Plant Fortification of the Diet for Anti-Ageing Effects: A Review

. 2020 Sep 30 ; 12 (10) : . [epub] 20200930

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33007945

Grantová podpora
VT2019-2021 UHK CEP - Centrální evidence projektů
NV19-09-00578 Ministry of Health

Ageing is an enigmatic and progressive biological process which undermines the normal functions of living organisms with time. Ageing has been conspicuously linked to dietary habits, whereby dietary restrictions and antioxidants play a substantial role in slowing the ageing process. Oxygen is an essential molecule that sustains human life on earth and is involved in the synthesis of reactive oxygen species (ROS) that pose certain health complications. The ROS are believed to be a significant factor in the progression of ageing. A robust lifestyle and healthy food, containing dietary antioxidants, are essential for improving the overall livelihood and decelerating the ageing process. Dietary antioxidants such as adaptogens, anthocyanins, vitamins A/D/C/E and isoflavones slow the ageing phenomena by reducing ROS production in the cells, thereby improving the life span of living organisms. This review highlights the manifestations of ageing, theories associated with ageing and the importance of diet management in ageing. It also discusses the available functional foods as well as nutraceuticals with anti-ageing potential.

Zobrazit více v PubMed

Jin K., Rose M.R. Modern Biological Theories of Aging. Aging Dis. 1988;1:220–221. doi: 10.1016/j.bbi.2008.05.010. PubMed DOI PMC

Zhang S., Duan E. Fighting against Skin Aging: The Way from Bench to Bedside. Cell Transplant. 2018;27:729–738. doi: 10.1177/0963689717725755. PubMed DOI PMC

Bocheva G., Slominski R.M., Slominski A.T. Neuroendocrine aspects of skin aging. Int. J. Mol. Sci. 2019;20:2798. doi: 10.3390/ijms20112798. PubMed DOI PMC

Schagen S.K., Zampeli V.A., Makrantonaki E., Zouboulis C.C. Discovering the link between nutrition and skin aging. Dermatoendocrinology. 2012;4:298–307. doi: 10.4161/derm.22876. PubMed DOI PMC

Lobo V., Patil A., Phatak A., Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010;4:118–126. doi: 10.4103/0973-7847.70902. PubMed DOI PMC

Alam I., Almajwal A.M., Alam W., Alam I., Ullah N., Abulmeaaty M., Razak S., Khan S., Pawelec G., Paracha P.I. The immune-nutrition interplay in aging-Facts and controversies. Nutr. Healthy Aging. 2019;5:73–95. doi: 10.3233/NHA-170034. DOI

Rathore H., Prasad S., Sharma S. Mushroom nutraceuticals for improved nutrition and better human health: A review. PharmaNutrition. 2017;5:35–46. doi: 10.1016/j.phanu.2017.02.001. DOI

Da Costa J.P. A current look at nutraceuticals–Key concepts and future prospects. Trends Food Sci. Technol. 2017;62:68–78. doi: 10.1016/j.tifs.2017.02.010. DOI

Chauhan B., Kumar G., Kalam N., Ansari S.H. Current concepts and prospects of herbal nutraceutical: A review. J. Adv. Pharm. Technol. Res. 2013;4:4–8. PubMed PMC

Liu Z., Ren Z., Zhang J., Chuang C.C., Kandaswamy E., Zhou T., Zuo L. Role of ROS and nutritional antioxidants in human diseases. Front. Physiol. 2018;9:477. doi: 10.3389/fphys.2018.00477. PubMed DOI PMC

Conlon M.A., Bird A.R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients. 2015;7:17–44. doi: 10.3390/nu7010017. PubMed DOI PMC

Eming S.A., Martin P., Tomic-Canic M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 2014;6:265sr6. doi: 10.1126/scitranslmed.3009337. PubMed DOI PMC

Salam N., Rane S., Das R., Faulkner M., Gund R., Kandpal U., Lewis V., Mattoo H., Prabhu S., Ranganathan V., et al. T cell ageing: Effects of age on development, survival & function. Indian J. Med. Res. 2013;138:595–608. PubMed PMC

Amarya S., Singh K., Sabharwal M. Gerontology. InTech; London, UK: 2018. Ageing Process and Physiological Changes.

Prohaska T.R., Keller M.L., Leventhal E.A., Leventhal H. Impact of symptoms and aging attribution on emotions and coping. Health Psychol. 1987;6:495–514. doi: 10.1037/0278-6133.6.6.495. PubMed DOI

Heinemann L.A.J., Zimmermann T., Vermeulen A., Thiel C., Hummel W. A new «aging males» symptoms’ rating scale. Aging Male. 1999;2:105–114. doi: 10.3109/13685539909003173. DOI

Maddy A.J., Tosti A. Hair and nail diseases in the mature patient. Clin. Dermatol. 2018;36:159–166. doi: 10.1016/j.clindermatol.2017.10.007. PubMed DOI

Sarbacher C.A., Halper J.T. Subcellular Biochemistry. Springer; New York, NY, USA: 2019. Connective tissue and age-related diseases; pp. 281–310. PubMed

Patel I., West S.K. Presbyopia: Prevalence, impact, and interventions. Community Eye Health J. 2007;20:40–41. PubMed PMC

Boostani R., Karimzadeh F., Nami M. A comparative review on sleep stage classification methods in patients and healthy individuals. Comput. Methods Progr. Biomed. 2017;140:77–91. doi: 10.1016/j.cmpb.2016.12.004. PubMed DOI

Locantore P., Del Gatto V., Gelli S., Paragliola R.M., Pontecorvi A. The Interplay between Immune System and Microbiota in Osteoporosis. Mediat. Inflamm. 2020;2020:3686749. doi: 10.1155/2020/3686749. PubMed DOI PMC

Trexler E.T., Smith-Ryan A.E., Norton L.E. Metabolic adaptation to weight loss: Implications for the athlete. J. Int. Soc. Sports Nutr. 2014;11:7. doi: 10.1186/1550-2783-11-7. PubMed DOI PMC

Wood R.L. Accelerated cognitive aging following severe traumatic brain injury: A review. Brain Inj. 2017;31:1270–1278. doi: 10.1080/02699052.2017.1332387. PubMed DOI

Sarnak M.J. A patient with heart failure and worsening kidney function. Clin. J. Am. Soc. Nephrol. 2014;9:1790–1798. doi: 10.2215/CJN.11601113. PubMed DOI PMC

De Martinis M., Sirufo M.M., Ginaldi L. Allergy and aging: An Old/new emerging health issue. Aging Dis. 2017;8:162–175. doi: 10.14336/AD.2016.0831. PubMed DOI PMC

Santoro N., Epperson C.N., Mathews S.B. Menopausal Symptoms and Their Management. Endocrinol. Metab. Clin. N. Am. 2015;44:497–515. doi: 10.1016/j.ecl.2015.05.001. PubMed DOI PMC

Booth F.W., Roberts C.K., Laye M.J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2012;2:1143–1211. doi: 10.1002/cphy.c110025. PubMed DOI PMC

Da Costa J.P., Vitorino R., Silva G.M., Vogel C., Duarte A.C., Rocha-Santos T. A synopsis on aging—Theories, mechanisms and future prospects. Ageing Res. Rev. 2016;29:90–112. doi: 10.1016/j.arr.2016.06.005. PubMed DOI PMC

De A., Ghosh C. Basics of aging theories and disease related aging-an overview. PharmaTutor. 2017;5:16–23.

Weinert B.T., Timiras P.S. Invited review: Theories of aging. J. Appl. Physiol. 2003;95:1706–1716. doi: 10.1152/japplphysiol.00288.2003. PubMed DOI

Gladyshev V.N. The free radical theory of aging is dead. Long live the damage theory! Antioxid. Redox Signal. 2014;20:727–731. doi: 10.1089/ars.2013.5228. PubMed DOI PMC

Sailaja Rao P., Kalva S., Yerramilli A., Mamidi S. Free Radicals and Tissue Damage: Role of Antioxidants. Free Radic. Antioxid. 2011;1:2–7. doi: 10.5530/ax.2011.4.2. DOI

Phaniendra A., Jestadi D.B., Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J. Clin. Biochem. 2015;30:11–26. doi: 10.1007/s12291-014-0446-0. PubMed DOI PMC

Di Meo S., Venditti P. Evolution of the Knowledge of Free Radicals and Other Oxidants. Oxid. Med. Cell. Longev. 2020;2020:9829176. doi: 10.1155/2020/9829176. PubMed DOI PMC

Pham-Huy L.A., He H., Pham-Huy C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008;4:89–96. PubMed PMC

Aruoma O.I. Nutrition and health aspects of free radicals and antioxidants. Food Chem. Toxicol. 1994;32:671–683. doi: 10.1016/0278-6915(94)90011-6. PubMed DOI

Dröge W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002;82:47–95. doi: 10.1152/physrev.00018.2001. PubMed DOI

Floyd R.A., Carney J.M. Free radical damage to protein and DNA: Mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann. Neurol. 1992;32:S22–S27. doi: 10.1002/ana.410320706. PubMed DOI

Kumar H., Bhardwaj K., Nepovimova E., Kuča K., Singh Dhanjal D., Bhardwaj S., Bhatia S.K., Verma R., Kumar D. Antioxidant Functionalized Nanoparticles: A Combat against Oxidative Stress. Nanomaterials. 2020;10:1334. doi: 10.3390/nano10071334. PubMed DOI PMC

Thanan R., Oikawa S., Hiraku Y., Ohnishi S., Ma N., Pinlaor S., Yongvanit P., Kawanishi S., Murata M. Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int. J. Mol. Sci. 2014;16:193–217. doi: 10.3390/ijms16010193. PubMed DOI PMC

Sharma P., Jha A.B., Dubey R.S., Pessarakli M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012;2012:217037. doi: 10.1155/2012/217037. DOI

Ozcan A., Ogun M. Basic Principles and Clinical Significance of Oxidative Stress. InTech; London, UK: 2015. Biochemistry of Reactive Oxygen and Nitrogen Species.

Pourahmad J., Salimi A., Seydi E. Free Radicals and Diseases. InTech; London, UK: 2016. Role of Oxygen Free Radicals in Cancer Development and Treatment.

Jamshidi-kia F., Wibowo J.P., Elachouri M., Masumi R., Salehifard-Jouneghani A., Abolhasanzadeh Z., Lorigooini Z. Battle between plants as antioxidants with free radicals in human body. J. Herbmed Pharmacol. 2020;9:191–199. doi: 10.34172/jhp.2020.25. DOI

Santo A., Zhu H., Li Y.R. Free radicals: From health to disease. React. Oxyg. Species. 2016;2:245–263. doi: 10.20455/ros.2016.847. DOI

Liguori I., Russo G., Curcio F., Bulli G., Aran L., Della-Morte D., Gargiulo G., Testa G., Cacciatore F., Bonaduce D., et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging. 2018;13:757–772. doi: 10.2147/CIA.S158513. PubMed DOI PMC

Nissanka N., Moraes C.T. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett. 2018;592:728–742. doi: 10.1002/1873-3468.12956. PubMed DOI PMC

Cantó C., Auwerx J. Caloric restriction, SIRT1 and longevity. Trends Endocrinol. Metab. 2009;20:325–331. doi: 10.1016/j.tem.2009.03.008. PubMed DOI PMC

Armandola E. Caloric Restriction and Life Expectancy: Highlights of the 5th European Molecular Biology Organization Interdisciplinary Conference on Science and Society—Time & Aging: Mechanisms and Meanings; November 5–6, 2004; Heidelberg, Germany. Med. Gen. Med. 2004;6:16. PubMed PMC

Gutierrez J., Ballinger S.W., Darley-Usmar V.M., Landar A. Free radicals, mitochondria, and oxidized lipids: The emerging role in signal transduction in vascular cells. Circ. Res. 2006;99:924–932. doi: 10.1161/01.RES.0000248212.86638.e9. PubMed DOI

Peng C., Wang X., Chen J., Jiao R., Wang L., Li Y.M., Zuo Y., Liu Y., Lei L., Ma K.Y., et al. Biology of ageing and role of dietary antioxidants. BioMed Res. Int. 2014;2014:831841. doi: 10.1155/2014/831841. PubMed DOI PMC

Hornsby P.J. Telomerase and the aging process. Exp. Gerontol. 2007;42:575–581. doi: 10.1016/j.exger.2007.03.007. PubMed DOI PMC

Schmidt J.C., Cech T.R. Human telomerase: Biogenesis, trafficking, recruitment, and activation. Genes Dev. 2015;29:1095–1105. doi: 10.1101/gad.263863.115. PubMed DOI PMC

Kalmbach K.H., Fontes Antunes D.M., Dracxler R.C., Knier T.W., Seth-Smith M.L., Wang F., Liu L., Keefe D.L. Telomeres and human reproduction. Fertil. Steril. 2013;99:23–29. doi: 10.1016/j.fertnstert.2012.11.039. PubMed DOI PMC

Kasote D.M., Katyare S.S., Hegde M.V., Bae H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci. 2015;11:982–991. doi: 10.7150/ijbs.12096. PubMed DOI PMC

Chen L., Deng H., Cui H., Fang J., Zuo Z., Deng J., Li Y., Wang X., Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9:7204–7218. doi: 10.18632/oncotarget.23208. PubMed DOI PMC

Liao L.Y., He Y.F., Li L., Meng H., Dong Y.M., Yi F., Xiao P.G. A preliminary review of studies on adaptogens: Comparison of their bioactivity in TCM with that of ginseng-like herbs used worldwide Milen Georgiev, Ruibing Wang. Chin. Med. 2018;13:57. doi: 10.1186/s13020-018-0214-9. PubMed DOI PMC

Bhatia N., Jaggi A.S., Singh N., Anand P., Dhawan R. Adaptogenic potential of curcumin in experimental chronic stress and chronic unpredictable stress-induced memory deficits and alterations in functional homeostasis. J. Nat. Med. 2011;65:532–543. doi: 10.1007/s11418-011-0535-9. PubMed DOI

Singh M.K., Jain G., Das B.K., Patil U.K. Biomolecules from Plants as an Adaptogen. Med. Aromat. Plants. 2017;6:307. doi: 10.4172/2167-0412.1000307. DOI

Aguiar S., Borowski T. Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res. 2013;16:313–326. doi: 10.1089/rej.2013.1431. PubMed DOI PMC

Jain P.K., Das D., Kumar Jain P. Pharmacognostic Comparison of Bacopa Monnieri, Cyperus Rotundus and Emblica Officinalis. Innovare J. Ayurvedic Sci. 2016;4:16–26.

Tewari I., Sharma L., Lal Gupta G. Synergistic antioxidant activity of three medicinal plants Hypericum perforatum, Bacopa monnieri, and Camellia Sinensis. Indo Am. J. Pharm. Res. 2014;4:2563–2568.

Vollala V.R., Upadhya S., Nayak S. Effect of Bacopa monniera Linn. (brahmi) extract on learning and memory in rats: A behavioral study. J. Vet. Behav. Clin. Appl. Res. 2010;5:69–74. doi: 10.1016/j.jveb.2009.08.007. DOI

Simpson T., Pase M., Stough C. Bacopa monnieri as an Antioxidant Therapy to Reduce Oxidative Stress in the Aging Brain. Evid. Based Complement. Altern. Med. 2015;2015:615384. doi: 10.1155/2015/615384. PubMed DOI PMC

Bhattacharya S.K., Bhattacharya A., Kumar A., Ghosal S. Antioxidant activity of Bacopa monniera in rat frontal cortex, striatum and hippocampus. Phyther. Res. 2000;14:174–179. doi: 10.1002/(SICI)1099-1573(200005)14:3<174::AID-PTR624>3.0.CO;2-O. PubMed DOI

Shinomol G.K., Srinivas Bharath M.M. Muralidhara Neuromodulatory propensity of bacopa monnieri leaf extract against 3-nitropropionic acid-induced oxidative stress: In vitro and in vivo evidences. Neurotox. Res. 2012;22:102–114. doi: 10.1007/s12640-011-9303-6. PubMed DOI

Kumar N., Abichandani L.G., Thawani V., Gharpure K.J., Naidu M.U.R., Venkat Ramana G. Efficacy of Standardized Extract of Bacopa monnieri (Bacognize®) on Cognitive Functions of Medical Students: A Six-Week, Randomized Placebo-Controlled Trial. Evid. Based Complement. Altern. Med. 2016;2016 doi: 10.1155/2016/4103423. PubMed DOI PMC

Kocaadam B., Şanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr. 2017;57:2889–2895. doi: 10.1080/10408398.2015.1077195. PubMed DOI

Prasad S., Aggarwal B.B. Herbal Medicine: Biomolecular and Clinical Aspects: Second Edition. CRC Press; Boca Raton, FL, USA: 2011. Turmeric, the golden spice: From traditional medicine to modern medicine; pp. 263–288. PubMed

Tomeh M.A., Hadianamrei R., Zhao X. A review of curcumin and its derivatives as anticancer agents. Int. J. Mol. Sci. 2019;20:1033. doi: 10.3390/ijms20051033. PubMed DOI PMC

Desai S.J., Prickril B., Rasooly A. Mechanisms of Phytonutrient Modulation of Cyclooxygenase-2 (COX-2) and Inflammation Related to Cancer. Nutr. Cancer. 2018;70:350–375. doi: 10.1080/01635581.2018.1446091. PubMed DOI PMC

Engwa G.A. Phytochemicals-Source of Antioxidants and Role in Disease Prevention. InTech; London, UK: 2018. Free Radicals and the Role of Plant Phytochemicals as Antioxidants Against Oxidative Stress-Related Diseases.

Lima C.F., Pereira-Wilson C., Rattan S.I.S. Curcumin induces heme oxygenase-1 in normal human skin fibroblasts through redox signaling: Relevance for anti-aging intervention. Mol. Nutr. Food Res. 2011;55:430–442. doi: 10.1002/mnfr.201000221. PubMed DOI

Soh J.W., Marowsky N., Nichols T.J., Rahman A.M., Miah T., Sarao P., Khasawneh R., Unnikrishnan A., Heydari A.R., Silver R.B., et al. Curcumin is an early-acting stage-specific inducer of extended functional longevity in Drosophila. Exp. Gerontol. 2013;48:229–239. doi: 10.1016/j.exger.2012.09.007. PubMed DOI

Shen L.-R., Parnell L.D., Ordovas J.M., Lai C.-Q. Curcumin and aging. BioFactors. 2013;39:133–140. doi: 10.1002/biof.1086. PubMed DOI

Lee K.S., Lee B.S., Semnani S., Avanesian A., Um C.Y., Jeon H.J., Seong K.M., Yu K., Min K.J., Jafari M. Curcumin extends life span, improves health span, and modulates the expression of age-associated aging genes in drosophila melanogaster. Rejuvenation Res. 2010;13:561–570. doi: 10.1089/rej.2010.1031. PubMed DOI

He Y., Yue Y., Zheng X., Zhang K., Chen S., Du Z. Curcumin, inflammation, and chronic diseases: How are they linked? Molecules. 2015;20:9183–9213. doi: 10.3390/molecules20059183. PubMed DOI PMC

Olszanecki R., Jawien J., Gajda M., Mateuszuk L., Gebska A., Korabiowska M., Chlopicki S., Korbut R. Effect of curcumin on atherosclerosis in apoE-LDLR-double knockout mice. J. Physiol. Pharmacol. 2005;4:627–635. PubMed

Swamy A.V., Gulliaya S., Thippeswamy A., Koti B.C., Manjula D.V. Cardioprotective effect of curcumin against doxorubicin-induced myocardial toxicity in albino rats. Indian J. Pharmacol. 2012;44:73–77. doi: 10.4103/0253-7613.91871. PubMed DOI PMC

Ryan J.L., Heckler C.E., Ling M., Katz A., Williams J.P., Pentland A.P., Morrow G.R. Curcumin for radiation dermatitis: A randomized, double-blind, placebo-controlled clinical trial of thirty breast cancer patients. Radiat. Res. 2013;180:34–43. doi: 10.1667/RR3255.1. PubMed DOI PMC

Ray Hamidie R.D., Yamada T., Ishizawa R., Saito Y., Masuda K. Curcumin treatment enhances the effect of exercise on mitochondrial biogenesis in skeletal muscle by increasing cAMP levels. Metabolism. 2015;64:1334–1347. doi: 10.1016/j.metabol.2015.07.010. PubMed DOI

Cox K.H.M., Pipingas A., Scholey A.B. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J. Psychopharmacol. 2015;29:642–651. doi: 10.1177/0269881114552744. PubMed DOI

Yadav S.S., Singh M.K., Singh P.K., Kumar V. Traditional knowledge to clinical trials: A review on therapeutic actions of Emblica officinalis. Biomed. Pharmacother. 2017;93:1292–1302. doi: 10.1016/j.biopha.2017.07.065. PubMed DOI

Kapoor M.P., Suzuki K., Derek T., Ozeki M., Okubo T. Clinical evaluation of Emblica Officinalis Gatertn (Amla) in healthy human subjects: Health benefits and safety results from a randomized, double-blind, crossover placebo-controlled study. Contemp. Clin. Trials Commun. 2020;17:100499. doi: 10.1016/j.conctc.2019.100499. PubMed DOI PMC

Wilson D.W., Nash P., Singh H., Griffiths K., Singh R., De Meester F., Horiuchi R., Takahashi T. The role of food antioxidants, benefits of functional foods, and influence of feeding habits on the health of the older person: An overview. Antioxidants. 2017;6:81. doi: 10.3390/antiox6040081. PubMed DOI PMC

Hasan M.R., Islam M.N., Islam M.R. Phytochemistry, pharmacological activities and traditional uses of Emblica officinalis: A review. Int. Curr. Pharm. J. 2016;5:14–21. doi: 10.3329/icpj.v5i2.26441. DOI

Lauer A.C., Groth N., Haag S.F., Darvin M.E., Lademann J., Meinke M.C. Dose-dependent vitamin C uptake and radical scavenging activity in human skin measured with in vivo electron paramagnetic resonance spectroscopy. Skin Pharmacol. Physiol. 2013;26:147–154. doi: 10.1159/000350833. PubMed DOI

Bhattacharya A., Ghosal S., Bhattacharya S.K. Antioxidant activity of tannoid principles of Emblica officinalis (amla) in chronic stress induced changes in rat brain. Indian J. Exp. Biol. 2000;38:877–880. PubMed

Bhattachary S.K., Bhattacharya D., Muruganandam A.V. Effect of Emblica officinalis tannoids on a rat model of tardive dyskinesia. Indian J. Exp. Biol. 2000;38:945–947. PubMed

Dhingra D., Joshi P., Gupta A., Chhillar R. Possible Involvement of Monoaminergic Neurotransmission in Antidepressant-like activity of Emblica officinalis Fruits in Mice. CNS Neurosci. Ther. 2012;18:419–425. doi: 10.1111/j.1755-5949.2011.00256.x. PubMed DOI PMC

Isah T. Rethinking Ginkgo biloba L.: Medicinal uses and conservation. Pharmacogn. Rev. 2015;9:140–148. doi: 10.4103/0973-7847.162137. PubMed DOI PMC

Mashayekh A., Pham D.L., Yousem D.M., Dizon M., Barker P.B., Lin D.D.M. Effects of Ginkgo biloba on cerebral blood flow assessed by quantitative MR perfusion imaging: A pilot study. Neuroradiology. 2011;53:185–191. doi: 10.1007/s00234-010-0790-6. PubMed DOI PMC

Zuo W., Yan F., Zhang B., Li J., Mei D. Advances in the studies of Ginkgo biloba leaves extract on aging-related diseases. Aging Dis. 2017;8:812–826. doi: 10.14336/AD.2017.0615. PubMed DOI PMC

Van Beek T.A. Chemical analysis of Ginkgo biloba leaves and extracts. J. Chromatogr. A. 2002;967:21–55. doi: 10.1016/S0021-9673(02)00172-3. PubMed DOI

Huang S.Z., Luo Y.J., Wang L., Cai K.Y. Effect of ginkgo biloba extract on livers in aged rats. World J. Gastroenterol. 2005;11:132–135. doi: 10.3748/wjg.v11.i1.132. PubMed DOI PMC

Belviranli M., Okudan N. The effects of Ginkgo biloba extract on cognitive functions in aged female rats: The role of oxidative stress and brain-derived neurotrophic factor. Behav. Brain Res. 2015;278:453–461. doi: 10.1016/j.bbr.2014.10.032. PubMed DOI

Liu H., Ye M., Guo H. An Updated Review of Randomized Clinical Trials Testing the Improvement of Cognitive Function of Ginkgo biloba Extract in Healthy People and Alzheimer’s Patients. Front. Pharmacol. 2020;10:1688. doi: 10.3389/fphar.2019.01688. PubMed DOI PMC

Pastorino G., Cornara L., Soares S., Rodrigues F., Oliveira M.B.P.P. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phyther. Res. 2018;32:2323–2339. doi: 10.1002/ptr.6178. PubMed DOI PMC

Frattaruolo L., Carullo G., Brindisi M., Mazzotta S., Bellissimo L., Rago V., Curcio R., Dolce V., Aiello F., Cappello A.R. Antioxidant and anti-inflammatory activities of flavanones from glycyrrhiza glabra L. (licorice) leaf phytocomplexes: Identification of licoflavanone as a modulator of NF-kB/MAPK pathway. Antioxidants. 2019;8:186. doi: 10.3390/antiox8060186. PubMed DOI PMC

Grodzicki W., Dziendzikowska K. The role of selected bioactive compounds in the prevention of alzheimer’s disease. Antioxidants. 2020;9:229. doi: 10.3390/antiox9030229. PubMed DOI PMC

Ciganović P., Jakimiuk K., Tomczyk M., Končić M.Z. Glycerolic licorice extracts as active cosmeceutical ingredients: Extraction optimization, chemical characterization, and biological activity. Antioxidants. 2019;8:445. doi: 10.3390/antiox8100445. PubMed DOI PMC

Balmus I.M., Ciobica A. Main Plant Extracts’ Active Properties Effective on Scopolamine-Induced Memory Loss. Am. J. Alzheimers Dis. Other Demen. 2017;32:418–428. doi: 10.1177/1533317517715906. PubMed DOI PMC

Dhingra D., Parle M., Kulkarni S.K. Memory enhancing activity of Glycyrrhiza glabra in mice. J. Ethnopharmacol. 2004;91:361–365. doi: 10.1016/j.jep.2004.01.016. PubMed DOI

Rokot N.T., Kairupan T.S., Cheng K.C., Runtuwene J., Kapantow N.H., Amitani M., Morinaga A., Amitani H., Asakawa A., Inui A. A Role of Ginseng and Its Constituents in the Treatment of Central Nervous System Disorders. Evid. Based Complement. Altern. Med. 2016;2016:2614742. doi: 10.1155/2016/2614742. PubMed DOI PMC

Yu H., Zhao J., You J., Li J., Ma H., Chen X. Factors influencing cultivated ginseng (Panax ginseng C. A. Meyer) bioactive compounds. PLoS ONE. 2019;14:e0223763. doi: 10.1371/journal.pone.0223763. PubMed DOI PMC

Kumar G.P., Khanum F. Neuroprotective potential of phytochemicals. Pharmacogn. Rev. 2012;6:81–90. doi: 10.4103/0973-7847.99898. PubMed DOI PMC

Wee J.J., Mee Park K., Chung A.-S. Biological Activities of Ginseng and Its Application to Human Health. In: Benzie I.F.F., Wachtel-Galor S., editors. Herbal Medicine: Biomolecular and Clinical Aspects. CRC Press/Taylor and Francis; Boca Raton, FL, USA: 2011.

Lee Y.M., Yoon H., Park H.M., Song B.C., Yeum K.J. Implications of red Panax ginseng in oxidative stress associated chronic diseases. J. Ginseng Res. 2017;41:113–119. doi: 10.1016/j.jgr.2016.03.003. PubMed DOI PMC

Caldwell L.K., Dupont W.H., Beeler M.K., Post E.M., Barnhart E.C., Hardesty V.H., Anders J.P., Borden E.C., Volek J.S., Kraemer W.J. The effects of a Korean ginseng, GINST15, on perceptual effort, psychomotor performance, and physical performance in men and women. J. Sport. Sci. Med. 2018;17:92–100. PubMed PMC

Kim J., Cho S.Y., Kim S.H., Cho D., Kim S., Park C.W., Shimizu T., Cho J.Y., Seo D.B., Shin S.S. Effects of Korean ginseng berry on skin antipigmentation and antiaging via FoxO3a activation. J. Ginseng Res. 2017;41:277–283. doi: 10.1016/j.jgr.2016.05.005. PubMed DOI PMC

Hwang E., Park S.Y., Jo H., Lee D.G., Kim H.T., Kim Y.M., Yin C.S., Yi T.H. Efficacy and Safety of Enzyme-Modified Panax ginseng for Anti-Wrinkle Therapy in Healthy Skin: A Single-Center, Randomized, Double-Blind, Placebo-Controlled Study. Rejuvenation Res. 2015;18:449–457. doi: 10.1089/rej.2015.1660. PubMed DOI

Shahidi F., Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects-A review. J. Funct. Foods. 2015;18:820–897. doi: 10.1016/j.jff.2015.06.018. DOI

Quero J., Mármol I., Cerrada E., Rodríguez-Yoldi M.J. Insight into the potential application of polyphenol-rich dietary intervention in degenerative disease management. Food Funct. 2020;11:2805–2825. doi: 10.1039/D0FO00216J. PubMed DOI

Pandey K.B., Rizvi S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009;2:270–278. doi: 10.4161/oxim.2.5.9498. PubMed DOI PMC

Dunaway S., Odin R., Zhou L., Ji L., Zhang Y., Kadekaro A.L. Natural antioxidants: Multiple mechanisms to protect skin from solar radiation. Front. Pharmacol. 2018;9:392. doi: 10.3389/fphar.2018.00392. PubMed DOI PMC

D’Orazio J., Jarrett S., Amaro-Ortiz A., Scott T. UV radiation and the skin. Int. J. Mol. Sci. 2013;14:12222–12248. doi: 10.3390/ijms140612222. PubMed DOI PMC

Adhikari B., Dhungana S.K., Waqas Ali M., Adhikari A., Kim I.D., Shin D.H. Antioxidant activities, polyphenol, flavonoid, and amino acid contents in peanut shell. J. Saudi Soc. Agric. Sci. 2019;18:437–442. doi: 10.1016/j.jssas.2018.02.004. DOI

Camins A., Junyent F., Verdaguer E., Beas-Zarate C., Rojas-Mayorquín A., Ortuño-Sahagún D., Pallàs M. Resveratrol: An Antiaging Drug with Potential Therapeutic Applications in Treating Diseases. Pharmaceuticals. 2009;2:194–205. doi: 10.3390/ph2030194. PubMed DOI PMC

Salehi B., Mishra A.P., Nigam M., Sener B., Kilic M., Sharifi-Rad M., Fokou P.V.T., Martins N., Sharifi-Rad J. Resveratrol: A double-edged sword in health benefits. Biomedicines. 2018;6:91. doi: 10.3390/biomedicines6030091. PubMed DOI PMC

Quadros Gomes B.A., Bastos Silva J.P., Rodrigues Romeiro C.F., dos Santos S.M., Rodrigues C.A., Gonçalves P.R., Sakai J.T., Santos Mendes P.F., Pompeu Varela E.L., Monteiro M.C. Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: Role of SIRT1. Oxid. Med. Cell. Longev. 2018;2018:8152373. PubMed PMC

Bhat K.P.L., Pezzuto J.M. Cancer chemopreventive activity of resveratrol. Ann. N. Y. Acad. Sci. 2002;957:210–229. doi: 10.1111/j.1749-6632.2002.tb02918.x. PubMed DOI

Bastianetto S., Dumont Y., Duranton A., Vercauteren F., Breton L., Quirion R. Protective Action of Resveratrol in Human Skin: Possible Involvement of Specific Receptor Binding Sites. PLoS ONE. 2010;5:e12935. doi: 10.1371/journal.pone.0012935. PubMed DOI PMC

Giardina S., Michelotti A., Zavattini G., Finzi S., Ghisalberti C., Marzatico F. Efficacy study in vitro: Assessment of the properties of resveratrol and resveratrol + N-acetyl-cysteine on proliferation and inhibition of collagen activity. Minerva Ginecol. 2010;62:195–201. PubMed

Demidenko Z.N., Blagosklonny M.V. At concentrations that inhibit mTOR, resveratrol suppresses cellular senescence. Cell Cycle. 2009;8:1901–1904. doi: 10.4161/cc.8.12.8810. PubMed DOI

Xia L., Wang X.X., Hu X.S., Guo X.G., Shang Y.P., Chen H.J., Zeng C.L., Zhang F.R., Chen J.Z. Resveratrol reduces endothelial progenitor cells senescence through augmentation of telomerase activity by Akt-dependent mechanisms. Br. J. Pharmacol. 2008;155:387–394. doi: 10.1038/bjp.2008.272. PubMed DOI PMC

Giovannelli L., Pitozzi V., Jacomelli M., Mulinacci N., Laurenzana A., Dolara P., Mocali A. Protective effects of resveratrol against senescence-associated changes in cultured human fibroblasts. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2011;66 A:9–18. doi: 10.1093/gerona/glq161. PubMed DOI

López-Lluch G., Irusta P.M., Navas P., de Cabo R. Mitochondrial biogenesis and healthy aging. Exp. Gerontol. 2008;43:813–819. doi: 10.1016/j.exger.2008.06.014. PubMed DOI PMC

Lagouge M., Argmann C., Gerhart-Hines Z., Meziane H., Lerin C., Daussin F., Messadeq N., Milne J., Lambert P., Elliott P., et al. Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1α. Cell. 2006;127:1109–1122. doi: 10.1016/j.cell.2006.11.013. PubMed DOI

Wang T., Li Q., Bi K. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci. 2018;13:12–23. doi: 10.1016/j.ajps.2017.08.004. PubMed DOI PMC

Antika L.D., Lee E.J., Kim Y.H., Kang M.K., Park S.H., Kim D.Y., Oh H., Choi Y.J., Kang Y.H. Dietary phlorizin enhances osteoblastogenic bone formation through enhancing β-catenin activity via GSK-3β inhibition in a model of senile osteoporosis. J. Nutr. Biochem. 2017;49:42–52. doi: 10.1016/j.jnutbio.2017.07.014. PubMed DOI

Makarova E., Górnaś P., Konrade I., Tirzite D., Cirule H., Gulbe A., Pugajeva I., Seglina D., Dambrova M. Acute anti-hyperglycaemic effects of an unripe apple preparation containing phlorizin in healthy volunteers: A preliminary study. J. Sci. Food Agric. 2014;95:560–568. doi: 10.1002/jsfa.6779. PubMed DOI

Mela D.J., Cao X.Z., Dobriyal R., Fowler M.I., Lin L., Joshi M., Mulder T.J.P., Murray P.G., Peters H.P.F., Vermeer M.A., et al. The effect of 8 plant extracts and combinations on post-prandial blood glucose and insulin responses in healthy adults: A randomized controlled trial. Nutr. Metab. 2020;17:51. doi: 10.1186/s12986-020-00471-x. PubMed DOI PMC

Laiteerapong N., Karter A.J., Liu J.Y., Moffet H.H., Sudore R., Schillinger D., John P.M., Huang E.S. Correlates of quality of life in older adults with diabetes: The diabetes & aging study. Diabetes Care. 2011;34:1749–1753. doi: 10.2337/dc10-2424. PubMed DOI PMC

Ayaz M., Sadiq A., Junaid M., Ullah F., Ovais M., Ullah I., Ahmed J., Shahid M. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front. Aging Neurosci. 2019;11:155. doi: 10.3389/fnagi.2019.00155. PubMed DOI PMC

Zhang Y.J., Gan R.Y., Li S., Zhou Y., Li A.N., Xu D.P., Li H.B., Kitts D.D. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules. 2015;20:21138–21156. doi: 10.3390/molecules201219753. PubMed DOI PMC

Kschonsek J., Wolfram T., Stöckl A., Böhm V. Polyphenolic compounds analysis of old and new apple cultivars and contribution of polyphenolic profile to the in vitro antioxidant capacity. Antioxidants. 2018;7:20. doi: 10.3390/antiox7010020. PubMed DOI PMC

Boyer J., Liu R.H. Apple phytochemicals and their health benefits. Nutr. J. 2004;3:5. doi: 10.1186/1475-2891-3-5. PubMed DOI PMC

Vafa M.R., Haghighatjoo E., Shidfar F., Afshari S., Gohari M.R., Ziaee A. Effects of apple consumption on lipid profile of hyperlipidemic and overweight men. Int. J. Prev. Med. 2011;2:94–100. PubMed PMC

Peng C., Chan H.Y.E., Huang Y., Yu H., Chen Z.Y. Apple polyphenols extend the mean lifespan of Drosophila melanogaster. J. Agric. Food Chem. 2011;59:2097–2106. doi: 10.1021/jf1046267. PubMed DOI

Cory H., Passarelli S., Szeto J., Tamez M., Mattei J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018;5:87. doi: 10.3389/fnut.2018.00087. PubMed DOI PMC

Kalt W., Cassidy A., Howard L.R., Krikorian R., Stull A.J., Tremblay F., Zamora-Ros R. Recent Research on the Health Benefits of Blueberries and Their Anthocyanins. Adv. Nutr. 2020;11:224–236. doi: 10.1093/advances/nmz065. PubMed DOI PMC

Shukitt-Hale B., Thangthaeng N., Miller M.G., Poulose S.M., Carey A.N., Fisher D.R. Blueberries Improve Neuroinflammation and Cognition differentially Depending on Individual Cognitive baseline Status. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2019;74:977–983. doi: 10.1093/gerona/glz048. PubMed DOI PMC

Joseph J.A., Shukitt-Hale B., Casadesus G. Reversing the deleterious effects of aging on neuronal communication and behavior: Beneficial properties of fruit polyphenolic compounds. Am. J. Clin. Nutr. 2005;81:313S–316S. doi: 10.1093/ajcn/81.1.313S. PubMed DOI

Galli R.L., Bielinski D.F., Szprengiel A., Shukitt-Hale B., Joseph J.A. Blueberry supplemented diet reverses age-related decline in hippocampal HSP70 neuroprotection. Neurobiol. Aging. 2006;27:344–350. doi: 10.1016/j.neurobiolaging.2005.01.017. PubMed DOI

Goyarzu P., Malin D.H., Lau F.C., Taglialatela G., Moon W.D., Jennings R., Moy E., Moy D., Lippold S., Shukitt-Hale B., et al. Blueberry supplemented diet: Effects on object recognition memory and nuclear factor-kappa B levels in aged rats. Nutr. Neurosci. 2004;7:75–83. doi: 10.1080/10284150410001710410. PubMed DOI

Peng C., Zuo Y., Kwan K.M., Liang Y., Ma K.Y., Chan H.Y.E., Huang Y., Yu H., Chen Z.Y. Blueberry extract prolongs lifespan of Drosophila melanogaster. Exp. Gerontol. 2012;47:170–178. doi: 10.1016/j.exger.2011.12.001. PubMed DOI

Su Y.L., Leung L.K., Huang Y., Chen Z.Y. Stability of tea theaflavins and catechins. Food Chem. 2003;83:189–195. doi: 10.1016/S0308-8146(03)00062-1. DOI

Musial C., Kuban-Jankowska A., Gorska-Ponikowska M. Beneficial properties of green tea catechins. Int. J. Mol. Sci. 2020;21:1744. doi: 10.3390/ijms21051744. PubMed DOI PMC

Yan Z., Zhong Y., Duan Y., Chen Q., Li F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim. Nutr. 2020;6:115–123. doi: 10.1016/j.aninu.2020.01.001. PubMed DOI PMC

Li Y.M., Chan H.Y.E., Huang Y., Chen Z.Y. Green tea catechins upregulate Superoxide dismutase and catalase in fruit flies. Mol. Nutr. Food Res. 2007;51:546–554. doi: 10.1002/mnfr.200600238. PubMed DOI

Oyetakinwhite P., Tribout H., Baron E. Protective mechanisms of green tea polyphenols in skin. Oxid. Med. Cell. Longev. 2012;2012:560682. doi: 10.1155/2012/560682. PubMed DOI PMC

Elmets C.A., Singh D., Tubesing K., Matsui M., Katiyar S., Mukhtar H. Cutaneous photoprotection from ultraviolet injury by green tea polyphenols. J. Am. Acad. Dermatol. 2001;44:425–432. doi: 10.1067/mjd.2001.112919. PubMed DOI

Chiu A.E., Chan J.L., Kern D.G., Kohler S., Rehmus W.E., Kimball A.B. Double-blinded, placebo-controlled trial of green tea extracts in the clinical and histologic appearance of photoaging skin. Dermatol. Surg. 2005;31:855–860. doi: 10.1111/j.1524-4725.2005.31731. PubMed DOI

Shaikh R., Pund M., Dawane A., Iliyas S. Evaluation of anticancer, antioxidant, and possible anti-inflammatory properties of selected medicinal plants used in indian traditional medication. J. Tradit. Complement. Med. 2014;4:253–257. doi: 10.4103/2225-4110.128904. PubMed DOI PMC

Azevedo J., Fernandes I., Faria A., Oliveira J., Fernandes A., de Freitas V., Mateus N. Antioxidant properties of anthocyanidins, anthocyanidin-3-glucosides and respective portisins. Food Chem. 2010;119:518–523. doi: 10.1016/j.foodchem.2009.06.050. DOI

Zuo Y., Peng C., Liang Y., Ma K.Y., Yu H., Edwin Chan H.Y., Chen Z.Y. Black rice extract extends the lifespan of fruit flies. Food Funct. 2012;3:1271–1279. doi: 10.1039/c2fo30135k. PubMed DOI

Huang J.J., Zhao S.M., Jin L., Huang L.J., He X., Wei Q. Anti-aging effect of black rice in subacute aging model mice. Chin. J. Clin. Rehabil. 2006;10:82–84.

Institute of Medicine (US) Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. National Academies Press (US); Washington, DC, USA: 2000. Panel on Dietary Antioxidants and Related Compounds β-Carotene and Other Carotenoids. PubMed

Stahl W., Sies H. β-Carotene and other carotenoids in protection from sunlight. Am. J. Clin. Nutr. 2012;96:1179S–1184S. doi: 10.3945/ajcn.112.034819. PubMed DOI

Pritwani R., Mathur P. β-carotene Content of Some Commonly Consumed Vegetables and Fruits Available in Delhi, India. J. Nutr. Food Sci. 2017;7:5. doi: 10.4172/2155-9600.1000625. DOI

Jaswir I., Noviendri D., Hasrini R.F., Octavianti F. Carotenoids: Sources, medicinal properties and their application in food and nutraceutical industry. J. Med. Plant Res. 2011;5:7119–7131. doi: 10.5897/JMPRx11.011. DOI

Parrado C., Philips N., Gilaberte Y., Juarranz A., González S. Oral photoprotection: Effective agents and potential candidates. Front. Med. 2018;5:188. doi: 10.3389/fmed.2018.00188. PubMed DOI PMC

Boccardi V., Arosio B., Cari L., Bastiani P., Scamosci M., Casati M., Ferri E., Bertagnoli L., Ciccone S., Rossi P.D., et al. Beta-carotene, telomerase activity and Alzheimer’s disease in old age subjects. Eur. J. Nutr. 2020;59:119–126. doi: 10.1007/s00394-019-01892-y. PubMed DOI

The Alpha-Tocopherol Beta Carotene Cancer Prevention Study Group The effect of vitamin e and beta carotene on the incidence of lung cancer and other cancers in male smokers. N. Engl. J. Med. 1994;330:1029–1035. doi: 10.1056/NEJM199404143301501. PubMed DOI

Evans J.A., Johnson E.J. The role of phytonutrients in skin health. Nutrients. 2010;2:903–928. doi: 10.3390/nu2080903. PubMed DOI PMC

Ascenso A., Pedrosa T., Pinho S., Pinho F., De Oliveira J.M.P.F., Marques H.C., Oliveira H., Simões S., Santos C. The Effect of Lycopene Preexposure on UV-B-Irradiated Human Keratinocytes. Oxid. Med. Cell. Longev. 2016;2016 doi: 10.1155/2016/8214631. PubMed DOI PMC

Przybylska S. Lycopene–A bioactive carotenoid offering multiple health benefits: A review. Int. J. Food Sci. Technol. 2020;55:11–32. doi: 10.1111/ijfs.14260. DOI

Darvin M.E., Sterry W., Lademann J., Vergou T. The role of carotenoids in human skin. Molecules. 2011;16:10491–10506. doi: 10.3390/molecules161210491. DOI

Cheng J., Miller B., Balbuena E., Eroglu A. Lycopene protects against smoking-induced lung cancer by inducing base excision repair. Antioxidants. 2020;9:643. doi: 10.3390/antiox9070643. PubMed DOI PMC

Singh B., Singh J.P., Kaur A., Singh N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res. Int. 2020;132:109114. doi: 10.1016/j.foodres.2020.109114. PubMed DOI

Carr A., Maggini S. Vitamin C and Immune Function. Nutrients. 2017;9:1211. doi: 10.3390/nu9111211. PubMed DOI PMC

Hemilä H. Vitamin C and Infections. Nutrients. 2017;9:339. doi: 10.3390/nu9040339. PubMed DOI PMC

Souyoul S.A., Saussy K.P., Lupo M.P. Nutraceuticals: A Review. Dermatol. Ther. 2018;8:5–16. doi: 10.1007/s13555-018-0221-x. PubMed DOI PMC

Brickley M., Ives R. The Bioarchaeology of Metabolic Bone Disease. Elsevier; Amsterdam, The Netherlands: 2008. Vitamin C Deficiency Scurvy; pp. 1–74.

Galli F., Azzi A., Birringer M., Cook-Mills J.M., Eggersdorfer M., Frank J., Cruciani G., Lorkowski S., Özer N.K. Vitamin E: Emerging aspects and new directions. Free Radic. Biol. Med. 2017;102:16–36. doi: 10.1016/j.freeradbiomed.2016.09.017. PubMed DOI

Sivakanesan R. Molecular Basis and Emerging Strategies for Anti-Aging Interventions. Springer; Singapore: 2018. Antioxidants for health and longevity; pp. 323–341.

Leonard P.J., Losowsky M.S., Pulvertaft C.N. Vitamin-E Deficiency. Br. Med. J. 1966;1:1301–1302. doi: 10.1136/bmj.1.5498.1301-c. PubMed DOI

Keen M., Hassan I. Vitamin E in dermatology. Indian Dermatol. Online J. 2016;7:311. doi: 10.4103/2229-5178.185494. PubMed DOI PMC

Fryer M.J. Evidence for the photoprotective effects of vitamin E. Photochem. Photobiol. 1993;58:304–312. doi: 10.1111/j.1751-1097.1993.tb09566.x. PubMed DOI

Chan A.C., Tran K., Raynor T., Ganz P.R., Chow C.K. Regeneration of vitamin E in human platelets-PubMed. J. Biol. Chem. 1991;266:17290–17295. PubMed

Makrantonaki E., Zouboulis C.C. Skin alterations and diseases in advanced age. Drug Discov. Today Dis. Mech. 2008;5:e153–e162. doi: 10.1016/j.ddmec.2008.05.008. DOI

McVean M., Liebler D.C. Prevention of DNA photodamage by vitamin E compounds and sunscreens: Roles of ultraviolet absorbance and cellular uptake. Mol. Carcinog. 1999;24:169–176. doi: 10.1002/(SICI)1098-2744(199903)24:3<169::AID-MC3>3.0.CO;2-A. PubMed DOI

Passi S., Morrone A., De Luca C., Picardo M., Ippolito F. Blood levels of vitamin E, polyunsaturated fatty acids of phospholipids, lipoperoxides and glutathione peroxidase in patients affected with seborrheic dermatitis. J. Dermatol. Sci. 1991;2:171–178. doi: 10.1016/0923-1811(91)90064-5. PubMed DOI

Ekanayake-Mudiyanselage S., Thiele J. Sebaceous glands as transporters of vitamin E. Hautarzt. 2006;57:291–296. doi: 10.1007/s00105-005-1090-7. PubMed DOI

Eberlein-König B., Ring J. Relevance of vitamins C and E in cutaneous photoprotection. J. Cosmet. Dermatol. 2005;4:4–9. doi: 10.1111/j.1473-2165.2005.00151.x. PubMed DOI

Shahidi F. Nutraceuticals, functional foods and dietary supplements in health and disease. J. Food Drug Anal. 2012;20:226–230.

Pem D., Jeewon R. Fruit and vegetable intake: Benefits and progress of nutrition education interventions-narrative review article. Iran. J. Public Health. 2015;44:1309–1321. PubMed PMC

Petruk G., Del Giudice R., Rigano M.M., Monti D.M. Antioxidants from plants protect against skin photoaging. Oxid. Med. Cell. Longev. 2018;2018:1454936. doi: 10.1155/2018/1454936. PubMed DOI PMC

Cimino F., Cristani M., Saija A., Bonina F.P., Virgili F. Protective effects of a red orange extract on UVB-induced damage in human keratinocytes. Biofactors. 2007;30:129–138. doi: 10.1002/biof.5520300206. PubMed DOI

Fujii T., Wakaizumi M., Ikami T., Saito M. Amla (Emblica officinalis Gaertn.) extract promotes procollagen production and inhibits matrix metalloproteinase-1 in human skin fibroblasts. J. Ethnopharmacol. 2008;119:53–57. doi: 10.1016/j.jep.2008.05.039. PubMed DOI

Adil M.D., Kaiser P., Satti N.K., Zargar A.M., Vishwakarma R.A., Tasduq S.A. Effect of Emblica officinalis (fruit) against UVB-induced photo-aging in human skin fibroblasts. J. Ethnopharmacol. 2010;132:109–114. doi: 10.1016/j.jep.2010.07.047. PubMed DOI

Nema N.K., Maity N., Sarkar B., Mukherjee P.K. Cucumis sativus fruit-potential antioxidant, anti-hyaluronidase, and anti-elastase agent. Arch. Dermatol. Res. 2011;303:247–252. doi: 10.1007/s00403-010-1103-y. PubMed DOI

Cao X., Sun Y., Lin Y., Pan Y., Farooq U., Xiang L., Qi J. Antiaging of cucurbitane glycosides from fruits of Momordica charantia L. Oxid. Med. Cell. Longev. 2018;2018 doi: 10.1155/2018/1538632. PubMed DOI PMC

Lourith N., Kanlayavattanakul M., Chaikul P., Chansriniyom C., Bunwatcharaphansakun P. In vitro and cellular activities of the selected fruits residues for skin aging treatment. An. Acad. Bras. Cienc. 2017;89:577–589. doi: 10.1590/0001-3765201720160849. PubMed DOI

Apraj V.D., Pandita N.S. Evaluation of skin anti-aging potential of Citrus reticulata blanco peel. Pharmacogn. Res. 2016;8:160–168. doi: 10.4103/0974-8490.182913. PubMed DOI PMC

Girsang E., Lister I.N.E., Ginting C.N., Khu A., Samin B., Widowati W., Wibowo S., Rizal R. Chemical Constituents of Snake Fruit (Salacca zalacca (Gaert.) Voss) Peel and in silico Anti-aging Analysis. Mol. Cell. Biomed. Sci. 2019;3:122. doi: 10.21705/mcbs.v3i2.80. DOI

Kim D.B., Shin G.H., Kim J.M., Kim Y.H., Lee J.H., Lee J.S., Song H.J., Choe S.Y., Park I.J., Cho J.H., et al. Antioxidant and anti-ageing activities of citrus-based juice mixture. Food Chem. 2016;194:920–927. doi: 10.1016/j.foodchem.2015.08.094. PubMed DOI

Lee M.J., Jeong N.H., Jang B.S. Antioxidative activity and antiaging effect of carrot glycoprotein. J. Ind. Eng. Chem. 2015;25:216–221. doi: 10.1016/j.jiec.2014.10.037. DOI

Zemour K., Labdelli A., Adda A., Dellal A., Talou T., Merah O. Phenol Content and Antioxidant and Antiaging Activity of Safflower Seed Oil (Carthamus Tinctorius L.) Cosmetics. 2019;6:55. doi: 10.3390/cosmetics6030055. DOI

Itoh S., Yamaguchi M., Shigeyama K., Sakaguchi I. The Anti-Aging Potential of Extracts from Chaenomeles sinensis. Cosmetics. 2019;6:21. doi: 10.3390/cosmetics6010021. DOI

Foolad N., Vaughn A.R., Rybak I., Burney W.A., Chodur G.M., Newman J.W., Steinberg F.M., Sivamani R.K. Prospective randomized controlled pilot study on the effects of almond consumption on skin lipids and wrinkles. Phyther. Res. 2019;33:3212–3217. doi: 10.1002/ptr.6495. PubMed DOI PMC

Wang L., Cui J., Jin B., Zhao J., Xu H., Lu Z., Li W., Li X., Li L., Liang E., et al. Multifeature analyses of vascular cambial cells reveal longevity mechanisms in old Ginkgo biloba trees. Proc. Natl. Acad. Sci. USA. 2020;117:2201–2210. doi: 10.1073/pnas.1916548117. PubMed DOI PMC

Shailaja M., Damodara Gowda K.M., Vishakh K., Suchetha Kumari N. Anti-aging Role of Curcumin by Modulating the Inflammatory Markers in Albino Wistar Rats. J. Natl. Med. Assoc. 2017;109:9–13. doi: 10.1016/j.jnma.2017.01.005. PubMed DOI

Shin S., Lee J.A., Son D., Park D., Jung E. Anti-Skin-Aging Activity of a Standardized Extract from Panax ginseng Leaves In Vitro and In Human Volunteer. Cosmetics. 2017;4:18. doi: 10.3390/cosmetics4020018. DOI

Hwang E., Park S.Y., Yin C.S., Kim H.T., Kim Y.M., Yi T.H. Antiaging effects of the mixture of Panax ginseng and Crataegus pinnatifida in human dermal fibroblasts and healthy human skin. J. Ginseng Res. 2017;41:69–77. doi: 10.1016/j.jgr.2016.01.001. PubMed DOI PMC

Choi H.R., Nam K.M., Lee H.S., Yang S.H., Kim Y.S., Lee J., Date A., Toyama K., Park K.C. Phlorizin, an active ingredient of eleutherococcus senticosus, increases proliferative potential of keratinocytes with inhibition of MiR135b and increased expression of type IV collagen. Oxid. Med. Cell. Longev. 2016;2016 doi: 10.1155/2016/3859721. PubMed DOI PMC

Shoko T., Maharaj V.J., Naidoo D., Tselanyane M., Nthambeleni R., Khorombi E., Apostolides Z. Anti-aging potential of extracts from Sclerocarya birrea (A. Rich.) Hochst and its chemical profiling by UPLC-Q-TOF-MS. BMC Complement. Altern. Med. 2018;18:54. doi: 10.1186/s12906-018-2112-1. PubMed DOI PMC

Shimizu C., Wakita Y., Inoue T., Hiramitsu M., Okada M., Mitani Y., Segawa S., Tsuchiya Y., Nabeshima T. Effects of lifelong intake of lemon polyphenols on aging and intestinal microbiome in the senescence-accelerated mouse prone 1 (SAMP1) Sci. Rep. 2019;9:3671. doi: 10.1038/s41598-019-40253-x. PubMed DOI PMC

Lu X., Zhou Y., Wu T., Hao L. Ameliorative effect of black rice anthocyanin on senescent mice induced by d-galactose. Food Funct. 2014;5:2892–2897. doi: 10.1039/C4FO00391H. PubMed DOI

Xiong L.G., Chen Y.J., Tong J.W., Gong Y.S., Huang J.A., Liu Z.H. Epigallocatechin-3-gallate promotes healthy lifespan through mitohormesis during early-to-mid adulthood in Caenorhabditis elegans. Redox Biol. 2018;14:305–315. doi: 10.1016/j.redox.2017.09.019. PubMed DOI PMC

Ratnasooriya W.D., Abeysekera W.K.S.M., Muthunayake T.B.S., Ratnasooriya C.D.T. In vitro antiglycation and cross-link breaking activities of Sri Lankan low-grown orthodox orange pekoe grade black tea (Camellia sinensis L) Trop. J. Pharm. Res. 2014;13:567–571. doi: 10.4314/tjpr.v13i4.12. DOI

Yoo D.S., Min Jeon J., Jeong Choi M., Sang Lee H., Woo Cheon J., Hoi Kim S., Ryu Ju S. Potential anti-wrinkle effects of m. spaientum l. leaves extract. BioEvolution. 2015;2:56–61.

Widowati W., Fauziah N., Herdiman H., Afni M., Afifah E., Kusuma H.S.W., Nufus H., Arumwardana S., Rihibiha D.D. Antioxidant and anti aging assays of Oryza sativa extracts, vanillin and coumaric acid. J. Nat. Remedies. 2016;16:88–99. doi: 10.18311/jnr/2016/7220. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...