Sulfation of Phenolic Acids: Chemoenzymatic vs. Chemical Synthesis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-00043S
Czech Science Foundation
NU21-02-00135
Ministry of Health
PubMed
36499496
PubMed Central
PMC9736156
DOI
10.3390/ijms232315171
PII: ijms232315171
Knihovny.cz E-zdroje
- Klíčová slova
- aryl sulfotransferase, biotransformation, flavonoid metabolites, phenolic acids, sulfation,
- MeSH
- fosfoadenosinfosfosulfát * chemie metabolismus MeSH
- hydroxybenzoáty MeSH
- sírany metabolismus MeSH
- sulfotransferasy * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfoadenosinfosfosulfát * MeSH
- hydroxybenzoáty MeSH
- phenolic acid MeSH Prohlížeč
- sírany MeSH
- sulfotransferasy * MeSH
Phenolic acids are known flavonoid metabolites, which typically undergo bioconjugation during phase II of biotransformation, forming sulfates, along with other conjugates. Sulfated derivatives of phenolic acids can be synthesized by two approaches: chemoenzymatically by 3'-phosphoadenosine-5'-phosphosulfate (PAPS)-dependent sulfotransferases or PAPS-independent aryl sulfotransferases such as those from Desulfitobacterium hafniense, or chemically using SO3 complexes. Both approaches were tested with six selected phenolic acids (2-hydroxyphenylacetic acid (2-HPA), 3-hydroxyphenylacetic acid (3-HPA), 4-hydroxyphenylacetic acid (4-HPA), 3,4-dihydroxyphenylacetic acid (DHPA), 3-(4-hydroxyphenyl)propionic acid (4-HPP), and 3,4-dihydroxyphenylpropionic acid (DHPP)) to create a library of sulfated metabolites of phenolic acids. The sulfates of 3-HPA, 4-HPA, 4-HPP, DHPA, and DHPP were all obtained by the methods of chemical synthesis. In contrast, the enzymatic sulfation of monohydroxyphenolic acids failed probably due to enzyme inhibition, whereas the same reaction was successful for dihydroxyphenolic acids (DHPA and DHPP). Special attention was also paid to the counterions of the sulfates, a topic often poorly reported in synthetic works. The products obtained will serve as authentic analytical standards in metabolic studies and to determine their biological activity.
Zobrazit více v PubMed
Scalbert A., Williamson G. Dietary intake and bioavailability of polyphenols. J. Nutr. 2000;130:2073S–2085S. doi: 10.1093/jn/130.8.2073S. PubMed DOI
Cassidy A., O’Reilly E.J., Kay C., Sampson L., Franz M., Forman J.P., Curhan G., Rimm E.B. Habitual intake of flavonoid subclasses and incident hypertension in adults. Am. J. Clin. Nutr. 2011;93:338–347. doi: 10.3945/ajcn.110.006783. PubMed DOI PMC
Hooper L., Kroon P.A., Rimm E.B., Cohn J.S., Harvey I., Le Cornu K.A., Ryder J.J., Hall W.L., Cassidy A. Flavonoids, flavonoid-rich foods, and cardiovascular risk: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2008;88:38–50. doi: 10.1093/ajcn/88.1.38. PubMed DOI
Mink P.J., Scrafford C.G., Barraj L.M., Harnack L., Hong C.P., Nettleton J.A., Jacobs D.R., Jr. Flavonoid intake and cardiovascular disease mortality: A prospective study in postmenopausal women. Am. J. Clin. Nutr. 2007;85:895–909. doi: 10.1093/ajcn/85.3.895. PubMed DOI
McCullough M.L., Peterson J.J., Patel R., Jacques P.F., Shah R., Dwyer J.T. Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am. J. Clin. Nutr. 2012;95:454–464. doi: 10.3945/ajcn.111.016634. PubMed DOI PMC
Milenkovic D., Jude B., Morand C. miRNA as molecular target of polyphenols underlying their biological effects. Free Radic. Biol. Med. 2013;64:40–51. doi: 10.1016/j.freeradbiomed.2013.05.046. PubMed DOI
Mladěnka P., Zatloukalová L., Filipský T., Hrdina R. Cardiovascular effects of flavonoids are not caused only by direct antioxidant activity. Free Radic. Biol. Med. 2010;49:963–975. doi: 10.1016/j.freeradbiomed.2010.06.010. PubMed DOI
Forman H.J., Davies K.J., Ursini F. How do nutritional antioxidants really work: Nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic. Biol. Med. 2014;66:24–35. doi: 10.1016/j.freeradbiomed.2013.05.045. PubMed DOI PMC
Forman H.J., Ursini F. Para-hormesis: An innovative mechanism for the health protection brought by antioxidants in wine. Nutr. Aging. 2014;2:117–124. doi: 10.3233/NUA-130033. DOI
Del Rio D., Rodriguez-Mateos A., Spencer J.P., Tognolini M., Borges G., Crozier A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013;18:1818–1892. doi: 10.1089/ars.2012.4581. PubMed DOI PMC
Rothwell J.A., Urpi-Sarda M., Boto-Ordonez M., Llorach R., Farran-Codina A., Barupal D.K., Neveu V., Manach C., Andres-Lacueva C., Scalbert A. Systematic analysis of the polyphenol metabolome using the Phenol-Explorer database. Mol. Nutr. Food Res. 2016;60:203–211. doi: 10.1002/mnfr.201500435. PubMed DOI PMC
Almeida A.F., Borge G.I.A., Piskula M., Tudose A., Tudoreanu L., Valentová K., Williamson G., Santos C.N. Bioavailability of quercetin in humans with a focus on interindividual variation. Compr. Rev. Food Sci. Food Saf. 2018;17:714–731. doi: 10.1111/1541-4337.12342. PubMed DOI
Pimpao R.C., Ventura M.R., Ferreira R.B., Williamson G., Santos C.N. Phenolic sulfates as new and highly abundant metabolites in human plasma after ingestion of a mixed berry fruit purée. J. Nutr. 2015;113:454–463. doi: 10.1017/S0007114514003511. PubMed DOI
Al-Horani R.A., Desai U.R. Chemical sulfation of small molecules—Advances and challenges. Tetrahedron. 2010;66:2907–2918. doi: 10.1016/j.tet.2010.02.015. PubMed DOI PMC
Almeida A.F., Santos C.N., Ventura M.R. Synthesis of new sulfated and glucuronated metabolites of dietary phenolic compounds identified in human biological samples. J. Agric. Food Chem. 2017;65:6460–6466. doi: 10.1021/acs.jafc.6b05629. PubMed DOI
Gomes V.P., Torres C., Rodriguez-Borges J.E., Paiva-Martins F. A convenient synthesis of hydroxytyrosol monosulfate metabolites. J. Agric. Food Chem. 2015;63:9565–9571. doi: 10.1021/acs.jafc.5b04307. PubMed DOI
Gutierrez-Zetina S.M., Gonzalez-Manzano S., Perez-Alonso J.J., Gonzalez-Paramas A.M., Santos-Buelga C. Preparation and characterization of protocatechuic acid sulfates. Molecules. 2019;24:307. doi: 10.3390/molecules24020307. PubMed DOI PMC
Duenas M., Gonzalez-Manzano S., Surco-Laos F., Gonzalez-Paramas A., Santos-Buelga C. Characterization of sulfated quercetin and epicatechin metabolites. J. Agric. Food Chem. 2012;60:3592–3598. doi: 10.1021/jf2050203. PubMed DOI
Gill D.M., Male L., Jones A.M. Sulfation made simple: A strategy for synthesising sulfated molecules. Chem. Commun. 2019;55:4319–4322. doi: 10.1039/C9CC01057B. PubMed DOI
Raghuraman A., Riaz M., Hindle M., Desai U.R. Rapid and efficient microwave-assisted synthesis of highly sulfated organic scaffolds. Tetrahedron Lett. 2007;48:6754–6758. doi: 10.1016/j.tetlet.2007.07.100. PubMed DOI PMC
Needs P.W., Kroon P.A. Convenient syntheses of metabolically important quercetin glucuronides and sulfates. Tetrahedron. 2006;62:6862–6868. doi: 10.1016/j.tet.2006.04.102. DOI
Todd J.S., Zimmerman R.C., Crews P., Alberte R.S. The antifouling activity of natural and synthetic phenol acid sulphate esters. Phytochemistry. 1993;34:401–404. doi: 10.1016/0031-9422(93)80017-M. DOI
Soidinsalo O., Wähälä K. Synthesis of daidzein 7-O-β-d-glucuronide-4′-O-sulfate. Steroids. 2007;72:851–854. doi: 10.1016/j.steroids.2007.07.001. PubMed DOI
Liu Y., Lien I.F., Ruttgaizer S., Dove P., Taylor S.D. Synthesis and protection of aryl sulfates using the 2,2,2-trichloroethyl moiety. Org. Lett. 2004;6:209–212. doi: 10.1021/ol036157o. PubMed DOI
Zhang Q., Raheem K.S., Botting N.P., Slawin A.M.Z., Kay C.D., O’Hagan D. Flavonoid metabolism: The synthesis of phenolic glucuronides and sulfates as candidate metabolites for bioactivity studies of dietary flavonoids. Tetrahedron. 2012;68:4194–4201. doi: 10.1016/j.tet.2012.03.100. DOI
Taylor S.D., Desoky A. Rapid and efficient chemoselective and multiple sulfations of phenols using sulfuryl imidazolium salts. Tetrahedron Lett. 2011;52:3353–3357. doi: 10.1016/j.tetlet.2011.04.080. DOI
Liu C., Yang C., Hwang S., Ferraro S.L., Flynn J.P., Niu J. A General approach to O-sulfation by a sulfur(vi) fluoride exchange reaction. Angew. Chem. Int. Ed. 2020;59:18435–18441. doi: 10.1002/anie.202007211. PubMed DOI PMC
Purchartová K., Valentová K., Pelantová H., Marhol P., Cvačka J., Havlíček L., Křenková A., Vavříková E., Biedermann D., Chambers C.S., et al. Prokaryotic and eukaryotic aryl sulfotransferases: Sulfation of quercetin and its derivatives. ChemCatChem. 2015;7:3152–3162. doi: 10.1002/cctc.201500298. DOI
Valentová K., Káňová K., Di Meo F., Pelantová H., Chambers C.S., Rydlová L., Petrásková L., Křenková A., Cvačka J., Trouillas P., et al. Chemoenzymatic preparation and biophysical properties of sulfated quercetin metabolites. Int. J. Mol. Sci. 2017;18:2231. doi: 10.3390/ijms18112231. PubMed DOI PMC
Brodsky K., Káňová K., Konvalinková D., Slámová K., Pelantová H., Valentová K., Bojarová P., Křen V., Petrásková L. Bacterial aryl sulfotransferases in selective and sustainable sulfation of biologically active compounds using novel sulfate donors. ChemSusChem. 2022;15:e202201253. doi: 10.1002/cssc.202201253. PubMed DOI
Valentová K., Purchartová K., Rydlová L., Roubalová L., Biedermann D., Petrásková L., Křenková A., Pelantová H., Holečková-Moravcová V., Tesařová E., et al. Sulfated metabolites of flavonolignans and 2,3-dehydroflavonolignans: Preparation and properties. Int. J. Mol. Sci. 2018;19:2349. doi: 10.3390/ijms19082349. PubMed DOI PMC
Káňová K., Petrásková L., Pelantová H., Rybková Z., Malachová K., Cvačka J., Křen V., Valentová K. Sulfated metabolites of luteolin, myricetin, and ampelopsin: Chemoenzymatic preparation and biophysical properties. J. Agric. Food Chem. 2020;68:11197–11206. doi: 10.1021/acs.jafc.0c03997. PubMed DOI
Hartmann A., Ganzera M., Karsten U., Skhirtladze A., Stuppner H. Phytochemical and analytical characterization of novel sulfated coumarins in the marine green macroalga Dasycladus vermicularis (Scopoli) Krasser. Molecules. 2018;23:2735. doi: 10.3390/molecules23112735. PubMed DOI PMC
Alshehri J.A., Gill D.M., Jones A.M. A Sulfuryl group transfer strategy to selectively prepare sulfated steroids and isotopically labelled derivatives. Front. Mol. Biosci. 2021;8:776900. doi: 10.3389/fmolb.2021.776900. PubMed DOI PMC
Gill D.M., Povinelli A.P.R., Zazeri G., Shamir S.A., Mahmoud A.M., Wilkinson F.L., Alexander M.Y., Cornelio M.L., Jones A.M. The modulatory role of sulfated and non-sulfated small molecule heparan sulfate-glycomimetics in endothelial dysfunction: Absolute structural clarification, molecular docking and simulated dynamics, SAR analyses and ADMET studies. RSC Med. Chem. 2021;12:779–790. doi: 10.1039/D0MD00366B. PubMed DOI PMC
Alshehri J.A., Benedetti A.M., Jones A.M. A novel exchange method to access sulfated molecules. Sci. Rep. 2020;10:16559. doi: 10.1038/s41598-020-72500-x. PubMed DOI PMC
Cerfontain H., Koeberg-Telder A. Sulfonation and sulfation on reaction of 1,4-dihydroxybenzene and its methyl ethers in concentrated sulfuric acid. Recl. Trav. Chim. Pays-Bas. 2010;107:583–591. doi: 10.1002/recl.19881071003. DOI
Fumeaux R., Menozzi-Smarrito C., Stalmach A., Munari C., Kraehenbuehl K., Steiling H., Crozier A., Williamson G., Barron D. First synthesis, characterization, and evidence for the presence of hydroxycinnamic acid sulfate and glucuronide conjugates in human biological fluids as a result of coffee consumption. Org. Biomol. Chem. 2010;8:5199–5211. doi: 10.1039/c0ob00137f. PubMed DOI
Uutela P., Reinilä R., Harju K., Piepponen P., Ketola R.A., Kostiainen R. Analysis of intact glucuronides and sulfates of serotonin, dopamine, and their Phase I metabolites in rat brain microdialysates by liquid chromatography−tandem mass spectrometry. Anal. Chem. 2009;81:8417–8425. doi: 10.1021/ac901320z. PubMed DOI
New Bacterial Aryl Sulfotransferases: Effective Tools for Sulfation of Polyphenols