Bacterial Aryl Sulfotransferases in Selective and Sustainable Sulfation of Biologically Active Compounds using Novel Sulfate Donors
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
19-00043S
Czech Science Foundation
PubMed
35832026
DOI
10.1002/cssc.202201253
Knihovny.cz E-zdroje
- Klíčová slova
- aryl sulfotransferase, biocatalysis, enzyme catalysis, leaving group, sulfation,
- MeSH
- arylsulfotransferasa * MeSH
- flavonoidy MeSH
- fosfoadenosinfosfosulfát metabolismus MeSH
- lidé MeSH
- sírany chemie MeSH
- sulfotransferasy * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- arylsulfotransferasa * MeSH
- flavonoidy MeSH
- fosfoadenosinfosfosulfát MeSH
- sírany MeSH
- sulfotransferasy * MeSH
Regioselective sulfation of bioactive compounds is a vital and scarcely studied topic in enzyme-catalyzed transformations and metabolomics. The major bottleneck of enzymatic sulfation consists in finding suitable sulfate donors. In this regard, 3'-phosphoadenosine 5'-phosphosulfate (PAPS)-independent aryl sulfotransferases using aromatic sulfate donors are a favored choice due to their cost-effectiveness. This work presents a unique study of five sulfate donors differing in their leaving group pKa values with a new His-tagged construct of aryl sulfotransferase from Desulfitobacterium hafniense (DhAST-tag). DhAST-tag was purified to homogeneity and biochemically characterized. Two new donors (3-nitrophenyl sulfate and 2-nitrophenyl sulfate) were synthesized. The kinetic parameters of these and other commercial sulfates (4-nitrophenyl, 4-methylumbelliferyl, and phenyl) revealed large differences with respect to the structure of the leaving group. These donors were screened for the sulfation of selected flavonoids (myricetin, chrysin) and phenolic acids (gallate, 3,4-dihydroxyphenylacetate). The donor impact on the sulfation regioselectivity and yield was assessed. The obtained regioselectively sulfated compounds are authentic human metabolites required as standards in clinical trials.
Zobrazit více v PubMed
L. S. Simpson, T. S. Widlanski, J. Am. Chem. Soc. 2006, 128, 1605-1610.
G. Malojcic, R. Glockshuber, Antioxid. Redox Signaling 2010, 13, 1247-1259.
J. W. Mueller, L. C. Gilligan, J. Idkowiak, W. Arlt, P. A. Foster, Endocr. Rev. 2015, 36, 526-563.
K. Purchartová, K. Valentová, H. Pelantová, P. Marhol, J. Cvačka, L. Havlícek, A. Křenková, E. Vavříková, D. Biedermann, C. S. Chambers, V. Křen, ChemCatChem 2015, 7, 3152-3162.
M. Correia-da-Silva, E. Sousa, M. M. M. Pinto, Med. Res. Rev. 2014, 34, 223-279.
E. Chapman, M. D. Best, S. R. Hanson, C. H. Wong, Angew. Chem. Int. Ed. 2004, 43, 3526-3548;
Angew. Chem. 2004, 116, 3610-3632.
C. Liu, C. Yang, S. Hwang, S. L. Ferraro, J. P. Flynn, J. Niu, Angew. Chem. Int. Ed. 2020, 59, 18435-18441;
Angew. Chem. 2020, 132, 18593-18599.
D. M. Gill, L. Male, A. M. Jones, Chem. Commun. 2019, 55, 4319-4322.
Y. H. Vo, B. D. Schwartz, H. Onagi, J. S. Ward, M. G. Gardiner, M. G. Banwell, K. Nelms, L. R. Malins, Chem. Eur. J. 2021, 27, 9830-9838.
R. A. Al-Horani, U. R. Desai, Tetrahedron 2010, 66, 2907-2918.
N. Chopin, X. Guillory, P. Weiss, J. Le Bideau, S. Colliec-Jouault, Curr. Org. Chem. 2014, 18, 867-895.
N. Gamage, A. Barnett, N. Hempel, R. G. Duggleby, K. F. Windmill, J. L. Martin, M. E. McManus, Toxicol. Sci. 2006, 90, 5-22.
M. A. van der Horst, J. F. T. van Lieshout, A. Bury, A. F. Hartog, R. Wever, Adv. Synth. Catal. 2012, 354, 3501-3508.
S. G. Van Lanen, Nat. Chem. Biol. 2013, 9, 602-603.
A. F. Hartog, R. Wever, J. Mol. Catal. B 2016, 129, 43-46.
I. Ayuso-Fernandez, M. A. Galmes, A. Bastida, E. Garcia-Junceda, ChemCatChem 2014, 6, 1059-1065.
M. A. van der Horst, A. F. Hartog, R. El Morabet, A. Marais, M. Kircz, R. Wever, Eur. J. Org. Chem. 2015, 2015, 534-541.
K. Valentová, K. Káňova, F. Di Meo, H. Pelantová, C. S. Chambers, L. Rydlová, L. Petrásková, A. Křenková, J. Cvačka, P. Trouillas, V. Křen, Int. J. Mol. Sci. 2017, 18, 17.
K. Valentová, K. Purchartova, L. Rydlová, L. Roubalová, D. Biedermann, L. Petrásková, A. Křenková, H. Pelantová, V. Holečkova-Moravcová, E. Tesařová, J. Cvačka, J. Vrba, J. Ulrichová, V. Křen, Int. J. Mol. Sci. 2018, 19, 2349.
S. Islam, D. M. Mate, R. Martinez, F. Jakob, U. Schwaneberg, Biotechnol. Bioeng. 2018, 115, 1106-1115.
K. Káňová, L. Petrásková, H. Pelantová, Z. Rybková, K. Malachová, J. Cvačka, V. Křen, K. Valentová, J. Agric. Food Chem. 2020, 68, 11197-11206.
G. Malojcic, R. L. Owen, R. Glockshuber, Biochemistry 2014, 53, 1870-1877.
E. Denehy, J. M. White, S. Williams, J. Chem. Commun. 2006, 3, 314-316.
E. J. Fendler, J. H. Fendler, J. Org. Chem. 1968, 33, 3852-3859.
P. Fialová, V. Křen in Comprehensive Glycoscience, (Ed.: J. P. Kamerling) Elsevier, Oxford, 2007, pp. 453-487.
New Bacterial Aryl Sulfotransferases: Effective Tools for Sulfation of Polyphenols
Sulfation of Phenolic Acids: Chemoenzymatic vs. Chemical Synthesis