Toxicological investigation of lilial

. 2023 Oct 28 ; 13 (1) : 18536. [epub] 20231028

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37898679
Odkazy

PubMed 37898679
PubMed Central PMC10613275
DOI 10.1038/s41598-023-45598-y
PII: 10.1038/s41598-023-45598-y
Knihovny.cz E-zdroje

Lilial (also called lysmeral) is a fragrance ingredient presented in many everyday cosmetics and household products. The concentrations of lilial in the final products is rather low. Its maximum concentration in cosmetics was limited and recently, its use in cosmetics products was prohibited in the EU due to the classification as reproductive toxicant. Additionally, according to the European Chemicals Agency, it was under assessment as one of the potential endocrine disruptors, i.e. a substance that may alter the function of the endocrine system and, as a result, cause health problems. Its ability to act as an androgen receptor agonist and the estrogenic and androgenic activity of its metabolites, to the best of our knowledge, have not yet been tested. The aim of this work was to determine the intestinal absorption, cytotoxicity, nephrotoxicity, mutagenicity, activation of cellular stress-related signal pathways and, most importantly, to test the ability to disrupt the endocrine system of lilial and its Phase I metabolites. This was tested using set of in vitro assays including resazurin assay, the CHO/HPRT mutation assay, γH2AX biomarker-based genotoxicity assay, qPCR and in vitro reporter assays based on luminescence of luciferase for estrogen, androgen, NF-κB and NRF2 signalling pathway. It was determined that neither lilial nor its metabolites have a negative effect on cell viability in the concentration range from 1 nM to 100 µM. Using human cell lines HeLa9903 and MDA-kb2, it was verified that this substance did not have agonistic activity towards estrogen or androgen receptor, respectively. Lilial metabolites, generated by incubation with the rat liver S9 fraction, did not show the ability to bind to estrogen or androgen receptors. Neither lilial nor its metabolites showed a nephrotoxic effect on human renal tubular cells (RPTEC/TERT1 line) and at the same time they were unable to activate the NF-κB and NRF2 signalling pathway at a concentration of 50 µM (HEK 293/pGL4.32 or pGL4.37). Neither lilial nor its metabolites showed mutagenic activity in the HPRT gene mutation test in CHO-K1 cells, nor were they able to cause double-strand breaks in DNA (γH2AX biomarker) in CHO-K1 and HeLa cells. In our study, no negative effects of lilial or its in vitro metabolites were observed up to 100 µM using different in vitro tests.

Zobrazit více v PubMed

ECHA. Substance Infocard: 2-(4-tert-butylbenzyl)propionaldehyde, https://echa.europa.eu/substance-information/-/substanceinfo/100.001.173 (2023).

Usta J, et al. Fragrance chemicals lyral and lilial decrease viability of HaCat cells’ by increasing free radical production and lowering intracellular ATP level: Protection by antioxidants. Toxicol. In Vitro. 2013;27:339–348. doi: 10.1016/j.tiv.2012.08.020. PubMed DOI

Api AM, et al. RIFM fragrance ingredient safety assessment, p-t-butyl-α-methylhydrocinnamic aldehyde, CAS Registry Number 80-54-6. Food Chem. Toxicol. 2020;141:111430. doi: 10.1016/j.fct.2020.111430. PubMed DOI

Bernauer, U. et al. "SCCS OPINION ON the safety of Butylphenyl methylpropional (p-BMHCA) in cosmetic products-Submission II" SCCS/1591/17-Final version, https://health.ec.europa.eu/system/files/2021-08/sccs_o_213_0.pd (2019).

Di Sotto A, et al. Genotoxicity assessment of some cosmetic and food additives. Regul. Toxicol. Pharmacol. 2014;68:16–22. doi: 10.1016/j.yrtph.2013.11.003. PubMed DOI

Kobets T, et al. In ovo testing of flavor and fragrance materials in Turkey egg genotoxicity assay (TEGA), comparison of results to in vitro and in vivo data. Food Chem. Toxicol. 2018;115:228–243. doi: 10.1016/j.fct.2018.03.015. PubMed DOI

WHO. Endocrine disrupting chemicals, https://apps.who.int/iris/bitstream/handle/10665/78102/WHO_HSE_PHE_IHE_2013.1_eng.pdf (2012).

Charles AK, Darbre PD. Oestrogenic activity of benzyl salicylate, benzyl benzoate and butylphenylmethylpropional (Lilial) in MCF7 human breast cancer cells in vitro. J. Appl. Toxicol. 2009;29:422–434. doi: 10.1002/jat.1429. PubMed DOI

Lalko J, Isola D, Api AM. Ethanol and diethyl phthalate: Vehicle effects in the local lymph node assay. Int. J. Toxicol. 2004;23:171–177. doi: 10.1080/10915810490471343. PubMed DOI

Roberts DW, et al. Mechanistic applicability domain classification of a local lymph node assay dataset for skin sensitization. Chem. Res. Toxicol. 2007;20:1019–1030. doi: 10.1021/tx700024w. PubMed DOI

Heisterberg MV, Menné T, Johansen JD. Contact allergy to the 26 specific fragrance ingredients to be declared on cosmetic products in accordance with the EU cosmetics directive. Cont. Dermat. 2011;65:266–275. doi: 10.1111/j.1600-0536.2011.01962.x. PubMed DOI

Kimber I, Basketter DA, Gerberick GF, Dearman RJ. Allergic contact dermatitis. Int. Immunopharmacol. 2002;2:201–211. doi: 10.1016/S1567-5769(01)00173-4. PubMed DOI

Vallion R, Kerdine-Römer S. Regulation of the immune response to contact sensitizers by Nrf2. Cont. Dermat. 2022;87:13–19. doi: 10.1111/cod.14073. PubMed DOI

Gao W, et al. Dissecting the crosstalk between Nrf2 and NF-κB response pathways in drug-induced toxicity. Front. Cell Dev. Biol. 2022 doi: 10.3389/fcell.2021.809952. PubMed DOI PMC

Ade N, et al. HMOX1 and NQO1 genes are upregulated in response to contact sensitizers in dendritic cells and THP-1 cell line: Role of the Keap1/Nrf2 pathway. Toxicol. Sci. 2008;107:451–460. doi: 10.1093/toxsci/kfn243. PubMed DOI

OECD. Test No. 442D: In Vitro Skin Sensitisation, https://www.oecd-ilibrary.org/content/publication/9789264229822-en (2022).

Natsch A. The Nrf2-Keap1-ARE toxicity pathway as a cellular sensor for skin sensitizers: Functional relevance and a hypothesis on innate reactions to skin sensitizers. Toxicol. Sci. 2009;113:284–292. doi: 10.1093/toxsci/kfp228. PubMed DOI

Natsch A, et al. A dataset on 145 chemicals tested in alternative assays for skin sensitization undergoing prevalidation. J. Appl. Toxicol. 2013;33:1337–1352. doi: 10.1002/jat.2868. PubMed DOI

UNION, P. Regulation (EC) No 1223/2009 of the European Parliament and of the Council, https://health.ec.europa.eu/system/files/2016-11/cosmetic_1223_2009_regulation_en_0.pdf (2009).

Tran VN, et al. In silico and in vitro studies of mycotoxins and their cocktails; their toxicity and its mitigation by silibinin pre-treatment. Toxins. 2020;12:148. doi: 10.3390/toxins12030148. PubMed DOI PMC

Maron DM, Ames BN. Revised methods for the salmonella mutagenicity test. Mutat. Res. 1983;113:173–215. doi: 10.1016/0165-1161(83)90010-9. PubMed DOI

Li AP. Use of aroclor 1254-induced rat-liver homogenate in the assaying of promutagens in the Chinese-hamster ovary cell hypoxanthine-guanine phosphoribosyl transferase gene mutation assay. Environ. Mutagen. 1984;6:473–474. doi: 10.1002/em.2860060407. PubMed DOI

ASTM. Standard Guide for Performance of Chinese Hamster Ovary Cell/Hypoxanthine Guanine Phosphoribosyl Transferase Gene Mutation Assay, http://www.astm.org/cgi-bin/resolver.cgi?E1262-88(2018) (2018). PubMed

Kang JS, Choi J-S, Kim W-K, Lee Y-J, Park J-W. Estrogenic potency of bisphenol S, polyethersulfone and their metabolites generated by the rat liver S9 fractions on a MVLN cell using a luciferase reporter gene assay. Reprod. Biol. Endocrinol. 2014;12:102. doi: 10.1186/1477-7827-12-102. PubMed DOI PMC

Riss, T. L. et al. in Assay Guidance Manual (eds G.S. Sittampalam, N.P. Coussens, & Brimacombe. K.) (2016).

Agency, U. S. E. P. Endocrine Disruptor Screening Program Test Guidelines - OPPTS 890.1300: Estrogen Receptor Transcriptional Activation (Human Cell Line (HeLa-9903)) [EPA 740-C-09-006], https://www.regulations.gov/document?D=EPA-HQ-OPPT-2009-0576-0006 (2009).

OECD. Test No. 455: Performance-Based Test Guideline for Stably Transfected Transactivation In Vitro Assays to Detect Estrogen Receptor Agonists and Antagonists, https://www.oecd-ilibrary.org/content/publication/9789264265295-en (2021).

EPA. Endocrine Disruptor Screening Program Test Guidelines OPPTS 890.1300: Estrogen Receptor Transcriptional Activation (Human Cell Line (HeLa-9903)), https://ntp.niehs.nih.gov/sites/default/files/iccvam/suppdocs/feddocs/epa/epa-890-1300.pdf (2009).

OECD. Test No. 476: In Vitro Mammalian Cell Gene Mutation Tests using the Hprt and xprt genes, https://www.oecd-ilibrary.org/content/publication/9789264243088-en (2015).

Johnson, G. E. in Genetic Toxicology: Principles and Methods (eds James M. Parry & Elizabeth M. Parry) 55–67 (Springer, 2012).

Nestmann ER, Brillinger RL, Gilman JP, Rudd CJ, Swierenga SH. Recommended protocols based on a survey of current practice in genotoxicity testing laboratories: II. Mutation in Chinese hamster ovary, V79 Chinese hamster lung and L5178Y mouse lymphoma cells. Mutat. Res. 1991;246:255–284. doi: 10.1016/0027-5107(91)90048-S. PubMed DOI

Zhang SH, et al. Assessment of the cytotoxicity and genotoxicity of haloacetic acids using microplate-based cytotoxicity test and CHO/HGPRT gene mutation assay. Mutat. Res.-Gen. Tox. En. 2010;703:174–179. doi: 10.1016/j.mrgentox.2010.08.014. PubMed DOI

Rafehi H, et al. Clonogenic assay: Adherent cells. J. Vis. Exp. 2011 doi: 10.3791/2573. PubMed DOI PMC

Schätz, M., Křížkovská, B. & Jablonská, E. (Zenodo, https://zenodo.org/record/7673199#.ZD6mTN1BxaQ, 2023). PubMed PMC

Bustin SA, et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI

Zhao YH, et al. Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors. J. Pharm. Sci. 2001;90:749–784. doi: 10.1002/jps.1031. PubMed DOI

Vähäkangas, K. et al. in Biomarkers in Toxicology (ed Ramesh C. Gupta) 325–360 (Academic Press, 2014).

Wang YK, et al. Metabolic activation of the toxic natural products from herbal and dietary supplements leading to toxicities. Front. Pharmacol. 2021;12:758468. doi: 10.3389/fphar.2021.758468. PubMed DOI PMC

Scherer M, et al. Human metabolism and excretion kinetics of the fragrance lysmeral after a single oral dosage. Int. J. Hyg. Environ. Health. 2017;220:123–129. doi: 10.1016/j.ijheh.2016.09.005. PubMed DOI

Murawski A, et al. Metabolites of the fragrance 2-(4-tert-butylbenzyl)propionaldehyde (lysmeral) in urine of children and adolescents in Germany: Human biomonitoring results of the German Environmental Survey 2014–2017 (GerES V) Int. J. Hyg. Environ. Health. 2020;229:113594. doi: 10.1016/j.ijheh.2020.113594. PubMed DOI

Laue H, et al. Benzoyl-CoA conjugate accumulation as an initiating event for male reprotoxic effects in the rat? Structure–activity analysis, species specificity, and in vivo relevance. Arch. Toxicol. 2020;94:4115–4129. doi: 10.1007/s00204-020-02918-9. PubMed DOI

Hareng L, et al. Towards the mechanism of spermatotoxicity of p-tert-butyl-alpha-methylhydrocinnamic aldehyde: Inhibition of late stage ex-vivo spermatogenesis in rat seminiferous tubule cultures by para-tert-butyl- benzoic acid. Arch. Toxicol. 2023;97:279–294. doi: 10.1007/s00204-022-03379-y. PubMed DOI

ISO. Biological evaluation of medical devices, http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=36406 (2009).

Hiller-Sturmhöfel S, Bartke A. The endocrine system: An overview. Alcohol. Health Res. World. 1998;22:153–164. PubMed PMC

De Coster S, van Larebeke N. Endocrine-disrupting chemicals: Associated disorders and mechanisms of action. J. Environ. Public Health. 2012;2012:713696. doi: 10.1155/2012/713696. PubMed DOI PMC

Klein CB, Broday L, Costa M. Mutagenesis assays in mammalian cells. Curr. Prot. Toxicol. 1999;1:3.3.1–3.3.7. doi: 10.1002/0471140856.tx0303s01. PubMed DOI

Hopp N, Hagen J, Aggeler B, Kalyuzhny AE. Automated high-content screening of γ-H2AX Expression in HeLa cells. Sign. Transduct. Immunohistochem. Meth. Prot. 2017 doi: 10.1007/978-1-4939-6759-9_20. PubMed DOI

Smart DJ, Ahmedi KP, Harvey JS, Lynch AM. Genotoxicity screening via the gammaH2AX by flow assay. Mutat. Res. 2011;715:25–31. doi: 10.1016/j.mrfmmm.2011.07.001. PubMed DOI

Vormann MK, et al. Implementation of a human renal proximal tubule on a chip for nephrotoxicity and drug interaction studies. J. Pharm. Sci. 2021;110:1601–1614. doi: 10.1016/j.xphs.2021.01.028. PubMed DOI

Fuchs TC, Hewitt P. Biomarkers for drug-induced renal damage and nephrotoxicity: An overview for applied toxicology. AAPS J. 2011;13:615–631. doi: 10.1208/s12248-011-9301-x. PubMed DOI PMC

Qiu X, Miao Y, Geng X, Zhou X, Li B. Evaluation of biomarkers for in vitro prediction of drug-induced nephrotoxicity in RPTEC/TERT1 cells. Toxicol. Res. 2020;9:91–100. doi: 10.1093/toxres/tfaa005. PubMed DOI PMC

Herget-Rosenthal S, Pietruck F, Volbracht L, Philipp T, Kribben A. Serum cystatin C–a superior marker of rapidly reduced glomerular filtration after uninephrectomy in kidney donors compared to creatinine. Clin. Nephrol. 2005;64:41–46. doi: 10.5414/cnp64041. PubMed DOI

Mathews PM, Levy E. Cystatin C in aging and in Alzheimer’s disease. Ageing Res. Rev. 2016;32:38–50. doi: 10.1016/j.arr.2016.06.003. PubMed DOI PMC

Gardner J, Ghorpade A. Tissue inhibitor of metalloproteinase (TIMP)-1: The TIMPed balance of matrix metalloproteinases in the central nervous system. J. Neurosci. Res. 2003;74:801–806. doi: 10.1002/jnr.10835. PubMed DOI PMC

Su H, Lei CT, Zhang C. Interleukin-6 signaling pathway and its role in kidney disease: An update. Front. Immunol. 2017;8:405. doi: 10.3389/fimmu.2017.00405. PubMed DOI PMC

Wardyn JD, Ponsford AH, Sanderson CM. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem. Soc. Trans. 2015;43:621–626. doi: 10.1042/bst20150014. PubMed DOI PMC

Buendia I, et al. Nrf2–ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol. Therapeut. 2016;157:84–104. doi: 10.1016/j.pharmthera.2015.11.003. PubMed DOI

Kobayashi, A., Ohta, T. & Yamamoto, M. in Methods in Enzymology Vol. 378 (ed Helmut Sies & Lester Packer) 273–286 (Academic Press, 2004).

Pahl HL. Activators and target genes of Rel/NF-κB transcription factors. Oncogene. 1999;18:6853–6866. doi: 10.1038/sj.onc.1203239. PubMed DOI

Khandelwal N, et al. Nucleolar NF-κB/RelA mediates apoptosis by causing cytoplasmic relocalization of nucleophosmin. Cell Death Differ. 2011;18:1889–1903. doi: 10.1038/cdd.2011.79. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...