As a component of drinks, food, cosmetics, and spice, hops yields a plethora of biologically active compounds. This plant, which was valued by gods and kings through the history, may serve as a basis for pharmaceutical ex-ploitation: not only as a healthy folk medicine but also in asearch for the effective sedative, estrogenic, antimicro-bial, antidiabetic, and cancerostatic compounds.Full text English translation is available in the on-line version.
- MeSH
- Humulus * chemie MeSH
- léčivé rostliny chemie MeSH
- oleje prchavé chemie MeSH
- pivo MeSH
- tradiční lékařství MeSH
- Publikační typ
- přehledy MeSH
As a component of drinks, food, cosmetics, and spice, hops yields a plethora of biologically active compounds. This plant, which was valued by gods and kings through the history, may serve as a basis for pharmaceutical ex-ploitation: not only as a healthy folk medicine but also in asearch for the effective sedative, estrogenic, antimicro-bial, antidiabetic, and cancerostatic compounds.
- MeSH
- Humulus * chemie MeSH
- léčivé rostliny chemie MeSH
- oleje prchavé chemie MeSH
- pivo MeSH
- tradiční lékařství MeSH
- Publikační typ
- přehledy MeSH
In recent years, the interest in the health-promoting effects of hop prenylflavonoids, especially its estrogenic effects, has grown. Unfortunately, one of the most potent phytoestrogens identified so far, 8-prenylnaringenin, is only a minor component of hops, so its isolation from hop materials for the production of estrogenically active food supplements has proved to be problematic. The aim of this study was to optimize the conditions (e.g., temperature, the length of the process and the amount of the catalyst) to produce 8-prenylnaringenin-rich material by the magnesium oxide-catalyzed thermal isomerization of desmethylxanthohumol. Under these optimized conditions, the yield of 8-prenylnaringenin was 29 mg per 100 gDW of product, corresponding to a >70% increase in its content relative to the starting material. This process may be applied in the production of functional foods or food supplements rich in 8-prenylnaringenin, which may then be utilized in therapeutic agents to help alleviate the symptoms of menopausal disorders.
- MeSH
- flavanony chemie metabolismus MeSH
- flavonoidy chemie metabolismus MeSH
- fytoestrogeny chemie metabolismus MeSH
- Humulus chemie MeSH
- katalýza MeSH
- lidé MeSH
- oxid hořečnatý chemie metabolismus MeSH
- pivo analýza MeSH
- potravní doplňky analýza MeSH
- propiofenony chemie metabolismus MeSH
- rostlinné extrakty metabolismus MeSH
- rostlinné přípravky chemie metabolismus MeSH
- teplota MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Prenylflavonoids in the human organism exhibit various health-beneficial activities, although they may interfere with drugs via the modulation of the expression and/or activity of drug-metabolizing enzymes. As intestinal cells are exposed to the highest concentrations of prenylflavonoids, we decided to study the cytotoxicity and modulatory effects of the four main hop-derived prenylflavonoids on the activities and mRNA expression of the main drug-conjugating enzymes in human CaCo-2 cells. Proliferating CaCo-2 cells were used for these purposes as a model of colorectal cancer cells, and differentiated CaCo-2 cells were used as an enterocyte-like model. All the tested prenylflavonoids inhibited the CaCo-2 cells proliferation, with xanthohumol proving the most effective (IC50 8.5 μM). The prenylflavonoids modulated the activities and expressions of the studied enzymes to a greater extent in the differentiated, as opposed to the proliferating, CaCo-2 cells. In the differentiated cells, all the prenylflavonoids caused a marked increase in glutathione S-transferase and catechol-O-methyltransferase activities, while the activity of sulfotransferase was significantly inhibited. Moreover, the prenylflavonoids upregulated the mRNA expression of uridine diphosphate (UDP)-glucuronosyl transferase 1A6 and downregulated that of glutathione S-transferase 1A1/2.
- MeSH
- buněčná diferenciace účinky léků genetika MeSH
- Caco-2 buňky MeSH
- exprese genu účinky léků MeSH
- flavonoidy izolace a purifikace farmakologie MeSH
- glukuronosyltransferasa genetika metabolismus MeSH
- glutathiontransferasa genetika metabolismus MeSH
- Humulus chemie MeSH
- katechol-O-methyltransferasa genetika metabolismus MeSH
- lidé MeSH
- neopren izolace a purifikace farmakologie MeSH
- proliferace buněk účinky léků genetika MeSH
- propiofenony izolace a purifikace farmakologie MeSH
- sulfotransferasy genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The hop plant (Humulus lupulus L.) produces several valuable secondary metabolites, such as prenylflavonoid, bitter acids, and essential oils. These compounds are biosynthesized in glandular trichomes (lupulin glands) endowed with pharmacological properties and widely implicated in the beer brewing industry. The present study is an attempt to generate exhaustive information of transcriptome dynamics and gene regulatory mechanisms involved in biosynthesis and regulation of these compounds, developmental changes including trichome development at three development stages, namely leaf, bract, and mature lupulin glands. Using high-throughput RNA-Seq technology, a total of 61.13, 50.01, and 20.18 Mb clean reads in the leaf, bract, and lupulin gland libraries, respectively, were obtained and assembled into 43,550 unigenes. The putative functions were assigned to 30,996 transcripts (71.17%) based on basic local alignment search tool similarity searches against public sequence databases, including GO, KEGG, NR, and COG families, which indicated that genes are principally involved in fundamental cellular and molecular functions, and biosynthesis of secondary metabolites. The expression levels of all unigenes were analyzed in leaf, bract, and lupulin glands tissues of hop. The expression profile of transcript encoding enzymes of BCAA metabolism, MEP, and shikimate pathway was most up-regulated in lupulin glands compared with leaves and bracts. Similarly, the expression levels of the transcription factors and structural genes that directly encode enzymes involved in xanthohumol, bitter acids, and terpenoids biosynthesis pathway were found to be significantly enhanced in lupulin glands, suggesting that production of these metabolites increases after the leaf development. In addition, numerous genes involved in primary metabolism, lipid metabolism, photosynthesis, generation of precursor metabolites/energy, protein modification, transporter activity, and cell wall component biogenesis were differentially regulated in three developmental stages, suggesting their involvement in the dynamics of the lupulin gland development. The identification of differentially regulated trichome-related genes provided a new foundation for molecular research on trichome development and differentiation in hop. In conclusion, the reported results provide directions for future functional genomics studies for genetic engineering or molecular breeding for augmentation of secondary metabolite content in hop.
- MeSH
- flavonoidy biosyntéza chemie metabolismus MeSH
- genová ontologie MeSH
- Humulus chemie metabolismus MeSH
- listy rostlin genetika metabolismus MeSH
- propiofenony chemie metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné proteiny genetika metabolismus MeSH
- sekvenování transkriptomu MeSH
- terpeny chemie metabolismus MeSH
- transkripční faktory metabolismus MeSH
- transkriptom genetika MeSH
- trichomy genetika metabolismus ultrastruktura MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Although fatty acids have a beneficial effect on yeast growth during fermentation, their effect on foam and sensory stability of beer is negative. In general, long-chain fatty acids originate from raw materials, whereas short-chain acids are produced by yeast during fermentation. If the concentration of short-chain fatty acids, especially isovaleric and butyric acid, overreaches a sensory threshold, then an unpleasant aroma, such as cheesy or sweaty feet, can be formed in beer. RESULTS: The distribution of fatty acids, from the preparation of sweet wort to the final beer, was studied using chemometric evaluation. Differences were observed between the decoction and infusion system using four barley varieties. Attention was paid to the behavior of short-chain fatty acids, namely isovaleric acid. The concentration of isovaleric acid in commercial beers brewed in infusion and decoction systems was approximately 1.4 and 1.0 mg L-1 , respectively. The same trend was observed in experimental samples (1.3 and 0.5 mg L-1 , respectively). This phenomenon was confirmed experimentally; based on the results, this possibly explains why, during the fermentation, isovaleric acid is coupled with the redox state of yeast cell, which is given by the wort composition (i.e. by the mashing process). CONCLUSION: The formation of isovaleric acid is not only caused by microbiology infection or by oxidized hops, but also is influenced by the mashing process. © 2018 Society of Chemical Industry.
- MeSH
- chuť MeSH
- fermentace MeSH
- Humulus chemie metabolismus MeSH
- ječmen (rod) chemie metabolismus MeSH
- lidé MeSH
- manipulace s potravinami MeSH
- mastné kyseliny chemie metabolismus MeSH
- oxidace-redukce MeSH
- pivo analýza MeSH
- Saccharomyces cerevisiae metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Beer, the most popular beverage containing hops, is also frequently consumed by cancer patients. Moreover, non-alcoholic beer, owing to its nutritional value and high content of biological active compounds, is sometimes recommended to patients by oncologists. However, the potential benefits and negatives have to date not been sufficiently evaluated. The present study was designed to examine the effects of four main hop-derived prenylflavonoids on the viability, reactive oxygen species (ROS) formation, activity of caspases, and efficiency of the chemotherapeutics 5-fluorouracil (5-FU), oxaliplatin (OxPt) and irinotecan (IRI) in colorectal cancer cell lines SW480, SW620 and CaCo-2. All the prenylflavonoids exerted substantial antiproliferative effects in all cell lines, with xanthohumol being the most effective (IC50 ranging from 3.6 to 7.3 μM). Isoxanthohumol increased ROS formation and the activity of caspases-3/7, but 6-prenylnaringenin and 8-prenylnaringenin exerted antioxidant properties. As 6-prenylnaringenin acted synergistically with IRI, its potential in combination therapy deserves further study. However, other prenylflavonoids acted antagonistically with all chemotherapeutics at least in one cell line. Therefore, consumption of beer during chemotherapy with 5-FU, OxPt and IRI should be avoided, as the prenylflavonoids in beer could decrease the efficacy of the treatment.
- MeSH
- antioxidancia MeSH
- Caco-2 buňky MeSH
- fixní kombinace léků MeSH
- flavanony farmakologie terapeutické užití MeSH
- flavonoidy farmakologie terapeutické užití MeSH
- fluoruracil terapeutické užití MeSH
- fytogenní protinádorové látky farmakologie terapeutické užití MeSH
- Humulus chemie MeSH
- irinotekan terapeutické užití MeSH
- kaspasy metabolismus MeSH
- kolorektální nádory farmakoterapie metabolismus MeSH
- lékové interakce * MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- oxaliplatin terapeutické užití MeSH
- pivo * škodlivé účinky MeSH
- propiofenony farmakologie terapeutické užití MeSH
- protinádorové látky farmakologie terapeutické užití MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rostlinné extrakty farmakologie terapeutické užití MeSH
- stravovací zvyklosti MeSH
- výsledek terapie MeSH
- xantony farmakologie terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The study presents tracking of 58 pesticide residues associated with hops to estimate their carryover into brewed beer. The pesticides were spiked onto organic hops at a concentration of 15 mg/kg, and the wort was boiled with the artificially contaminated hops and fermented on a laboratory scale. Samples were collected during the whole brewing process and pesticide residues were extracted using a method known as QuEChERS (quick, easy, cheap, effective, rugged, and safe). An HPLC-HR-MS/MS method was developed and validated to identify and quantitate pesticide residues in treated hops, spent hops, hopped wort, green beer, and beer samples. Quantitation was achieved using standard addition with isotopically labeled standards. The carryover percentages into hopped wort and the percentages of decay reduction relative to the amount spiked on hops were calculated. The relationship between the partition coefficients n-octanol-water (log P values) and the residual ratios ( RW and RB) of a pesticide were evaluated to predict their behavior during hopping of wort and fermentation. Pesticides with a high log P values (>3.75) tended to remain in spent hops. The pesticides that have a low log P value up to approximately 3 could represent the demarcation lines of appreciable transfer rate of pesticides from hops to beer. Consequently, the pesticides were divided into three categories depending upon their fate during the brewing process. The most potential risk category represents a group involving the thermostable pesticides, such as azoxystrobin, boscalid, dimethomorph, flonicamid, imidacloprid, mandipropamid, myclobutanil, and thiamethoxam, which were transferred at high rates from the pesticide enriched hops into beer during the laboratory brewing trial. These results can be used as a guideline in the application of pesticides on hop plants that would reduce the level of pesticide residues in beer and their exposure in humans.
AIM: Our research focused on the antimicrobial effects of purified hop (Humulus lupulus L.) fractions including α-bitter acids (humulones), β-bitter acids (lupulones) and xanthohumol, and a commercial CO2 hop extract of bitter acids against reference and multi-resistant strains of Gram-positive and Gram-negative bacteria and against selected yeast strains. METHODS: In vitro testing of antimicrobial activity was performed according to standard testing protocols (EUCAST). The effects of hop extracts on bacterial/yeast strains at concentrations below MICs were also determined and the antimicrobial potential of hop extracts was compared with selected antibiotics using optical density measurement. RESULTS: The fractions were effective not only against reference strains of Gram-positive bacteria but, more importantly, against their methicillin- and vancomycin-resistant variants. No antimicrobial effect was detected against Gram-negative bacterial strains. Among the tested substances, xanthohumol was identified as the hop fraction with the most potent antimicrobial properties. It was also found that hop substances exerted their antimicrobial effects at concentrations considerably lower than the determined MICs, with the strongest effect in case of α-bitter acids in enterococci. CONCLUSION: The search for and research of new compounds with antimicrobial properties represents a possible solution to the current global problem of bacterial resistance. Our data suggest a desirable activity of hop fractions against some multi-resistant bacterial strains. Thus, hops might find use as a source of potential antimicrobial agents applicable in both human and veterinary medicine.
- MeSH
- antiinfekční látky MeSH
- gramnegativní bakterie * účinky léků MeSH
- Humulus * chemie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- mnohočetná bakteriální léková rezistence MeSH
- pilotní projekty MeSH
- rostlinné extrakty terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Hop (Humulus lupulus L.), as a key ingredient for beer brewing, is also a source of many biologically active molecules. A notable compound, 8-prenylnaringenin (8-PN), structurally belonging to the group of prenylated flavonoids, was shown to be a potent phytoestrogen, and thus, became the topic of active research. Here, we overview the pharmacological properties of 8-PN and its therapeutic opportunities. Due to its estrogenic effects, administration of 8-PN represents a novel therapeutic approach to the treatment of menopausal and post-menopausal symptoms that occur as a consequence of a progressive decline in hormone levels in women. Application of 8-PN in the treatment of menopause has been clinically examined with promising results. Other activities that have already been assessed include the potential to prevent bone-resorption or inhibition of tumor growth. On the other hand, the use of phytoestrogens is frequently questioned regarding possible adverse effects associated with long-term consumption. In conclusion, we emphasize the implications of using 8-PN in future treatments of menopausal and post-menopausal symptoms, including the need for precise evidence and further investigations to define the safety risks related to its therapeutic use.
- MeSH
- flavanony škodlivé účinky chemie farmakologie MeSH
- fytoestrogeny škodlivé účinky chemie farmakologie MeSH
- fytogenní protinádorové látky škodlivé účinky chemie farmakologie MeSH
- Humulus chemie MeSH
- lidé MeSH
- menopauza účinky léků MeSH
- molekulární struktura MeSH
- postmenopauzální osteoporóza farmakoterapie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH