Antiproliferative Effects of Hop-derived Prenylflavonoids and Their Influence on the Efficacy of Oxaliplatine, 5-fluorouracil and Irinotecan in Human ColorectalC Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P303/12/G163
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000841
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31010128
PubMed Central
PMC6520918
DOI
10.3390/nu11040879
PII: nu11040879
Knihovny.cz E-zdroje
- Klíčová slova
- 5-fluorouracil, caspase activity, colorectal carcinoma cells, irinotecan, isoxanthohumol, naringenin, oxaliplatin, prenylflavonoids,
- MeSH
- antioxidancia MeSH
- Caco-2 buňky MeSH
- fixní kombinace léků MeSH
- flavanony farmakologie terapeutické užití MeSH
- flavonoidy farmakologie terapeutické užití MeSH
- fluoruracil terapeutické užití MeSH
- fytogenní protinádorové látky farmakologie terapeutické užití MeSH
- Humulus chemie MeSH
- irinotekan terapeutické užití MeSH
- kaspasy metabolismus MeSH
- kolorektální nádory farmakoterapie metabolismus MeSH
- lékové interakce * MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- oxaliplatin terapeutické užití MeSH
- pivo * škodlivé účinky MeSH
- propiofenony farmakologie terapeutické užití MeSH
- protinádorové látky farmakologie terapeutické užití MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rostlinné extrakty farmakologie terapeutické užití MeSH
- stravovací zvyklosti MeSH
- výsledek terapie MeSH
- xantony farmakologie terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 6-prenylnaringenin MeSH Prohlížeč
- 8-prenylnaringenin MeSH Prohlížeč
- antioxidancia MeSH
- fixní kombinace léků MeSH
- flavanony MeSH
- flavonoidy MeSH
- fluoruracil MeSH
- fytogenní protinádorové látky MeSH
- irinotekan MeSH
- isoxanthohumol MeSH Prohlížeč
- kaspasy MeSH
- oxaliplatin MeSH
- propiofenony MeSH
- protinádorové látky MeSH
- reaktivní formy kyslíku MeSH
- rostlinné extrakty MeSH
- xanthohumol MeSH Prohlížeč
- xantony MeSH
Beer, the most popular beverage containing hops, is also frequently consumed by cancer patients. Moreover, non-alcoholic beer, owing to its nutritional value and high content of biological active compounds, is sometimes recommended to patients by oncologists. However, the potential benefits and negatives have to date not been sufficiently evaluated. The present study was designed to examine the effects of four main hop-derived prenylflavonoids on the viability, reactive oxygen species (ROS) formation, activity of caspases, and efficiency of the chemotherapeutics 5-fluorouracil (5-FU), oxaliplatin (OxPt) and irinotecan (IRI) in colorectal cancer cell lines SW480, SW620 and CaCo-2. All the prenylflavonoids exerted substantial antiproliferative effects in all cell lines, with xanthohumol being the most effective (IC50 ranging from 3.6 to 7.3 µM). Isoxanthohumol increased ROS formation and the activity of caspases-3/7, but 6-prenylnaringenin and 8-prenylnaringenin exerted antioxidant properties. As 6-prenylnaringenin acted synergistically with IRI, its potential in combination therapy deserves further study. However, other prenylflavonoids acted antagonistically with all chemotherapeutics at least in one cell line. Therefore, consumption of beer during chemotherapy with 5-FU, OxPt and IRI should be avoided, as the prenylflavonoids in beer could decrease the efficacy of the treatment.
Zobrazit více v PubMed
Ferlay J., Soerjomataram I., Dikshit R., Eser S., Mathers C., Rebelo M., Parkin D.M., Forman D., Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer. 2015;136:E359–E386. doi: 10.1002/ijc.29210. PubMed DOI
Sag A.A., Selcukbiricik F., Mandel N.M. Evidence-based medical oncology and interventional radiology paradigms for liver-dominant colorectal cancer metastases. World J. Gastroenterol. 2016;22:3127–3149. doi: 10.3748/wjg.v22.i11.3127. PubMed DOI PMC
Wilson T.R., Johnston P.G., Longley D.B. Anti-apoptotic mechanisms of drug resistance in cancer. Curr. Cancer Drug Targets. 2009;9:307–319. doi: 10.2174/156800909788166547. PubMed DOI
Hammond W.A., Swaika A., Mody K. Pharmacologic resistance in colorectal cancer: A review. Ther. Adv. Med. Oncol. 2016;8:57–84. doi: 10.1177/1758834015614530. PubMed DOI PMC
Prochazkova D., Bousova I., Wilhelmova N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia. 2011;82:513–523. doi: 10.1016/j.fitote.2011.01.018. PubMed DOI
Rossi M., Bosetti C., Negri E., Lagiou P., La Vecchia C. Flavonoids, proanthocyanidins, and cancer risk: A network of case-control studies from Italy. Nutr. Cancer. 2010;62:871–877. doi: 10.1080/01635581.2010.509534. PubMed DOI
Miranda C.L., Stevens J.F., Ivanov V., McCall M., Frei B., Deinzer M.L., Buhler D.R. Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavanones in vitro. J. Agric. Food Chem. 2000;48:3876–3884. doi: 10.1021/jf0002995. PubMed DOI
Gerhauser C. Broad spectrum anti-infective potential of xanthohumol from hop (Humulus lupulus L.) in comparison with activities of other hop constituents and xanthohumol metabolites. Mol. Nutr. Food Res. 2005;49:827–831. doi: 10.1002/mnfr.200500091. PubMed DOI
Legette L.L., Luna A.Y., Reed R.L., Miranda C.L., Bobe G., Proteau R.R., Stevens J.F. Xanthohumol lowers body weight and fasting plasma glucose in obese male Zucker fa/fa rats. Phytochemistry. 2013;91:236–241. doi: 10.1016/j.phytochem.2012.04.018. PubMed DOI
Dorn C., Massinger S., Wuzik A., Heilmann J., Hellerbrand C. Xanthohumol suppresses inflammatory response to warm ischemia-reperfusion induced liver injury. Exp. Mol. Pathol. 2013;94:10–16. doi: 10.1016/j.yexmp.2012.05.003. PubMed DOI
Erkkola R., Vervarcke S., Vansteelandt S., Rompotti P., De Keukeleire D., Heyerick A. A randomized, double-blind, placebo-controlled, cross-over pilot study on the use of a standardized hop extract to alleviate menopausal discomforts. Phytomedicine. 2010;17:389–396. doi: 10.1016/j.phymed.2010.01.007. PubMed DOI
Pan L., Becker H., Gerhauser C. Xanthohumol induces apoptosis in cultured 40-16 human colon cancer cells by activation of the death receptor- and mitochondrial pathway. Mol. Nutr. Food Res. 2005;49:837–843. doi: 10.1002/mnfr.200500065. PubMed DOI
Sun Z., Zhou C., Liu F., Zhang W., Chen J., Pan Y., Ma L., Liu Q., Du Y., Yang J., et al. Inhibition of breast cancer cell survival by Xanthohumol via modulation of the Notch signaling pathway in vivo and in vitro. Oncol. Lett. 2018;15:908–916. doi: 10.3892/ol.2017.7434. PubMed DOI PMC
Festa M., Capasso A., D’Acunto C.W., Masullo M., Rossi A.G., Pizza C., Piacente S. Xanthohumol induces apoptosis in human malignant glioblastoma cells by increasing reactive oxygen species and activating MAPK pathways. J. Nat. Prod. 2011;74:2505–2513. doi: 10.1021/np200390x. PubMed DOI
Saito K., Matsuo Y., Imafuji H., Okubo T., Maeda Y., Sato T., Shamoto T., Tsuboi K., Morimoto M., Takahashi H., et al. Xanthohumol inhibits angiogenesis by suppressing nuclear factor-kappaB activation in pancreatic cancer. Cancer Sci. 2018;109:132–140. doi: 10.1111/cas.13441. PubMed DOI PMC
Krajnovic T., Kaluderovic G.N., Wessjohann L.A., Mijatovic S., Maksimovic-Ivanic D. Versatile antitumor potential of isoxanthohumol: Enhancement of paclitaxel activity in vivo. Pharmacol. Res. 2016;105:62–73. doi: 10.1016/j.phrs.2016.01.011. PubMed DOI
Gerhauser C. Beer constituents as potential cancer chemopreventive agents. Eur. J. Cancer. 2005;41:1941–1954. doi: 10.1016/j.ejca.2005.04.012. PubMed DOI
Stevens J.F., Page J.E. Xanthohumol and related prenylflavonoids from hops and beer: To your good health! Phytochemistry. 2004;65:1317–1330. doi: 10.1016/j.phytochem.2004.04.025. PubMed DOI
Galadari S., Rahman A., Pallichankandy S., Thayyullathil F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic. Biol. Med. 2017;104:144–164. doi: 10.1016/j.freeradbiomed.2017.01.004. PubMed DOI
Chou T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006;58:621–681. doi: 10.1124/pr.58.3.10. PubMed DOI
Plazar J., Zegura B., Lah T.T., Filipic M. Protective effects of xanthohumol against the genotoxicity of benzo(a)pyrene (BaP), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and tert-butyl hydroperoxide (t-BOOH) in HepG2 human hepatoma cells. Mutat. Res. 2007;632:1–8. doi: 10.1016/j.mrgentox.2007.03.013. PubMed DOI
Yu L., Zhang F., Hu Z., Ding H., Tang H., Ma Z., Zhao X. Novel prenylated bichalcone and chalcone from Humulus lupulus and their quinone reductase induction activities. Fitoterapia. 2014;93:115–120. doi: 10.1016/j.fitote.2013.12.019. PubMed DOI
Dietz B.M., Kang Y.H., Liu G., Eggler A.L., Yao P., Chadwick L.R., Pauli G.F., Farnsworth N.R., Mesecar A.D., van Breemen R.B., et al. Xanthohumol isolated from Humulus lupulus Inhibits menadione-induced DNA damage through induction of quinone reductase. Chem. Res. Toxicol. 2005;18:1296–1305. doi: 10.1021/tx050058x. PubMed DOI PMC
Jongthawin J., Techasen A., Loilome W., Yongvanit P., Namwat N. Anti-inflammatory agents suppress the prostaglandin E2 production and migration ability of cholangiocarcinoma cell lines. Asian Pac. J. Cancer Prev. 2012;13:47–51. PubMed
Guo D., Zhang B., Liu S., Jin M. Xanthohumol induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI3K/Akt/mTOR-kinase in human gastric cancer cells. Biomed. Pharmacother. 2018;106:1300–1306. doi: 10.1016/j.biopha.2018.06.166. PubMed DOI
Hudcova T., Bryndova J., Fialova K., Fiala J., Karabin M., Jelinek L., Dostalek P. Antiproliferative effects of prenylflavonoids from hops on human colon cancer cell lines. J. Inst. Brew. 2014;120:225–230. doi: 10.1002/jib.139. DOI
Bartmanska A., Tronina T., Poplonski J., Milczarek M., Filip-Psurska B., Wietrzyk J. Highly Cancer Selective Antiproliferative Activity of Natural Prenylated Flavonoids. Molecules. 2018;23:2922. doi: 10.3390/molecules23112922. PubMed DOI PMC
Stompor M., Uram L., Podgorski R. In Vitro Effect of 8-Prenylnaringenin and Naringenin on Fibroblasts and Glioblastoma Cells-Cellular Accumulation and Cytotoxicity. Molecules. 2017;22:1092. doi: 10.3390/molecules22071092. PubMed DOI PMC
Angelis I.D., Turco L. Caco-2 cells as a model for intestinal absorption. Curr. Protoc. Toxicol. 2011;47 doi: 10.1002/0471140856.tx2006s47. PubMed DOI
Strathmann J., Klimo K., Sauer S.W., Okun J.G., Prehn J.H., Gerhauser C. Xanthohumol-induced transient superoxide anion radical formation triggers cancer cells into apoptosis via a mitochondria-mediated mechanism. FASEB J. 2010;24:2938–2950. doi: 10.1096/fj.10-155846. PubMed DOI
Blanquer-Rossello M.M., Oliver J., Valle A., Roca P. Effect of xanthohumol and 8-prenylnaringenin on MCF-7 breast cancer cells oxidative stress and mitochondrial complexes expression. J. Cell. Biochem. 2013;114:2785–2794. doi: 10.1002/jcb.24627. PubMed DOI
Yang J.Y., Della-Fera M.A., Rayalam S., Baile C.A. Effect of xanthohumol and isoxanthohumol on 3T3-L1 cell apoptosis and adipogenesis. Apoptosis. 2007;12:1953–1963. doi: 10.1007/s10495-007-0130-4. PubMed DOI
Brunelli E., Minassi A., Appendino G., Moro L. 8-Prenylnaringenin, inhibits estrogen receptor-alpha mediated cell growth and induces apoptosis in MCF-7 breast cancer cells. J. Steroid Biochem. Mol. Biol. 2007;107:140–148. doi: 10.1016/j.jsbmb.2007.04.003. PubMed DOI
Totta P., Acconcia F., Leone S., Cardillo I., Marino M. Mechanisms of naringenin-induced apoptotic cascade in cancer cells: Involvement of estrogen receptor alpha and beta signalling. IUBMB Life. 2004;56:491–499. doi: 10.1080/15216540400010792. PubMed DOI
Nguyen-Vu T., Wang J., Mesmar F., Mukhopadhyay S., Saxena A., McCollum C.W., Gustafsson J.A., Bondesson M., Williams C. Estrogen receptor beta reduces colon cancer metastasis through a novel miR-205—PROX1 mechanism. Oncotarget. 2016;7:42159–42171. doi: 10.18632/oncotarget.9895. PubMed DOI PMC
Bayat Mokhtari R., Homayouni T.S., Baluch N., Morgatskaya E., Kumar S., Das B., Yeger H. Combination therapy in combating cancer. Oncotarget. 2017;8:38022–38043. doi: 10.18632/oncotarget.16723. PubMed DOI PMC
Zhang F.Y., Du G.J., Zhang L., Zhang C.L., Lu W.L., Liang W. Naringenin enhances the anti-tumor effect of doxorubicin through selectively inhibiting the activity of multidrug resistance-associated proteins but not P-glycoprotein. Pharm. Res. 2009;26:914–925. doi: 10.1007/s11095-008-9793-y. PubMed DOI
Fu Y., Yang G., Zhu F., Peng C., Li W., Li H., Kim H.G., Bode A.M., Dong Z., Dong Z. Antioxidants decrease the apoptotic effect of 5-Fu in colon cancer by regulating Src-dependent caspase-7 phosphorylation. Cell Death Dis. 2014;5:e983. doi: 10.1038/cddis.2013.509. PubMed DOI PMC
Huang Y.F., Zhu D.J., Chen X.W., Chen Q.K., Luo Z.T., Liu C.C., Wang G.X., Zhang W.J., Liao N.Z. Curcumin enhances the effects of irinotecan on colorectal cancer cells through the generation of reactive oxygen species and activation of the endoplasmic reticulum stress pathway. Oncotarget. 2017;8:40264–40275. doi: 10.18632/oncotarget.16828. PubMed DOI PMC
Mhaidat N.M., Bouklihacene M., Thorne R.F. 5-Fluorouracil-induced apoptosis in colorectal cancer cells is caspase-9-dependent and mediated by activation of protein kinase C-delta. Oncol. Lett. 2014;8:699–704. doi: 10.3892/ol.2014.2211. PubMed DOI PMC
Preparation of Hop Estrogen-Active Material for Production of Food Supplements