12550-016-0260-z. PubMed DOI PMC
Nagl V., Woechtl B., Schwartz-Zimmermann H.E., Hennig-Pauka I., Moll W.D., Adam G., Berthiller F. Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in pigs. Toxicol. Lett. 2014;229:190–197. doi: 10.1016/j.toxlet.2014.06.032. PubMed DOI
Schwartz H.E., Hametner C., Slavik V., Greitbauer O., Bichl G., Kunz-Vekiru E., Schatzmayr D., Berthiller F. Characterization of three deoxynivalenol sulfonates formed by reaction of deoxynivalenol with sulfur reagents. J. Agric. Food Chem. 2013;61:8941–8948. doi: 10.1021/jf403438b. PubMed DOI
Gerding J., Cramer B., Humpf H.U. Determination of mycotoxin exposure in Germany using an LC-MS/MS multibiomarker approach. Mol. Nutr. Food Res. 2014;58:2358–2368. doi: 10.1002/mnfr.201400406. PubMed DOI
Pestka J.J. Deoxynivalenol: Toxicity, mechanisms and animal health risks. Anim. Feed Sci. Technol. 2007;137:283–298. doi: 10.1016/j.anifeedsci.2007.06.006. DOI
Gao X., Mu P., Zhu X., Chen X., Tang S., Wu Y., Miao X., Wang X., Wen J., Deng Y. Dual function of a novel bacterium, slackia sp. D-G6: Detoxifying deoxynivalenol and producing the Natural Estrogen Analogue, Equol. Toxins. 2020;12:85. doi: 10.3390/toxins12020085. PubMed DOI PMC
Mackei M., Orbán K., Molnár A., Pál L., Dublecz K., Husvéth F., Neogrády Z., Mátis G. Cellular Effects of T-2 Toxin on Primary Hepatic Cell Culture Models of Chickens. Toxins. 2020;12:46. doi: 10.3390/toxins12010046. PubMed DOI PMC
Li Y., Wang Z., Beier R.C., Shen J., De Smet D., De Saeger S., Zhang S. T-2 toxin, a trichothecene mycotoxin: Review of toxicity, metabolism, and analytical methods. J. Agric. Food Chem. 2011;59:3441–3453. doi: 10.1021/jf200767q. PubMed DOI
Welsch T., Humpf H.U. HT-2 toxin 4-glucuronide as new T-2 toxin metabolite: Enzymatic synthesis, analysis, and species specific formation of T-2 and HT-2 toxin glucuronides by rat, mouse, pig, and human liver microsomes. J. Agric. Food Chem. 2012;60:10170–10178. doi: 10.1021/jf302571y. PubMed DOI
Masching S., Naehrer K., Schwartz-Zimmermann H.E., Sărăndan M., Schaumberger S., Dohnal I., Nagl V., Schatzmayr D. Gastrointestinal degradation of fumonisin B1 by carboxylesterase FumD prevents fumonisin induced alteration of sphingolipid metabolism in Turkey and swine. Toxins. 2016;8:84. doi: 10.3390/toxins8030084. PubMed DOI PMC
Daud N., Currie V., Duncan G., Busman M., Gratz S.W. Intestinal hydrolysis and microbial biotransformation of diacetoxyscirpenol-α-glucoside, HT-2-β-glucoside and N-(1-deoxy-d-fructos-1-yl) fumonisin B1 by human gut microbiota in vitro. Int. J. Food Sci. Nutr. 2019;71:540–548. doi: 10.1080/09637486.2019.1698015. PubMed DOI
Merrill A.H., Morgan E.T., Nikolova-Karakashian M., Stewart J. Sphingomyelin hydrolysis and regulation of the expression of the gene for cytochrome P450. Biochem. Soc. Trans. 1999;27:383–387. doi: 10.1042/bst0270383. PubMed DOI
Spotti M., Maas R.F.M., De Nijs C.M., Fink-Gremmels J. Effect of fumonisin B1 on rat hepatic P450 system. Environ. Toxicol. Pharmacol. 2000;8:197–204. doi: 10.1016/S1382-6689(00)00040-5. PubMed DOI
Riley R.T., Merrill A.H. Ceramide synthase inhibition by fumonisins: A perfect storm of perturbed sphingolipid metabolism, signaling, and disease. J. Lipid Res. 2019;60:1183–1189. doi: 10.1194/jlr.S093815. PubMed DOI PMC
Harrer H., Laviad E.L., Humpf H.U., Futerman A.H. Identification of N-acyl-fumonisin B1 as new cytotoxic metabolites of fumonisin mycotoxins. Mol. Nutr. Food Res. 2013;57:516–522. doi: 10.1002/mnfr.201200465. PubMed DOI
Dellafiora L., Galaverna G., Dall’Asta C. Mechanisms of Fumonisin B1 Toxicity: A Computational Perspective beyond the Ceramide Synthases Inhibition. Chem. Res. Toxicol. 2018;31:1203–1212. doi: 10.1021/acs.chemrestox.8b00188. PubMed DOI
Knutsen H.K., Alexander J., Barregård L., Bignami M., Brüschweiler B., Ceccatelli S., Cottrill B., Dinovi M., Edler L., Grasl-Kraupp B., et al. Risks for animal health related to the presence of fumonisins, their modified forms and hidden forms in feed. EFSA J. 2018;16:e05242. PubMed PMC
Ieko T., Inoue S., Inomata Y., Inoue H., Fujiki J., Iwano H. Glucuronidation as a metabolic barrier against zearalenone in rat everted intestine. J. Vet. Med. Sci. 2020;82:153–161. doi: 10.1292/jvms.19-0570. PubMed DOI PMC
Binder S.B., Schwartz-Zimmermann H.E., Varga E., Bichl G., Michlmayr H., Adam G., Berthiller F. Metabolism of zearalenone and its major modified forms in pigs. Toxins. 2017;9:56. doi: 10.3390/toxins9020056. PubMed DOI PMC
Videmann B., Mazallon M., Tep J., Lecoeur S. Metabolism and transfer of the mycotoxin zearalenone in human intestinal Caco-2 cells. Food Chem. Toxicol. 2008;46:3279–3286. doi: 10.1016/j.fct.2008.07.011. PubMed DOI
Dellafiora L., Galaverna G., Righi F., Cozzini P., Dall’Asta C. Assessing the hydrolytic fate of the masked mycotoxin zearalenone-14-glucoside—A warning light for the need to look at the “maskedome”. Food Chem. Toxicol. 2017;99:9–16. doi: 10.1016/j.fct.2016.11.013. PubMed DOI
Keller L., Abrunhosa L., Keller K., Rosa C., Cavaglieri L., Venâncio A. Zearalenone and Its Derivatives α-Zearalenol and β-Zearalenol Decontamination by Saccharomyces cerevisiae Strains Isolated from Bovine Forage. Toxins. 2015;7:3297–3308. doi: 10.3390/toxins7083297. PubMed DOI PMC
Rogowska A., Pomastowski P., Walczak J., Railean-Plugaru V., Rudnicka J., Buszewski B. Investigation of zearalenone adsorption and biotransformation by microorganisms cultured under cellular stress conditions. Toxins. 2019;11:463. doi: 10.3390/toxins11080463. PubMed DOI PMC
Rogowska A., Pomastowski P., Rafińska K., Railean-Plugaru V., Złoch M., Walczak J., Buszewski B. A study of zearalenone biosorption and metabolisation by prokaryotic and eukaryotic cells. Toxicon. 2019;169:81–90. doi: 10.1016/j.toxicon.2019.09.008. PubMed DOI
Chlebicz A., Śliżewska K. In Vitro Detoxification of Aflatoxin B1, Deoxynivalenol, Fumonisins, T-2 Toxin and Zearalenone by Probiotic Bacteria from Genus Lactobacillus and Saccharomyces cerevisiae Yeast. Probiotics Antimicrob. Proteins. 2020;12:289–301. doi: 10.1007/s12602-018-9512-x. PubMed DOI PMC
Pfeiffer E., Schebb N.H., Podlech J., Metzler M. Novel oxidative in vitro metabolites of the mycotoxins alternariol and alternariol methyl ether. Mol. Nutr. Food Res. 2007;51:307–316. doi: 10.1002/mnfr.200600237. PubMed DOI
Pfeiffer E., Burkhardt B., Altemöller M., Podlech J., Metzler M. Activities of human recombinant cytochrome P450 isoforms and human hepatic microsomes for the hydroxylation ofAlternaria toxins. Mycotoxin Res. 2008;24:117–123. doi: 10.1007/BF03032337. PubMed DOI
Tiessen C., Ellmer D., Mikula H., Pahlke G., Warth B., Gehrke H., Zimmermann K., Heiss E., Fröhlich J., Marko D. Impact of phase I metabolism on uptake, oxidative stress and genotoxicity of the emerging mycotoxin alternariol and its monomethyl ether in esophageal cells. Arch. Toxicol. 2017;91:1213–1226. doi: 10.1007/s00204-016-1801-0. PubMed DOI PMC
Lemke A., Burkhardt B., Bunzel D., Pfeiffer E., Metzler M., Huch M., Kulling S.E., Franz C.M.A.P. Alternaria toxins of the alternariol type are not metabolised by human faecal microbiota. World Mycotoxin J. 2016;9:41–49. doi: 10.3920/WMJ2014.1875. DOI
Fleck S.C., Pfeiffer E., Podlech J., Metzler M. Epoxide Reduction to an Alcohol: A Novel Metabolic Pathway for Perylene Quinone-Type Alternaria Mycotoxins in Mammalian Cells. Chem. Res. Toxicol. 2014;27:247–253. doi: 10.1021/tx400366w. PubMed DOI
Burkhardt B., Wittenauer J., Pfeiffer E., Schauer U.M.D., Metzler M. Oxidative metabolism of the mycotoxins alternariol and alternariol-9-methyl ether in precision-cut rat liver slices in vitro. Mol. Nutr. Food Res. 2011;55:1079–1086. doi: 10.1002/mnfr.201000487. PubMed DOI
Pfeiffer E., Schmit C., Burkhardt B., Altemöller M., Podlech J., Metzler M. Glucuronidation of the mycotoxins alternariol and alternariol-9-methyl ether in vitro: Chemical structures of glucuronides and activities of human UDP-glucuronosyltransferase isoforms. Mycotoxin Res. 2009;25:3–10. doi: 10.1007/s12550-008-0001-z. PubMed DOI
Soukup S.T., Kohn B.N., Pfeiffer E., Geisen R., Metzler M., Bunzel M., Kulling S.E. Sulfoglucosides as Novel Modified Forms of the Mycotoxins Alternariol and Alternariol Monomethyl Ether. J. Agric. Food Chem. 2016;64:8892–8901. doi: 10.1021/acs.jafc.6b03120. PubMed DOI
Puntscher H., Marko D., Warth B. The fate of altertoxin ii during tomato processing steps at a laboratory scale. Front. Nutr. 2019;6:92. doi: 10.3389/fnut.2019.00092. PubMed DOI PMC
Pfeiffer E., Herrmann C., Altemöller M., Podlech J., Metzler M. Oxidative in vitro metabolism of the Alternaria toxins altenuene and isoaltenuene. Mol. Nutr. Food Res. 2009;53:452–459. doi: 10.1002/mnfr.200700501. PubMed DOI
Rychlik M., Kircher F., Schusdziarra V., Lippl F. Absorption of the mycotoxin patulin from the rat stomach. Food Chem. Toxicol. 2004;42:729–735. doi: 10.1016/j.fct.2003.12.015. PubMed DOI
Rychlik M. Rapid degradation of the mycotoxin patulin in man quantified by stable isotope dilution assays. Food Addit. Contam. 2003;20:829–837. doi: 10.1080/0265203031000152424. PubMed DOI
Zheng X., Wei W., Rao S., Gao L., Li H., Yang Z. Degradation of patulin in fruit juice by a lactic acid bacteria strain Lactobacillus casei YZU01. Food Control. 2020;112:107147. doi: 10.1016/j.foodcont.2020.107147. DOI
Tannous J., Snini S.P., El Khoury R., Canlet C., Pinton P., Lippi Y., Alassane-Kpembi I., Gauthier T., El Khoury A., Atoui A., et al. Patulin transformation products and last intermediates in its biosynthetic pathway, E- and Z-ascladiol, are not toxic to human cells. Arch. Toxicol. 2017;91:2455–2467. doi: 10.1007/s00204-016-1900-y. PubMed DOI
Ianiri G., Idnurm A., Wright S.A.I., Durán-Patrón R., Mannina L., Ferracane R., Ritieni A., Castoria R. Searching for genes responsible for patulin degradation in a biocontrol yeast provides insight into the basis for resistance to this mycotoxin. Appl. Environ. Microbiol. 2013;79:3101–3115. doi: 10.1128/AEM.03851-12. PubMed DOI PMC
Xu R., Zhu H., Hu L., Yu B., Zhan X., Yuan Y., Zhou P. Characterization of the intestinal absorption of morroniside from Cornus officinalis Sieb. et Zucc via a Caco-2 cell monolayer model. PLoS ONE. 2020;15:e0227844. doi: 10.1371/journal.pone.0227844. PubMed DOI PMC
Zhang J., Zheng N., Liu J., Li F.D., Li S.L., Wang J.Q. Aflatoxin B1 and aflatoxin M1 induced cytotoxicity and DNA damage in differentiated and undifferentiated Caco-2 cells. Food Chem. Toxicol. 2015;83:54–60. doi: 10.1016/j.fct.2015.05.020. PubMed DOI
Fogh J., Fogh J.M., Orfeo T. One Hundred and Twenty-Seven Cultured Human Tumor Cell Lines Producing Tumors in Nude Mice23. JNCI J. Natl. Cancer Inst. 1977;59:221–226. doi: 10.1093/jnci/59.1.221. PubMed DOI
Iftikhar M., Iftikhar A., Zhang H., Gong L., Wang J. Transport, metabolism and remedial potential of functional food extracts (FFEs) in Caco-2 cells monolayer: A Review. Food Res. Int. 2020;136:109240. doi: 10.1016/j.foodres.2020.109240. PubMed DOI
Kamiloglu S., Capanoglu E., Grootaert C., Van Camp J. Anthocyanin Absorption and Metabolism by Human Intestinal Caco-2 Cells—A Review. Int. J. Mol. Sci. 2015;16:21555–21574. doi: 10.3390/ijms160921555. PubMed DOI PMC
Awortwe C., Fasinu P.S., Rosenkranz B. Application of Caco-2 cell line in herb-drug interaction studies: Current approaches and challenges. J. Pharm. Pharm. Sci. Publ. Can. Soc. Pharm. Sci. Société Can. Sci. Pharm. 2014;17:1–19. doi: 10.18433/J30K63. PubMed DOI PMC
Wang X., Li L., Zhang G. Impact of deoxynivalenol and kaempferol on expression of tight junction proteins at different stages of Caco-2 cell proliferation and differentiation. RSC Adv. 2019;9:34607–34616. doi: 10.1039/C9RA06222J. PubMed DOI PMC
Wang X., Li L., Zhang G. A proteomic study on the protective effect of kaempferol pretreatment against deoxynivalenol-induced intestinal barrier dysfunction in a Caco-2 cell model. Food Funct. 2020;11:7266–7279. doi: 10.1039/D0FO01579B. PubMed DOI
Akbari P., Braber S., Varasteh S., Alizadeh A., Garssen J., Fink-Gremmels J. The intestinal barrier as an emerging target in the toxicological assessment of mycotoxins. Arch. Toxicol. 2017;91:1007–1029. doi: 10.1007/s00204-016-1794-8. PubMed DOI PMC
Alizadeh A., Akbari P., Varasteh S., Braber S., Malekinejad H., Fink-Gremmels J. Ochratoxin A challenges the intestinal epithelial cell integrity: Results obtained in model experiments with Caco-2 cells. World Mycotoxin J. 2019;12:399–407. doi: 10.3920/WMJ2019.2451. DOI
Pinton P., Nougayrède J.P., Del Rio J.C., Moreno C., Marin D.E., Ferrier L., Bracarense A.P., Kolf-Clauw M., Oswald I.P. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression. Toxicol. Appl. Pharmacol. 2009;237:41–48. doi: 10.1016/j.taap.2009.03.003. PubMed DOI
Romero A., Ares I., Ramos E., Castellano V., Martínez M.M.A., Martínez-Larrañaga M.R., Anadón A., Martínez M.M.A. Mycotoxins modify the barrier function of Caco-2 cells through differential gene expression of specific claudin isoforms: Protective effect of illite mineral clay. Toxicology. 2016;353–354:21–33. doi: 10.1016/j.tox.2016.05.003. PubMed DOI
Sun H., Chow E.C.Y., Liu S., Du Y., Pang K.S. The Caco-2 cell monolayer: Usefulness and limitations. Expert Opin. Drug Metab. Toxicol. 2008;4:395–411. doi: 10.1517/17425255.4.4.395. PubMed DOI
Ferruzza S., Scarino M.L., Gambling L., Natella F., Sambuy Y. Biphasic effect of iron on human intestinal Caco-2 cells: Early effect on tight junction permeability with delayed onset of oxidative cytotoxic damage. Cell. Mol. Biol. 2003;49:89–99. PubMed
Videmann B., Tep J., Cavret S., Lecoeur S. Epithelial transport of deoxynivalenol: Involvement of human P-glycoprotein (ABCB1) and multidrug resistance-associated protein 2 (ABCC2) Food Chem. Toxicol. 2007;45:1938–1947. doi: 10.1016/j.fct.2007.04.011. PubMed DOI
Sergent T., Parys M., Garsou S., Pussemier L., Schneider Y.J., Larondelle Y. Deoxynivalenol transport across human intestinal Caco-2 cells and its effects on cellular metabolism at realistic intestinal concentrations. Toxicol. Lett. 2006;164:167–176. doi: 10.1016/j.toxlet.2005.12.006. PubMed DOI
Artursson P., Palm K., Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 2012;22:280–289. doi: 10.1016/j.addr.2012.09.005. PubMed DOI
Kadota T., Furusawa H., Hirano S., Tajima O., Kamata Y., Sugita-Konishi Y. Comparative study of deoxynivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol on intestinal transport and IL-8 secretion in the human cell line Caco-2. Toxicol. In Vitro. 2013;27:1888–1895. doi: 10.1016/j.tiv.2013.06.003. PubMed DOI
Sobral M.M.C., Faria M.A., Cunha S.C., Miladinovic B., Ferreira I.M. Transport of mycotoxins across human gastric NCI–N87 and intestinal Caco-2 cell models. Food Chem. Toxicol. 2019;131:110595. doi: 10.1016/j.fct.2019.110595. PubMed DOI
Tep J., Videmann B., Mazallon M., Balleydier S., Cavret S., Lecoeur S. Transepithelial transport of fusariotoxin nivalenol: Mediation of secretion by ABC transporters. Toxicol. Lett. 2007;170:248–258. doi: 10.1016/j.toxlet.2007.03.012. PubMed DOI
Pfeiffer E., Kommer A., Dempe J.S., Hildebrand A.A., Metzler M. Absorption and metabolism of the mycotoxin zearalenone and the growth promotor zeranol in Caco-2 cells in vitro. Mol. Nutr. Food Res. 2011;55:560–567. doi: 10.1002/mnfr.201000381. PubMed DOI
Cirlini M., Barilli A., Galaverna G., Michlmayr H., Adam G., Berthiller F., Dall’Asta C. Study on the uptake and deglycosylation of the masked forms of zearalenone in human intestinal Caco-2 cells. Food Chem. Toxicol. 2016;98:232–239. doi: 10.1016/j.fct.2016.11.003. PubMed DOI
Prosperini A., Meca G., Font G., Ruiz M.J. Study of the cytotoxic activity of beauvericin and fusaproliferin and bioavailability in vitro on Caco-2 cells. Food Chem. Toxicol. 2012;50:2356–2361. doi: 10.1016/j.fct.2012.04.030. PubMed DOI
De Angelis I., Friggè G., Raimondi F., Stammati A., Zucco F., Caloni F. Absorption of Fumonisin B1 and aminopentol on an in vitro model of intestinal epithelium; the role of P-glycoprotein. Toxicon. 2005;45:285–291. doi: 10.1016/j.toxicon.2004.10.015. PubMed DOI
Berger V., Gabriel A.F., Sergent T., Trouet A., Larondelle Y., Schneider Y.J. Interaction of ochratoxin A with human intestinal Caco-2 cells: Possible implication of a multidrug resistance-associated protein (MRP2) Toxicol. Lett. 2003;140–141:465–476. doi: 10.1016/S0378-4274(03)00043-2. PubMed DOI
De Walle J.V., Sergent T., Piront N., Toussaint O., Schneider Y.-J., Larondelle Y. Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis. Toxicol. Appl. Pharmacol. 2010;245:291–298. doi: 10.1016/j.taap.2010.03.012. PubMed DOI
De Nijs M., Van Den Top H.J., Portier L., Oegema G., Kramer E., Van Egmond H.P., Hoogenboom L.A.P. Digestibility and absorption of deoxynivalenol-3-ß-glucoside in in vitro models. World Mycotoxin J. 2012;5:319–324. doi: 10.3920/WMJ2012.1430. DOI
Schrickx J., Lektarau Y., Fink-Gremmels J. Ochratoxin A secretion by ATP-dependent membrane transporters in Caco-2 cells. Arch. Toxicol. 2006;80:243–249. doi: 10.1007/s00204-005-0041-5. PubMed DOI
Tuntiteerawit P., Jarukamjorn K., Porasuphatana S. The effect of green tea catechins on breast cancer resistance protein activity and intestinal efflux of aflatoxin B1 via breast cancer resistance protein in Caco-2 cells. Toxicol. Res. 2020;36:293–300. doi: 10.1007/s43188-019-00032-2. PubMed DOI PMC
Li X., Mu P., Wen J., Deng Y. Carrier-Mediated and Energy-Dependent Uptake and Efflux of Deoxynivalenol in Mammalian Cells. Sci. Rep. 2017;7:1–10. doi: 10.1038/s41598-017-06199-8. PubMed DOI PMC
Li X., Mu P., Qiao H., Wen J., Deng Y. JNK-AKT-NF-κB controls P-glycoprotein expression to attenuate the cytotoxicity of deoxynivalenol in mammalian cells. Biochem. Pharmacol. 2018;156:120–134. doi: 10.1016/j.bcp.2018.08.020. PubMed DOI
Ivanova L., Fæste C.K., Solhaug A. Role of P-glycoprotein in deoxynivalenol-mediated in vitro toxicity. Toxicol. Lett. 2018;284:21–28. doi: 10.1016/j.toxlet.2017.11.021. PubMed DOI
Anderle P., Niederer E., Rubas W., Hilgendorf C., Spahn-Langguth H., Wunderli-Allenspach H., Merkle H.P., Langguth P. P-glycoprotein (P-gp) mediated efflux in Caco-2 cell monolayers: The influence of culturing conditions and drug exposure on P-gp expression levels. J. Pharm. Sci. 1998;87:757–762. doi: 10.1021/js970372e. PubMed DOI
Videmann B., Mazallon M., Prouillac C., Delaforge M., Lecoeur S. ABCC1, ABCC2 and ABCC3 are implicated in the transepithelial transport of the myco-estrogen zearalenone and its major metabolites. Toxicol. Lett. 2009;190:215–223. doi: 10.1016/j.toxlet.2009.07.021. PubMed DOI
Xu R., Karrow N.A., Shandilya U.K., Sun L.H., Kitazawa H. In-vitro cell culture for efficient assessment of mycotoxin exposure, toxicity and risk mitigation. Toxins. 2020;12:146. doi: 10.3390/toxins12030146. PubMed DOI PMC
Gao Y., Li S., Wang J., Luo C., Zhao S., Zheng N. Modulation of intestinal epithelial permeability in differentiated caco-2 cells exposed to aflatoxin M1 and ochratoxin a individually or collectively. Toxins. 2018;10:13. doi: 10.3390/toxins10010013. PubMed DOI PMC
Marin D., Motiu M., Taranu I. Food Contaminant Zearalenone and Its Metabolites Affect Cytokine Synthesis and Intestinal Epithelial Integrity of Porcine Cells. Toxins. 2015;7:1979–1988. doi: 10.3390/toxins7061979. PubMed DOI PMC
Bouhet S., Hourcade E., Loiseau N., Fikry A., Roselli M., Galtier P., Mengheri E., Oswald I.P., Martinez S., Roselli M., et al. The mycotoxin fumonisin B1 alters the proliferation and the barrier function of porcine intestinal epithelial cells. Toxicol. Sci. 2004;77:165–171. doi: 10.1093/toxsci/kfh006. PubMed DOI
Pinton P., Braicu C., Nougayrede J.-P., Laffitte J., Taranu I., Oswald I.P. Deoxynivalenol Impairs Porcine Intestinal Barrier Function and Decreases the Protein Expression of Claudin-4 through a Mitogen-Activated Protein Kinase-Dependent Mechanism. J. Nutr. 2010;140:1956–1962. doi: 10.3945/jn.110.123919. PubMed DOI
Madara J.L. Regulation of the Movement of Solutes Across Tight Junctions. Annu. Rev. Physiol. 1998;60:143–159. doi: 10.1146/annurev.physiol.60.1.143. PubMed DOI
Gao Y.N., Wang J.Q., Li S.L., Zhang Y.D., Zheng N. Aflatoxin M1 cytotoxicity against human intestinal Caco-2 cells is enhanced in the presence of other mycotoxins. Food Chem. Toxicol. 2016;96:79–89. doi: 10.1016/j.fct.2016.07.019. PubMed DOI
Fleck S.C., Pfeiffer E., Metzler M. Permeation and metabolism of Alternaria mycotoxins with perylene quinone structure in cultured Caco-2 cells. Mycotoxin Res. 2014;30:17–23. doi: 10.1007/s12550-013-0180-0. PubMed DOI
González-Arias C.A., Marín S., Rojas-García A.E., Sanchis V., Ramos A.J. UPLC-MS/MS analysis of ochratoxin A metabolites produced by Caco-2 and HepG2 cells in a co-culture system. Food Chem. Toxicol. 2017;109:333–340. doi: 10.1016/j.fct.2017.09.011. PubMed DOI
Matter K., Balda M.S. Signalling to and from tight junctions. Nat. Rev. Mol. Cell Biol. 2003;4:225–237. doi: 10.1038/nrm1055. PubMed DOI
Moon Y. Vomitoxin-Induced Cyclooxygenase-2 Gene Expression in Macrophages Mediated by Activation of ERK and p38 but Not JNK Mitogen-Activated Protein Kinases. Toxicol. Sci. 2002;69:373–382. doi: 10.1093/toxsci/69.2.373. PubMed DOI
Zhou H.-R., Jia Q., Pestka J.J. Ribotoxic Stress Response to the Trichothecene Deoxynivalenol in the Macrophage Involves the Src Family Kinase Hck. Toxicol. Sci. 2005;85:916–926. doi: 10.1093/toxsci/kfi146. PubMed DOI
Pinton P., Graziani F., Pujol A., Nicoletti C., Paris O., Ernouf P., Di Pasquale E., Perrier J., Oswald I.P., Maresca M. Deoxynivalenol inhibits the expression by goblet cells of intestinal mucins through a PKR and MAP kinase dependent repression of the resistin-like molecule β. Mol. Nutr. Food Res. 2015;59:1076–1087. doi: 10.1002/mnfr.201500005. PubMed DOI
Morrison D.K. MAP Kinase Pathways. Cold Spring Harb. Perspect. Biol. 2012;4:a011254. doi: 10.1101/cshperspect.a011254. PubMed DOI PMC
Lee J.Y., Lim W., Park S., Kim J., You S., Song G. Deoxynivalenol induces apoptosis and disrupts cellular homeostasis through MAPK signaling pathways in bovine mammary epithelial cells. Environ. Pollut. 2019;252:879–887. doi: 10.1016/j.envpol.2019.06.001. PubMed DOI
Bouhet S., Le E., Peres S., Fairbrother J.M., Oswald I.P., Hyacinthe S. Mycotoxin fumonisin B 1 selectively down-regulates the basal IL-8 expression in pig intestine: In vivo and in vitro studies. Food Chem. Toxicol. 2006;44:1768–1773. doi: 10.1016/j.fct.2006.05.018. PubMed DOI
Beisl J., Pahlke G., Abeln H., Ehling-Schulz M., Del Favero G., Varga E., Warth B., Sulyok M., Abia W., Ezekiel C.N., et al. Combinatory effects of cereulide and deoxynivalenol on in vitro cell viability and inflammation of human Caco-2 cells. Arch. Toxicol. 2020;94:833–844. doi: 10.1007/s00204-020-02658-w. PubMed DOI
Pellegrina C.D., Perbellini O., Scupoli M.T., Tomelleri C., Zanetti C., Zoccatelli G., Fusi M., Peruffo A., Rizzi C., Chignola R. Effects of wheat germ agglutinin on human gastrointestinal epithelium: Insights from an experimental model of immune/epithelial cell interaction. Toxicol. Appl. Pharmacol. 2009;237:146–153. doi: 10.1016/j.taap.2009.03.012. PubMed DOI
Gao Y., Ye Q., Bao X., Huang X., Wang J., Zheng N. Transcriptomic and proteomic profiling reveals the intestinal immunotoxicity induced by aflatoxin M1 and ochratoxin A. Toxicon. 2020;180:49–61. doi: 10.1016/j.toxicon.2020.03.008. PubMed DOI
Trapecar M., Cencic A. Application of Gut Cell Models for Toxicological and Bioactivity Studies of Functional and Novel Foods. Foods. 2014;1:40–51. doi: 10.3390/foods1010040. PubMed DOI PMC
Fu J., Cui Y. In vitro digestion/Caco-2 cell model to estimate cadmium and lead bioaccessibility/bioavailability in two vegetables: The influence of cooking and additives. Food Chem. Toxicol. 2013;59:215–221. doi: 10.1016/j.fct.2013.06.014. PubMed DOI
Ekmekcioglu C. A physiological approach for preparing and conducting intestinal bioavailability studies using experimental systems. Food Chem. 2002;76:225–230. doi: 10.1016/S0308-8146(01)00291-6. DOI
Seithel A., Karlsson J., Hilgendorf C., Bj A., Ungell A.-L., Björquist A., Ungell A.-L. Variability in mRNA expression of ABC- and SLC-transporters in human intestinal cells: Comparison between human segments and Caco-2 cells. Eur. J. Pharm. Sci. 2006;28:291–299. doi: 10.1016/j.ejps.2006.03.003. PubMed DOI
Taipalensuu J., Törnblom H., Lindberg G., Einarsson C., Sjöqvist F., Melhus H., Garberg P., Sjöström B., Lundgren B., Artursson P. Correlation of Gene Expression of Ten Drug Efflux Proteins of the ATP-Binding Cassette Transporter Family in Normal Human Jejunum and in Human Intestinal Epithelial Caco-2 Cell Monolayers. J. Pharmacol. Exp. Ther. 2001;299:164–170. PubMed
Lampen A., Bader A., Bestmann T., Winkler M., Witte L., Borlak J.T. Catalytic activities, protein- and mRNA-expression of cytochrome P450 isoenzymes in intestinal cell lines. Xenobiotica. 1998;28:429–441. doi: 10.1080/004982598239362. PubMed DOI
Caloni F., Cortinovis C., Pizzo F., De Angelis I. Transport of aflatoxin M1 in human intestinal Caco-2/TC7 cells. Front. Pharmacol. 2012;3:111. doi: 10.3389/fphar.2012.00111. PubMed DOI PMC
Wu C., Gao Y., Li S., Huang X., Bao X., Wang J., Zheng N. Modulation of intestinal epithelial permeability and mucin mRNA (MUC2, MUC5AC, and MUC5B) expression and protein secretion in Caco-2/HT29-MTX co-cultures exposed to aflatoxin M1, ochratoxin A, and zearalenone individually or collectively. Toxicol. Lett. 2019;309:1–9. doi: 10.1016/j.toxlet.2019.03.010. PubMed DOI