• This record comes from PubMed

The Modulation of Phase II Drug-Metabolizing Enzymes in Proliferating and Differentiated CaCo-2 Cells by Hop-Derived Prenylflavonoids

. 2020 Jul 18 ; 12 (7) : . [epub] 20200718

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
Research Project SVV 260 550 Univerzita Karlova v Praze
CZ.02.1.01/0.0/0.0/16_019/0000841 Ministerstvo Školství, Mládeže a Tělovýchovy

Prenylflavonoids in the human organism exhibit various health-beneficial activities, although they may interfere with drugs via the modulation of the expression and/or activity of drug-metabolizing enzymes. As intestinal cells are exposed to the highest concentrations of prenylflavonoids, we decided to study the cytotoxicity and modulatory effects of the four main hop-derived prenylflavonoids on the activities and mRNA expression of the main drug-conjugating enzymes in human CaCo-2 cells. Proliferating CaCo-2 cells were used for these purposes as a model of colorectal cancer cells, and differentiated CaCo-2 cells were used as an enterocyte-like model. All the tested prenylflavonoids inhibited the CaCo-2 cells proliferation, with xanthohumol proving the most effective (IC50 8.5 µM). The prenylflavonoids modulated the activities and expressions of the studied enzymes to a greater extent in the differentiated, as opposed to the proliferating, CaCo-2 cells. In the differentiated cells, all the prenylflavonoids caused a marked increase in glutathione S-transferase and catechol-O-methyltransferase activities, while the activity of sulfotransferase was significantly inhibited. Moreover, the prenylflavonoids upregulated the mRNA expression of uridine diphosphate (UDP)-glucuronosyl transferase 1A6 and downregulated that of glutathione S-transferase 1A1/2.

See more in PubMed

Bennett B.J., Hall K.D., Hu F.B., McCartney A.L., Roberto C. Nutrition and the science of disease prevention: A systems approach to support metabolic health. Ann. N. Y. Acad. Sci. 2015;1352:1–12. doi: 10.1111/nyas.12945. PubMed DOI PMC

Koch W. Dietary Polyphenols-Important Non-Nutrients in the Prevention of Chronic Noncommunicable Diseases. A Systematic Review. Nutrients. 2019;11:1039. doi: 10.3390/nu11051039. PubMed DOI PMC

Yuan Y., Qiu X., Nikolic D., Chen S.N., Huang K., Li G., Pauli G.F., van Breemen R.B. Inhibition of human cytochrome P450 enzymes by hops (Humulus lupulus) and hop prenylphenols. Eur. J. Pharm. Sci. 2014;53:55–61. doi: 10.1016/j.ejps.2013.12.003. PubMed DOI PMC

Bolton J.L., Dunlap T.L., Hajirahimkhan A., Mbachu O., Chen S.N., Chadwick L., Nikolic D., van Breemen R.B., Pauli G.F., Dietz B.M. The Multiple Biological Targets of Hops and Bioactive Compounds. Chem. Res. Toxicol. 2019;32:222–233. doi: 10.1021/acs.chemrestox.8b00345. PubMed DOI PMC

Mukai R. Prenylation enhances the biological activity of dietary flavonoids by altering their bioavailability. Biosci. Biotechnol. Biochem. 2018;82:207–215. doi: 10.1080/09168451.2017.1415750. PubMed DOI

Mukai R., Fujikura Y., Murota K., Uehara M., Minekawa S., Matsui N., Kawamura T., Nemoto H., Terao J. Prenylation enhances quercetin uptake and reduces efflux in Caco-2 cells and enhances tissue accumulation in mice fed long-term. J. Nutr. 2013;143:1558–1564. doi: 10.3945/jn.113.176818. PubMed DOI

Hisanaga A., Mukai R., Sakao K., Terao J., Hou D.X. Anti-inflammatory effects and molecular mechanisms of 8-prenyl quercetin. Mol. Nutr. Food Res. 2016;60:1020–1032. doi: 10.1002/mnfr.201500871. PubMed DOI

Ambroz M., Lnenickova K., Matouskova P., Skalova L., Bousova I. Antiproliferative Effects of Hop-derived Prenylflavonoids and Their Influence on the Efficacy of Oxaliplatine, 5-fluorouracil and Irinotecan in Human ColorectalC Cells. Nutrients. 2019;11:879. doi: 10.3390/nu11040879. PubMed DOI PMC

Legette L., Karnpracha C., Reed R.L., Choi J., Bobe G., Christensen J.M., Rodriguez-Proteau R., Purnell J.Q., Stevens J.F. Human pharmacokinetics of xanthohumol, an antihyperglycemic flavonoid from hops. Mol. Nutr. Food Res. 2014;58:248–255. doi: 10.1002/mnfr.201300333. PubMed DOI PMC

Liu M., Hansen P.E., Wang G., Qiu L., Dong J., Yin H., Qian Z., Yang M., Miao J. Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus) Molecules. 2015;20:754–779. doi: 10.3390/molecules20010754. PubMed DOI PMC

Seliger J.M., Martin H.J., Maser E., Hintzpeter J. Potent inhibition of human carbonyl reductase 1 (CBR1) by the prenylated chalconoid xanthohumol and its related prenylflavonoids isoxanthohumol and 8-prenylnaringenin. Chem. Biol. Interact. 2019;305:156–162. doi: 10.1016/j.cbi.2019.02.031. PubMed DOI

Seliger J.M., Misuri L., Maser E., Hintzpeter J. The hop-derived compounds xanthohumol, isoxanthohumol and 8-prenylnaringenin are tight-binding inhibitors of human aldo-keto reductases 1B1 and 1B10. J. Enzyme Inhib. Med. Chem. 2018;33:607–614. doi: 10.1080/14756366.2018.1437728. PubMed DOI PMC

Henderson M.C., Miranda C.L., Stevens J.F., Deinzer M.L., Buhler D.R. In vitro inhibition of human P450 enzymes by prenylated flavonoids from hops, Humulus lupulus. Xenobiotica. 2000;30:235–251. doi: 10.1080/004982500237631. PubMed DOI

Dietz B.M., Hagos G.K., Eskra J.N., Wijewickrama G.T., Anderson J.R., Nikolic D., Guo J., Wright B., Chen S.N., Pauli G.F., et al. Differential regulation of detoxification enzymes in hepatic and mammary tissue by hops (Humulus lupulus) in vitro and in vivo. Mol. Nutr. Food Res. 2013;57:1055–1066. doi: 10.1002/mnfr.201200534. PubMed DOI PMC

Krajka-Kuzniak V., Paluszczak J., Baer-Dubowska W. Xanthohumol induces phase II enzymes via Nrf2 in human hepatocytes in vitro. Toxicol. In Vitro. 2013;27:149–156. doi: 10.1016/j.tiv.2012.10.008. PubMed DOI

Radovic B., Hussong R., Gerhauser C., Meinl W., Frank N., Becker H., Kohrle J. Xanthohumol, a prenylated chalcone from hops, modulates hepatic expression of genes involved in thyroid hormone distribution and metabolism. Mol. Nutr. Food Res. 2010;54:S225–S235. doi: 10.1002/mnfr.200900489. PubMed DOI

Lea T. Caco-2 Cell Line. In: Verhoeckx K., Cotter P., Lopez-Exposito I., Kleiveland C., Lea T., Mackie A., Requena T., Swiatecka D., Wichers H., editors. The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models. Springer International Publishing; Cham, Switzerland: 2015. PubMed

Lnenickova K., Prochazkova E., Skalova L., Matouskova P., Bartikova H., Soucek P., Szotakova B. Catechins Variously Affect Activities of Conjugation Enzymes in Proliferating and Differentiated Caco-2 Cells. Molecules. 2016;21:1186. doi: 10.3390/molecules21091186. PubMed DOI PMC

Habig W.H., Pabst M.J., Jakoby W.B. Glutathione S-Transferases: The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974;249:7130–7139. PubMed

Lnenickova K., Dymakova A., Szotakova B., Bousova I. Sulforaphane Alters beta-Naphthoflavone-Induced Changes in Activity and Expression of Drug-Metabolizing Enzymes in Rat Hepatocytes. Molecules. 2017;22:1983. doi: 10.3390/molecules22111983. PubMed DOI PMC

Frame L.T., Ozawa S., Nowell S.A., Chou H.C., DeLongchamp R.R., Doerge D.R., Lang N.P., Kadlubar F.F. A simple colorimetric assay for phenotyping the major human thermostable phenol sulfotransferase (SULT1A1) using platelet cytosols. Drug Metab. Dispos. 2000;28:1063–1068. PubMed

Letelier M.E., Pimentel A., Pino P., Lepe A.M., Faundez M., Aracena P., Speisky H. Microsomal UDP-glucuronyltransferase in rat liver: Oxidative activation. Basic Clin. Pharmacol. Toxicol. 2005;96:480–486. doi: 10.1111/j.1742-7843.2005.pto_96612.x. PubMed DOI

Aoyama N., Tsunoda M., Imai K. Improved assay for catechol-O-methyltransferase activity utilizing norepinephrine as an enzymatic substrate and reversed-phase high-performance liquid chromatography with fluorescence detection. J. Chromatogr. A. 2005;1074:47–51. doi: 10.1016/j.chroma.2005.03.037. PubMed DOI

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Coughtrie M.W. Ontogeny of Human Conjugating Enzymes. Drug Metab. Lett. 2015;9:99–108. doi: 10.2174/1872312809666150602151213. PubMed DOI

Stierum R., Gaspari M., Dommels Y., Ouatas T., Pluk H., Jespersen S., Vogels J., Verhoeckx K., Groten J., van Ommen B. Proteome analysis reveals novel proteins associated with proliferation and differentiation of the colorectal cancer cell line Caco-2. Biochim. Biophys. Acta. 2003;1650:73–91. doi: 10.1016/S1570-9639(03)00204-8. PubMed DOI

Mariadason J.M., Arango D., Corner G.A., Aranes M.J., Hotchkiss K.A., Yang W., Augenlicht L.H. A gene expression profile that defines colon cell maturation in vitro. Cancer Res. 2002;62:4791–4804. PubMed

Kusano Y., Horie S., Morishita N., Shibata T., Uchida K. Constitutive expression of an antioxidant enzyme, glutathione S-transferase P1, during differentiation of human intestinal Caco-2 cells. Free Radic Biol. Med. 2012;53:347–356. doi: 10.1016/j.freeradbiomed.2012.04.032. PubMed DOI

Kusano Y., Horie S., Shibata T., Satsu H., Shimizu M., Hitomi E., Nishida M., Kurose H., Itoh K., Kobayashi A., et al. Keap1 regulates the constitutive expression of GST A1 during differentiation of Caco-2 cells. Biochemistry. 2008;47:6169–6177. doi: 10.1021/bi800199z. PubMed DOI

Adnan H., Quach H., MacIntosh K., Antenos M., Kirby G.M. Low levels of GSTA1 expression are required for Caco-2 cell proliferation. PLoS ONE. 2012;7:e51739. doi: 10.1371/journal.pone.0051739. PubMed DOI PMC

Pshezhetsky A.V., Fedjaev M., Ashmarina L., Mazur A., Budman L., Sinnett D., Labuda D., Beaulieu J.F., Menard D., Nifant’ev I., et al. Subcellular proteomics of cell differentiation: Quantitative analysis of the plasma membrane proteome of Caco-2 cells. Proteomics. 2007;7:2201–2215. doi: 10.1002/pmic.200600956. PubMed DOI

Bartmanska A., Tronina T., Poplonski J., Milczarek M., Filip-Psurska B., Wietrzyk J. Highly Cancer Selective Antiproliferative Activity of Natural Prenylated Flavonoids. Molecules. 2018;23:2922. doi: 10.3390/molecules23112922. PubMed DOI PMC

Hudcova T., Bryndova J., Fialova K., Fiala J., Karabin M., Jelinek L., Dostalek P. Antiproliferative effects of prenylflavonoids from hops on human colon cancer cell lines. J. Inst. Brew. 2014;120:225–230. doi: 10.1002/jib.139. DOI

Dorn C., Kraus B., Motyl M., Weiss T.S., Gehrig M., Scholmerich J., Heilmann J., Hellerbrand C. Xanthohumol, a chalcon derived from hops, inhibits hepatic inflammation and fibrosis. Mol. Nutr. Food Res. 2010;54:S205–S213. doi: 10.1002/mnfr.200900314. PubMed DOI

Stompor M., Uram L., Podgorski R. In Vitro Effect of 8-Prenylnaringenin and Naringenin on Fibroblasts and Glioblastoma Cells-Cellular Accumulation and Cytotoxicity. Molecules. 2017;22:1092. doi: 10.3390/molecules22071092. PubMed DOI PMC

Sastre-Serra J., Ahmiane Y., Roca P., Oliver J., Pons D.G. Xanthohumol, a hop-derived prenylflavonoid present in beer, impairs mitochondrial functionality of SW620 colon cancer cells. Int. J. Food Sci. Nutr. 2019;70:396–404. doi: 10.1080/09637486.2018.1540558. PubMed DOI

Allsopp P., Possemiers S., Campbell D., Gill C., Rowland I. A comparison of the anticancer properties of isoxanthohumol and 8-prenylnaringenin using in vitro models of colon cancer. Biofactors. 2013;39:441–447. doi: 10.1002/biof.1084. PubMed DOI

Shen G., Kong A.N. Nrf2 plays an important role in coordinated regulation of Phase II drug metabolism enzymes and Phase III drug transporters. Biopharm. Drug Dispos. 2009;30:345–355. doi: 10.1002/bdd.680. PubMed DOI PMC

Jirasko R., Holcapek M., Vrublova E., Ulrichova J., Simanek V. Identification of new phase II metabolites of xanthohumol in rat in vivo biotransformation of hop extracts using high-performance liquid chromatography electrospray ionization tandem mass spectrometry. J. Chromatogr. A. 2010;1217:4100–4108. doi: 10.1016/j.chroma.2010.02.041. PubMed DOI

Legette L., Ma L., Reed R.L., Miranda C.L., Christensen J.M., Rodriguez-Proteau R., Stevens J.F. Pharmacokinetics of xanthohumol and metabolites in rats after oral and intravenous administration. Mol. Nutr. Food Res. 2012;56:466–474. doi: 10.1002/mnfr.201100554. PubMed DOI PMC

Pang Y., Nikolic D., Zhu D., Chadwick L.R., Pauli G.F., Farnsworth N.R., van Breemen R.B. Binding of the hop (Humulus lupulus L.) chalcone xanthohumol to cytosolic proteins in Caco-2 intestinal epithelial cells. Mol. Nutr. Food Res. 2007;51:872–879. doi: 10.1002/mnfr.200600252. PubMed DOI

Liu H., Yang Z., Zang L., Wang G., Zhou S., Jin G., Yang Z., Pan X. Downregulation of Glutathione S-transferase A1 suppressed tumor growth and induced cell apoptosis in A549 cell line. Oncol. Lett. 2018;16:467–474. doi: 10.3892/ol.2018.8608. PubMed DOI PMC

Pichler C., Ferk F., Al-Serori H., Huber W., Jager W., Waldherr M., Misik M., Kundi M., Nersesyan A., Herbacek I., et al. Xanthohumol Prevents DNA Damage by Dietary Carcinogens: Results of a Human Intervention Trial. Cancer Prev. Res. 2017;10:153–160. doi: 10.1158/1940-6207.CAPR-15-0378. PubMed DOI

Lnenickova K., Skalova L., Stuchlikova L., Szotakova B., Matouskova P. Induction of xenobiotic-metabolizing enzymes in hepatocytes by beta-naphthoflavone: Time-dependent changes in activities, protein and mRNA levels. Acta Pharm. 2018;68:75–85. doi: 10.2478/acph-2018-0005. PubMed DOI

Tornio A., Filppula A.M., Niemi M., Backman J.T. Clinical Studies on Drug-Drug Interactions Involving Metabolism and Transport: Methodology, Pitfalls, and Interpretation. Clin. Pharmacol. Ther. 2019;105:1345–1361. doi: 10.1002/cpt.1435. PubMed DOI PMC

Bolton J.L., Dunlap T. Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects. Chem. Res. Toxicol. 2017;30:13–37. doi: 10.1021/acs.chemrestox.6b00256. PubMed DOI PMC

Pinto C., Cestero J.J., Rodriguez-Galdon B., Macias P. Xanthohumol, a prenylated flavonoid from hops (Humulus lupulus L.), protects rat tissues against oxidative damage after acute ethanol administration. Toxicol. Rep. 2014;1:726–733. doi: 10.1016/j.toxrep.2014.09.004. PubMed DOI PMC

Harris R.M., Waring R.H. Sulfotransferase inhibition: Potential impact of diet and environmental chemicals on steroid metabolism and drug detoxification. Curr. Drug Metab. 2008;9:269–275. doi: 10.2174/138920008784220637. PubMed DOI

Sanchez-Spitman A.B., Dezentje V.O., Swen J.J., Moes D., Gelderblom H., Guchelaar H.J. Genetic polymorphisms of 3’-untranslated region of SULT1A1 and their impact on tamoxifen metabolism and efficacy. Breast Cancer Res. Treat. 2018;172:401–411. doi: 10.1007/s10549-018-4923-7. PubMed DOI PMC

Semi K., Matsuda Y., Ohnishi K., Yamada Y. Cellular reprogramming and cancer development. Int. J. Cancer. 2013;132:1240–1248. doi: 10.1002/ijc.27963. PubMed DOI

Long M.D., Campbell M.J. Pan-cancer analyses of the nuclear receptor superfamily. Nucl. Receptor. Res. 2015;2 doi: 10.11131/2015/101182. PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

Special Issue "Dietary (Poly)Phenols and Health"

. 2022 Mar 28 ; 14 (7) : . [epub] 20220328

Mycotoxins: Biotransformation and Bioavailability Assessment Using Caco-2 Cell Monolayer

. 2020 Sep 30 ; 12 (10) : . [epub] 20200930

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...