Catechins Variously Affect Activities of Conjugation Enzymes in Proliferating and Differentiated Caco-2 Cells

. 2016 Sep 07 ; 21 (9) : . [epub] 20160907

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27617982

The knowledge of processes in intestinal cells is essential, as most xenobiotics come into contact with the small intestine first. Caco-2 cells are human colorectal adenocarcinoma that once differentiated, exhibit enterocyte-like characteristics. Our study compares activities and expressions of important conjugation enzymes and their modulation by green tea extract (GTE) and epigallocatechin gallate (EGCG) using both proliferating (P) and differentiated (D) caco-2 cells. The mRNA levels of the main conjugation enzymes were significantly elevated after the differentiation of Caco-2 cells. However, no increase in conjugation enzymes' activities in differentiated cells was detected in comparison to proliferating ones. GTE/EGCG treatment did not affect the mRNA levels of any of the conjugation enzymes tested in either type of cells. Concerning conjugation enzymes activities, GTE/EGCG treatment elevated glutathione S-transferase (GST) activity by approx. 30% and inhibited catechol-O-methyltransferase (COMT) activity by approx. 20% in differentiated cells. On the other hand, GTE as well as EGCG treatment did not significantly affect the activities of conjugation enzymes in proliferating cells. Administration of GTE/EGCG mediated only mild changes of GST and COMT activities in enterocyte-like cells, indicating a low risk of GTE/EGCG interactions with concomitantly administered drugs. However, a considerable chemo-protective effect of GTE via the pronounced induction of detoxifying enzymes cannot be expected as well.

Zobrazit více v PubMed

Tran C.D., Timmins P., Conway B.R., Irwin W.J. Investigation of the coordinated functional activities of cytochrome P450 3A4 and P-glycoprotein in limiting the absorption of xenobiotics in Caco-2 cells. J. Pharm. Sci. 2002;91:117–128. doi: 10.1002/jps.1173. PubMed DOI

Buhrke T., Lengler I., Lampen A. Analysis of proteomic changes induced upon cellular differentiation of the human intestinal cell line Caco-2. Dev. Growth Differ. 2011;53:411–426. doi: 10.1111/j.1440-169X.2011.01258.x. PubMed DOI

Mariadason J.M., Arango D., Corner G.A., Aranes M.J., Hotchkiss K.A., Yang W., Augenlicht L.H. A gene expression profile that defines colon cell maturation in vitro. Cancer Res. 2002;62:4791–4804. PubMed

Scharmach E., Hessel S., Niemann B., Lampen A. Glutathione S-transferase expression and isoenzyme composition during cell differentiation of Caco-2 cells. Toxicology. 2009;265:122–126. doi: 10.1016/j.tox.2009.09.017. PubMed DOI

Tremblay E., Auclair J., Delvin E., Levy E., Menard D., Pshezhetsky A.V., Rivard N., Seidman E.G., Sinnett D., Vachon P.H., et al. Gene expression profiles of normal proliferating and differentiating human intestinal epithelial cells: A comparison with the Caco-2 cell model. J. Cell Biochem. 2006;99:1175–1186. doi: 10.1002/jcb.21015. PubMed DOI

Jancova P., Anzenbacher P., Anzenbacherova E. Phase II drug metabolizing enzymes. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech. Repub. 2010;154:103–116. doi: 10.5507/bp.2010.017. PubMed DOI

Testa B., Kramer S.D. The biochemistry of drug metabolism-an introduction: Part 4. reactions of conjugation and their enzymes. Chem. Biodivers. 2008;5:2171–2336. doi: 10.1002/cbdv.200890199. PubMed DOI

Boušová I., Skálová L. Inhibition and induction of glutathione S-transferases by flavonoids: Possible pharmacological and toxicological consequences. Drug Metab. Rev. 2012;44:267–286. doi: 10.3109/03602532.2012.713969. PubMed DOI

Testa B., Kramer S.D. The biochemistry of drug metabolism-an introduction: Part 1. Principles and overview. Chem. Biodivers. 2006;3:1053–1101. doi: 10.1002/cbdv.200690111. PubMed DOI

Higdon J.V., Frei B. Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr. 2003;43:89–143. doi: 10.1080/10408690390826464. PubMed DOI

Khan N., Afaq F., Saleem M., Ahmad N., Mukhtar H. Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate. Cancer Res. 2006;66:2500–2505. doi: 10.1158/0008-5472.CAN-05-3636. PubMed DOI

Misaka S., Kawabe K., Onoue S., Werba J.P., Giroli M., Tamaki S., Kan T., Kimura J., Watanabe H., Yamada S. Effects of green tea catechins on cytochrome P450 2B6, 2C8, 2C19, 2D6 and 3A activities in human liver and intestinal microsomes. Drug Metab. Pharmacokinet. 2013;28:244–249. doi: 10.2133/dmpk.DMPK-12-RG-101. PubMed DOI

Yang C.S., Pan E. The effects of green tea polyphenols on drug metabolism. Expert Opin. Drug Metab. Toxicol. 2012;8:677–689. doi: 10.1517/17425255.2012.681375. PubMed DOI

Meinl W., Ebert B., Glatt H., Lampen A. Sulfotransferase forms expressed in human intestinal Caco-2 and TC7 cells at varying stages of differentiation and role in benzo[a]pyrene metabolism. Drug Metab. Dispos. 2008;36:276–283. doi: 10.1124/dmd.107.018036. PubMed DOI

Du G.J., Zhang Z., Wen X.D., Yu C., Calway T., Yuan C.S., Wang C.Z. Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients. 2012;4:1679–1691. doi: 10.3390/nu4111679. PubMed DOI PMC

Thangapazham R.L., Singh A.K., Sharma A., Warren J., Gaddipati J.P., Maheshwari R.K. Green tea polyphenols and its constituent epigallocatechin gallate inhibits proliferation of human breast cancer cells in vitro and in vivo. Cancer Lett. 2007;245:232–241. doi: 10.1016/j.canlet.2006.01.027. PubMed DOI

Yang G.Y., Liao J., Kim K., Yurkow E.J., Yang C.S. Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols. Carcinogenesis. 1998;19:611–616. doi: 10.1093/carcin/19.4.611. PubMed DOI

Lambert J.D., Sang S., Yang C.S. Biotransformation of green tea polyphenols and the biological activities of those metabolites. Mol. Pharm. 2007;4:819–825. doi: 10.1021/mp700075m. PubMed DOI

Lewandowska U., Szewczyk K., Hrabec E., Janecka A., Gorlach S. Overview of metabolism and bioavailability enhancement of polyphenols. J. Agric. Food Chem. 2013;61:12183–12199. doi: 10.1021/jf404439b. PubMed DOI

Khan N., Mukhtar H. Tea and health: Studies in humans. Curr. Pharm. Des. 2013;19:6141–6147. doi: 10.2174/1381612811319340008. PubMed DOI PMC

Lu H., Meng X., Yang C.S. Enzymology of methylation of tea catechins and inhibition of catechol-O-methyltransferase by (−)-epigallocatechin gallate. Drug Metab. Dispos. 2003;31:572–579. doi: 10.1124/dmd.31.5.572. PubMed DOI

Weng Z., Greenhaw J., Salminen W.F., Shi Q. Mechanisms for epigallocatechin gallate induced inhibition of drug metabolizing enzymes in rat liver microsomes. Toxicol. Lett. 2012;214:328–338. doi: 10.1016/j.toxlet.2012.09.011. PubMed DOI

Feng W.Y. Metabolism of green tea catechins: An overview. Curr. Drug Metab. 2006;7:755–809. doi: 10.2174/138920006778520552. PubMed DOI

Chow H.H., Hakim I.A., Vining D.R., Crowell J.A., Tome M.E., Ranger-Moore J., Cordova C.A., Mikhael D.M., Briehl M.M., Alberts D.S. Modulation of human glutathione s-transferases by polyphenon e intervention. Cancer Epidemiol. Biomark. Prev. 2007;16:1662–1666. doi: 10.1158/1055-9965.EPI-06-0830. PubMed DOI

Kanwal R., Pandey M., Bhaskaran N., Maclennan G.T., Fu P., Ponsky L.E., Gupta S. Protection against oxidative DNA damage and stress in human prostate by glutathione S-transferase P1. Mol. Carcinog. 2014;53:8–18. doi: 10.1002/mc.21939. PubMed DOI PMC

Maliakal P.P., Coville P.F., Wanwimolruk S. Tea consumption modulates hepatic drug metabolizing enzymes in Wistar rats. J. Pharm. Pharmacol. 2001;53:569–577. doi: 10.1211/0022357011775695. PubMed DOI

Matoušková P., Bártíková H., Boušová I., Szotáková B., Martin J., Skorkovská J., Hanušová V., Tománková V., Anzenbacherová E., Lišková B., et al. Effect of defined green tea extract in various dosage schemes on drug-metabolizing enzymes in mice in vivo. J. Funct. Foods. 2014;10:327–335. doi: 10.1016/j.jff.2014.06.026. DOI

Pandey M., Shukla S., Gupta S. Promoter demethylation and chromatin remodeling by green tea polyphenols leads to re-expression of GSTP1 in human prostate cancer cells. Int. J. Cancer. 2010;126:2520–2533. doi: 10.1002/ijc.24988. PubMed DOI PMC

Nishimuta H., Ohtani H., Tsujimoto M., Ogura K., Hiratsuka A., Sawada Y. Inhibitory effects of various beverages on human recombinant sulfotransferase isoforms SULT1A1 and SULT1A3. Biopharm. Drug Dispos. 2007;28:491–500. doi: 10.1002/bdd.579. PubMed DOI

Tamura H., Matsui M. Inhibitory effects of green tea and grape juice on the phenol sulfotransferase activity of mouse intestines and human colon carcinoma cell line, Caco-2. Biol. Pharm. Bull. 2000;23:695–699. doi: 10.1248/bpb.23.695. PubMed DOI

Lorenz M., Paul F., Moobed M., Baumann G., Zimmermann B.F., Stangl K., Stangl V. The activity of catechol-O-methyltransferase (COMT) is not impaired by high doses of epigallocatechin-3-gallate (EGCG) in vivo. Eur. J. Pharmacol. 2014;740:645–651. doi: 10.1016/j.ejphar.2014.06.014. PubMed DOI

Zhu B.T., Shim J.Y., Nagai M., Bai H.W. Molecular modelling study of the mechanism of high-potency inhibition of human catechol-O-methyltransferase by (−)-epigallocatechin-3-O-gallate. Xenobiotica. 2008;38:130–146. doi: 10.1080/00498250701744641. PubMed DOI

Weisz J., Fritz-Wolz G., Clawson G.A., Benedict C.M., Abendroth C., Creveling C.R. Induction of nuclear catechol-O-methyltransferase by estrogens in hamster kidney: Implications for estrogen-induced renal cancer. Carcinogenesis. 1998;19:1307–1312. doi: 10.1093/carcin/19.7.1307. PubMed DOI

Aoyama N., Tsunoda M., Imai K. Improved assay for catechol-O-methyltransferase activity utilizing norepinephrine as an enzymatic substrate and reversed-phase high-performance liquid chromatography with fluorescence detection. J. Chromatogr. A. 2005;1074:47–51. doi: 10.1016/j.chroma.2005.03.037. PubMed DOI

Ye L., Zhang Y. Total intracellular accumulation levels of dietary isothiocyanates determine their activity in elevation of cellular glutathione and induction of Phase 2 detoxification enzymes. Carcinogenesis. 2001;22:1987–1992. doi: 10.1093/carcin/22.12.1987. PubMed DOI

Frame L.T., Ozawa S., Nowell S.A., Chou H.C., DeLongchamp R.R., Doerge D.R., Lang N.P., Kadlubar F.F. A simple colorimetric assay for phenotyping the major human thermostable phenol sulfotransferase (SULT1A1) using platelet cytosols. Drug Metab. Dispos. 2000;28:1063–1068. PubMed

Letelier M.E., Pimentel A., Pino P., Lepe A.M., Faundez M., Aracena P., Speisky H. Microsomal UDP-glucuronyltransferase in rat liver: Oxidative activation. Basic Clin. Pharmacol. Toxicol. 2005;96:480–486. doi: 10.1111/j.1742-7843.2005.pto_96612.x. PubMed DOI

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...