Plant Fortification of the Diet for Anti-Ageing Effects: A Review
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
VT2019-2021
UHK
CEP - Centrální evidence projektů
NV19-09-00578
Ministry of Health
PubMed
33007945
PubMed Central
PMC7601865
DOI
10.3390/nu12103008
PII: nu12103008
Knihovny.cz E-zdroje
- Klíčová slova
- anti-ageing, diet, eating habits, functional foods, skin ageing,
- MeSH
- antioxidancia aplikace a dávkování MeSH
- dlouhověkost MeSH
- funkční potraviny MeSH
- jedlé rostliny * MeSH
- lidé MeSH
- oxidační stres MeSH
- potravní doplňky * MeSH
- reaktivní formy kyslíku analýza MeSH
- stárnutí fyziologie MeSH
- zdravá strava metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antioxidancia MeSH
- reaktivní formy kyslíku MeSH
Ageing is an enigmatic and progressive biological process which undermines the normal functions of living organisms with time. Ageing has been conspicuously linked to dietary habits, whereby dietary restrictions and antioxidants play a substantial role in slowing the ageing process. Oxygen is an essential molecule that sustains human life on earth and is involved in the synthesis of reactive oxygen species (ROS) that pose certain health complications. The ROS are believed to be a significant factor in the progression of ageing. A robust lifestyle and healthy food, containing dietary antioxidants, are essential for improving the overall livelihood and decelerating the ageing process. Dietary antioxidants such as adaptogens, anthocyanins, vitamins A/D/C/E and isoflavones slow the ageing phenomena by reducing ROS production in the cells, thereby improving the life span of living organisms. This review highlights the manifestations of ageing, theories associated with ageing and the importance of diet management in ageing. It also discusses the available functional foods as well as nutraceuticals with anti-ageing potential.
School of Bioengineering and Biosciences Lovely Professional University Phagwara 144411 Punjab India
Zobrazit více v PubMed
Jin K., Rose M.R. Modern Biological Theories of Aging. Aging Dis. 1988;1:220–221. doi: 10.1016/j.bbi.2008.05.010. PubMed DOI PMC
Zhang S., Duan E. Fighting against Skin Aging: The Way from Bench to Bedside. Cell Transplant. 2018;27:729–738. doi: 10.1177/0963689717725755. PubMed DOI PMC
Bocheva G., Slominski R.M., Slominski A.T. Neuroendocrine aspects of skin aging. Int. J. Mol. Sci. 2019;20:2798. doi: 10.3390/ijms20112798. PubMed DOI PMC
Schagen S.K., Zampeli V.A., Makrantonaki E., Zouboulis C.C. Discovering the link between nutrition and skin aging. Dermatoendocrinology. 2012;4:298–307. doi: 10.4161/derm.22876. PubMed DOI PMC
Lobo V., Patil A., Phatak A., Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010;4:118–126. doi: 10.4103/0973-7847.70902. PubMed DOI PMC
Alam I., Almajwal A.M., Alam W., Alam I., Ullah N., Abulmeaaty M., Razak S., Khan S., Pawelec G., Paracha P.I. The immune-nutrition interplay in aging-Facts and controversies. Nutr. Healthy Aging. 2019;5:73–95. doi: 10.3233/NHA-170034. DOI
Rathore H., Prasad S., Sharma S. Mushroom nutraceuticals for improved nutrition and better human health: A review. PharmaNutrition. 2017;5:35–46. doi: 10.1016/j.phanu.2017.02.001. DOI
Da Costa J.P. A current look at nutraceuticals–Key concepts and future prospects. Trends Food Sci. Technol. 2017;62:68–78. doi: 10.1016/j.tifs.2017.02.010. DOI
Chauhan B., Kumar G., Kalam N., Ansari S.H. Current concepts and prospects of herbal nutraceutical: A review. J. Adv. Pharm. Technol. Res. 2013;4:4–8. PubMed PMC
Liu Z., Ren Z., Zhang J., Chuang C.C., Kandaswamy E., Zhou T., Zuo L. Role of ROS and nutritional antioxidants in human diseases. Front. Physiol. 2018;9:477. doi: 10.3389/fphys.2018.00477. PubMed DOI PMC
Conlon M.A., Bird A.R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients. 2015;7:17–44. doi: 10.3390/nu7010017. PubMed DOI PMC
Eming S.A., Martin P., Tomic-Canic M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 2014;6:265sr6. doi: 10.1126/scitranslmed.3009337. PubMed DOI PMC
Salam N., Rane S., Das R., Faulkner M., Gund R., Kandpal U., Lewis V., Mattoo H., Prabhu S., Ranganathan V., et al. T cell ageing: Effects of age on development, survival & function. Indian J. Med. Res. 2013;138:595–608. PubMed PMC
Amarya S., Singh K., Sabharwal M. Gerontology. InTech; London, UK: 2018. Ageing Process and Physiological Changes.
Prohaska T.R., Keller M.L., Leventhal E.A., Leventhal H. Impact of symptoms and aging attribution on emotions and coping. Health Psychol. 1987;6:495–514. doi: 10.1037/0278-6133.6.6.495. PubMed DOI
Heinemann L.A.J., Zimmermann T., Vermeulen A., Thiel C., Hummel W. A new «aging males» symptoms’ rating scale. Aging Male. 1999;2:105–114. doi: 10.3109/13685539909003173. DOI
Maddy A.J., Tosti A. Hair and nail diseases in the mature patient. Clin. Dermatol. 2018;36:159–166. doi: 10.1016/j.clindermatol.2017.10.007. PubMed DOI
Sarbacher C.A., Halper J.T. Subcellular Biochemistry. Springer; New York, NY, USA: 2019. Connective tissue and age-related diseases; pp. 281–310. PubMed
Patel I., West S.K. Presbyopia: Prevalence, impact, and interventions. Community Eye Health J. 2007;20:40–41. PubMed PMC
Boostani R., Karimzadeh F., Nami M. A comparative review on sleep stage classification methods in patients and healthy individuals. Comput. Methods Progr. Biomed. 2017;140:77–91. doi: 10.1016/j.cmpb.2016.12.004. PubMed DOI
Locantore P., Del Gatto V., Gelli S., Paragliola R.M., Pontecorvi A. The Interplay between Immune System and Microbiota in Osteoporosis. Mediat. Inflamm. 2020;2020:3686749. doi: 10.1155/2020/3686749. PubMed DOI PMC
Trexler E.T., Smith-Ryan A.E., Norton L.E. Metabolic adaptation to weight loss: Implications for the athlete. J. Int. Soc. Sports Nutr. 2014;11:7. doi: 10.1186/1550-2783-11-7. PubMed DOI PMC
Wood R.L. Accelerated cognitive aging following severe traumatic brain injury: A review. Brain Inj. 2017;31:1270–1278. doi: 10.1080/02699052.2017.1332387. PubMed DOI
Sarnak M.J. A patient with heart failure and worsening kidney function. Clin. J. Am. Soc. Nephrol. 2014;9:1790–1798. doi: 10.2215/CJN.11601113. PubMed DOI PMC
De Martinis M., Sirufo M.M., Ginaldi L. Allergy and aging: An Old/new emerging health issue. Aging Dis. 2017;8:162–175. doi: 10.14336/AD.2016.0831. PubMed DOI PMC
Santoro N., Epperson C.N., Mathews S.B. Menopausal Symptoms and Their Management. Endocrinol. Metab. Clin. N. Am. 2015;44:497–515. doi: 10.1016/j.ecl.2015.05.001. PubMed DOI PMC
Booth F.W., Roberts C.K., Laye M.J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2012;2:1143–1211. doi: 10.1002/cphy.c110025. PubMed DOI PMC
Da Costa J.P., Vitorino R., Silva G.M., Vogel C., Duarte A.C., Rocha-Santos T. A synopsis on aging—Theories, mechanisms and future prospects. Ageing Res. Rev. 2016;29:90–112. doi: 10.1016/j.arr.2016.06.005. PubMed DOI PMC
De A., Ghosh C. Basics of aging theories and disease related aging-an overview. PharmaTutor. 2017;5:16–23.
Weinert B.T., Timiras P.S. Invited review: Theories of aging. J. Appl. Physiol. 2003;95:1706–1716. doi: 10.1152/japplphysiol.00288.2003. PubMed DOI
Gladyshev V.N. The free radical theory of aging is dead. Long live the damage theory! Antioxid. Redox Signal. 2014;20:727–731. doi: 10.1089/ars.2013.5228. PubMed DOI PMC
Sailaja Rao P., Kalva S., Yerramilli A., Mamidi S. Free Radicals and Tissue Damage: Role of Antioxidants. Free Radic. Antioxid. 2011;1:2–7. doi: 10.5530/ax.2011.4.2. DOI
Phaniendra A., Jestadi D.B., Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J. Clin. Biochem. 2015;30:11–26. doi: 10.1007/s12291-014-0446-0. PubMed DOI PMC
Di Meo S., Venditti P. Evolution of the Knowledge of Free Radicals and Other Oxidants. Oxid. Med. Cell. Longev. 2020;2020:9829176. doi: 10.1155/2020/9829176. PubMed DOI PMC
Pham-Huy L.A., He H., Pham-Huy C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008;4:89–96. PubMed PMC
Aruoma O.I. Nutrition and health aspects of free radicals and antioxidants. Food Chem. Toxicol. 1994;32:671–683. doi: 10.1016/0278-6915(94)90011-6. PubMed DOI
Dröge W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002;82:47–95. doi: 10.1152/physrev.00018.2001. PubMed DOI
Floyd R.A., Carney J.M. Free radical damage to protein and DNA: Mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann. Neurol. 1992;32:S22–S27. doi: 10.1002/ana.410320706. PubMed DOI
Kumar H., Bhardwaj K., Nepovimova E., Kuča K., Singh Dhanjal D., Bhardwaj S., Bhatia S.K., Verma R., Kumar D. Antioxidant Functionalized Nanoparticles: A Combat against Oxidative Stress. Nanomaterials. 2020;10:1334. doi: 10.3390/nano10071334. PubMed DOI PMC
Thanan R., Oikawa S., Hiraku Y., Ohnishi S., Ma N., Pinlaor S., Yongvanit P., Kawanishi S., Murata M. Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int. J. Mol. Sci. 2014;16:193–217. doi: 10.3390/ijms16010193. PubMed DOI PMC
Sharma P., Jha A.B., Dubey R.S., Pessarakli M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012;2012:217037. doi: 10.1155/2012/217037. DOI
Ozcan A., Ogun M. Basic Principles and Clinical Significance of Oxidative Stress. InTech; London, UK: 2015. Biochemistry of Reactive Oxygen and Nitrogen Species.
Pourahmad J., Salimi A., Seydi E. Free Radicals and Diseases. InTech; London, UK: 2016. Role of Oxygen Free Radicals in Cancer Development and Treatment.
Jamshidi-kia F., Wibowo J.P., Elachouri M., Masumi R., Salehifard-Jouneghani A., Abolhasanzadeh Z., Lorigooini Z. Battle between plants as antioxidants with free radicals in human body. J. Herbmed Pharmacol. 2020;9:191–199. doi: 10.34172/jhp.2020.25. DOI
Santo A., Zhu H., Li Y.R. Free radicals: From health to disease. React. Oxyg. Species. 2016;2:245–263. doi: 10.20455/ros.2016.847. DOI
Liguori I., Russo G., Curcio F., Bulli G., Aran L., Della-Morte D., Gargiulo G., Testa G., Cacciatore F., Bonaduce D., et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging. 2018;13:757–772. doi: 10.2147/CIA.S158513. PubMed DOI PMC
Nissanka N., Moraes C.T. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett. 2018;592:728–742. doi: 10.1002/1873-3468.12956. PubMed DOI PMC
Cantó C., Auwerx J. Caloric restriction, SIRT1 and longevity. Trends Endocrinol. Metab. 2009;20:325–331. doi: 10.1016/j.tem.2009.03.008. PubMed DOI PMC
Armandola E. Caloric Restriction and Life Expectancy: Highlights of the 5th European Molecular Biology Organization Interdisciplinary Conference on Science and Society—Time & Aging: Mechanisms and Meanings; November 5–6, 2004; Heidelberg, Germany. Med. Gen. Med. 2004;6:16. PubMed PMC
Gutierrez J., Ballinger S.W., Darley-Usmar V.M., Landar A. Free radicals, mitochondria, and oxidized lipids: The emerging role in signal transduction in vascular cells. Circ. Res. 2006;99:924–932. doi: 10.1161/01.RES.0000248212.86638.e9. PubMed DOI
Peng C., Wang X., Chen J., Jiao R., Wang L., Li Y.M., Zuo Y., Liu Y., Lei L., Ma K.Y., et al. Biology of ageing and role of dietary antioxidants. BioMed Res. Int. 2014;2014:831841. doi: 10.1155/2014/831841. PubMed DOI PMC
Hornsby P.J. Telomerase and the aging process. Exp. Gerontol. 2007;42:575–581. doi: 10.1016/j.exger.2007.03.007. PubMed DOI PMC
Schmidt J.C., Cech T.R. Human telomerase: Biogenesis, trafficking, recruitment, and activation. Genes Dev. 2015;29:1095–1105. doi: 10.1101/gad.263863.115. PubMed DOI PMC
Kalmbach K.H., Fontes Antunes D.M., Dracxler R.C., Knier T.W., Seth-Smith M.L., Wang F., Liu L., Keefe D.L. Telomeres and human reproduction. Fertil. Steril. 2013;99:23–29. doi: 10.1016/j.fertnstert.2012.11.039. PubMed DOI PMC
Kasote D.M., Katyare S.S., Hegde M.V., Bae H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci. 2015;11:982–991. doi: 10.7150/ijbs.12096. PubMed DOI PMC
Chen L., Deng H., Cui H., Fang J., Zuo Z., Deng J., Li Y., Wang X., Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9:7204–7218. doi: 10.18632/oncotarget.23208. PubMed DOI PMC
Liao L.Y., He Y.F., Li L., Meng H., Dong Y.M., Yi F., Xiao P.G. A preliminary review of studies on adaptogens: Comparison of their bioactivity in TCM with that of ginseng-like herbs used worldwide Milen Georgiev, Ruibing Wang. Chin. Med. 2018;13:57. doi: 10.1186/s13020-018-0214-9. PubMed DOI PMC
Bhatia N., Jaggi A.S., Singh N., Anand P., Dhawan R. Adaptogenic potential of curcumin in experimental chronic stress and chronic unpredictable stress-induced memory deficits and alterations in functional homeostasis. J. Nat. Med. 2011;65:532–543. doi: 10.1007/s11418-011-0535-9. PubMed DOI
Singh M.K., Jain G., Das B.K., Patil U.K. Biomolecules from Plants as an Adaptogen. Med. Aromat. Plants. 2017;6:307. doi: 10.4172/2167-0412.1000307. DOI
Aguiar S., Borowski T. Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res. 2013;16:313–326. doi: 10.1089/rej.2013.1431. PubMed DOI PMC
Jain P.K., Das D., Kumar Jain P. Pharmacognostic Comparison of Bacopa Monnieri, Cyperus Rotundus and Emblica Officinalis. Innovare J. Ayurvedic Sci. 2016;4:16–26.
Tewari I., Sharma L., Lal Gupta G. Synergistic antioxidant activity of three medicinal plants Hypericum perforatum, Bacopa monnieri, and Camellia Sinensis. Indo Am. J. Pharm. Res. 2014;4:2563–2568.
Vollala V.R., Upadhya S., Nayak S. Effect of Bacopa monniera Linn. (brahmi) extract on learning and memory in rats: A behavioral study. J. Vet. Behav. Clin. Appl. Res. 2010;5:69–74. doi: 10.1016/j.jveb.2009.08.007. DOI
Simpson T., Pase M., Stough C. Bacopa monnieri as an Antioxidant Therapy to Reduce Oxidative Stress in the Aging Brain. Evid. Based Complement. Altern. Med. 2015;2015:615384. doi: 10.1155/2015/615384. PubMed DOI PMC
Bhattacharya S.K., Bhattacharya A., Kumar A., Ghosal S. Antioxidant activity of Bacopa monniera in rat frontal cortex, striatum and hippocampus. Phyther. Res. 2000;14:174–179. doi: 10.1002/(SICI)1099-1573(200005)14:3<174::AID-PTR624>3.0.CO;2-O. PubMed DOI
Shinomol G.K., Srinivas Bharath M.M. Muralidhara Neuromodulatory propensity of bacopa monnieri leaf extract against 3-nitropropionic acid-induced oxidative stress: In vitro and in vivo evidences. Neurotox. Res. 2012;22:102–114. doi: 10.1007/s12640-011-9303-6. PubMed DOI
Kumar N., Abichandani L.G., Thawani V., Gharpure K.J., Naidu M.U.R., Venkat Ramana G. Efficacy of Standardized Extract of Bacopa monnieri (Bacognize®) on Cognitive Functions of Medical Students: A Six-Week, Randomized Placebo-Controlled Trial. Evid. Based Complement. Altern. Med. 2016;2016 doi: 10.1155/2016/4103423. PubMed DOI PMC
Kocaadam B., Şanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr. 2017;57:2889–2895. doi: 10.1080/10408398.2015.1077195. PubMed DOI
Prasad S., Aggarwal B.B. Herbal Medicine: Biomolecular and Clinical Aspects: Second Edition. CRC Press; Boca Raton, FL, USA: 2011. Turmeric, the golden spice: From traditional medicine to modern medicine; pp. 263–288. PubMed
Tomeh M.A., Hadianamrei R., Zhao X. A review of curcumin and its derivatives as anticancer agents. Int. J. Mol. Sci. 2019;20:1033. doi: 10.3390/ijms20051033. PubMed DOI PMC
Desai S.J., Prickril B., Rasooly A. Mechanisms of Phytonutrient Modulation of Cyclooxygenase-2 (COX-2) and Inflammation Related to Cancer. Nutr. Cancer. 2018;70:350–375. doi: 10.1080/01635581.2018.1446091. PubMed DOI PMC
Engwa G.A. Phytochemicals-Source of Antioxidants and Role in Disease Prevention. InTech; London, UK: 2018. Free Radicals and the Role of Plant Phytochemicals as Antioxidants Against Oxidative Stress-Related Diseases.
Lima C.F., Pereira-Wilson C., Rattan S.I.S. Curcumin induces heme oxygenase-1 in normal human skin fibroblasts through redox signaling: Relevance for anti-aging intervention. Mol. Nutr. Food Res. 2011;55:430–442. doi: 10.1002/mnfr.201000221. PubMed DOI
Soh J.W., Marowsky N., Nichols T.J., Rahman A.M., Miah T., Sarao P., Khasawneh R., Unnikrishnan A., Heydari A.R., Silver R.B., et al. Curcumin is an early-acting stage-specific inducer of extended functional longevity in Drosophila. Exp. Gerontol. 2013;48:229–239. doi: 10.1016/j.exger.2012.09.007. PubMed DOI
Shen L.-R., Parnell L.D., Ordovas J.M., Lai C.-Q. Curcumin and aging. BioFactors. 2013;39:133–140. doi: 10.1002/biof.1086. PubMed DOI
Lee K.S., Lee B.S., Semnani S., Avanesian A., Um C.Y., Jeon H.J., Seong K.M., Yu K., Min K.J., Jafari M. Curcumin extends life span, improves health span, and modulates the expression of age-associated aging genes in drosophila melanogaster. Rejuvenation Res. 2010;13:561–570. doi: 10.1089/rej.2010.1031. PubMed DOI
He Y., Yue Y., Zheng X., Zhang K., Chen S., Du Z. Curcumin, inflammation, and chronic diseases: How are they linked? Molecules. 2015;20:9183–9213. doi: 10.3390/molecules20059183. PubMed DOI PMC
Olszanecki R., Jawien J., Gajda M., Mateuszuk L., Gebska A., Korabiowska M., Chlopicki S., Korbut R. Effect of curcumin on atherosclerosis in apoE-LDLR-double knockout mice. J. Physiol. Pharmacol. 2005;4:627–635. PubMed
Swamy A.V., Gulliaya S., Thippeswamy A., Koti B.C., Manjula D.V. Cardioprotective effect of curcumin against doxorubicin-induced myocardial toxicity in albino rats. Indian J. Pharmacol. 2012;44:73–77. doi: 10.4103/0253-7613.91871. PubMed DOI PMC
Ryan J.L., Heckler C.E., Ling M., Katz A., Williams J.P., Pentland A.P., Morrow G.R. Curcumin for radiation dermatitis: A randomized, double-blind, placebo-controlled clinical trial of thirty breast cancer patients. Radiat. Res. 2013;180:34–43. doi: 10.1667/RR3255.1. PubMed DOI PMC
Ray Hamidie R.D., Yamada T., Ishizawa R., Saito Y., Masuda K. Curcumin treatment enhances the effect of exercise on mitochondrial biogenesis in skeletal muscle by increasing cAMP levels. Metabolism. 2015;64:1334–1347. doi: 10.1016/j.metabol.2015.07.010. PubMed DOI
Cox K.H.M., Pipingas A., Scholey A.B. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J. Psychopharmacol. 2015;29:642–651. doi: 10.1177/0269881114552744. PubMed DOI
Yadav S.S., Singh M.K., Singh P.K., Kumar V. Traditional knowledge to clinical trials: A review on therapeutic actions of Emblica officinalis. Biomed. Pharmacother. 2017;93:1292–1302. doi: 10.1016/j.biopha.2017.07.065. PubMed DOI
Kapoor M.P., Suzuki K., Derek T., Ozeki M., Okubo T. Clinical evaluation of Emblica Officinalis Gatertn (Amla) in healthy human subjects: Health benefits and safety results from a randomized, double-blind, crossover placebo-controlled study. Contemp. Clin. Trials Commun. 2020;17:100499. doi: 10.1016/j.conctc.2019.100499. PubMed DOI PMC
Wilson D.W., Nash P., Singh H., Griffiths K., Singh R., De Meester F., Horiuchi R., Takahashi T. The role of food antioxidants, benefits of functional foods, and influence of feeding habits on the health of the older person: An overview. Antioxidants. 2017;6:81. doi: 10.3390/antiox6040081. PubMed DOI PMC
Hasan M.R., Islam M.N., Islam M.R. Phytochemistry, pharmacological activities and traditional uses of Emblica officinalis: A review. Int. Curr. Pharm. J. 2016;5:14–21. doi: 10.3329/icpj.v5i2.26441. DOI
Lauer A.C., Groth N., Haag S.F., Darvin M.E., Lademann J., Meinke M.C. Dose-dependent vitamin C uptake and radical scavenging activity in human skin measured with in vivo electron paramagnetic resonance spectroscopy. Skin Pharmacol. Physiol. 2013;26:147–154. doi: 10.1159/000350833. PubMed DOI
Bhattacharya A., Ghosal S., Bhattacharya S.K. Antioxidant activity of tannoid principles of Emblica officinalis (amla) in chronic stress induced changes in rat brain. Indian J. Exp. Biol. 2000;38:877–880. PubMed
Bhattachary S.K., Bhattacharya D., Muruganandam A.V. Effect of Emblica officinalis tannoids on a rat model of tardive dyskinesia. Indian J. Exp. Biol. 2000;38:945–947. PubMed
Dhingra D., Joshi P., Gupta A., Chhillar R. Possible Involvement of Monoaminergic Neurotransmission in Antidepressant-like activity of Emblica officinalis Fruits in Mice. CNS Neurosci. Ther. 2012;18:419–425. doi: 10.1111/j.1755-5949.2011.00256.x. PubMed DOI PMC
Isah T. Rethinking Ginkgo biloba L.: Medicinal uses and conservation. Pharmacogn. Rev. 2015;9:140–148. doi: 10.4103/0973-7847.162137. PubMed DOI PMC
Mashayekh A., Pham D.L., Yousem D.M., Dizon M., Barker P.B., Lin D.D.M. Effects of Ginkgo biloba on cerebral blood flow assessed by quantitative MR perfusion imaging: A pilot study. Neuroradiology. 2011;53:185–191. doi: 10.1007/s00234-010-0790-6. PubMed DOI PMC
Zuo W., Yan F., Zhang B., Li J., Mei D. Advances in the studies of Ginkgo biloba leaves extract on aging-related diseases. Aging Dis. 2017;8:812–826. doi: 10.14336/AD.2017.0615. PubMed DOI PMC
Van Beek T.A. Chemical analysis of Ginkgo biloba leaves and extracts. J. Chromatogr. A. 2002;967:21–55. doi: 10.1016/S0021-9673(02)00172-3. PubMed DOI
Huang S.Z., Luo Y.J., Wang L., Cai K.Y. Effect of ginkgo biloba extract on livers in aged rats. World J. Gastroenterol. 2005;11:132–135. doi: 10.3748/wjg.v11.i1.132. PubMed DOI PMC
Belviranli M., Okudan N. The effects of Ginkgo biloba extract on cognitive functions in aged female rats: The role of oxidative stress and brain-derived neurotrophic factor. Behav. Brain Res. 2015;278:453–461. doi: 10.1016/j.bbr.2014.10.032. PubMed DOI
Liu H., Ye M., Guo H. An Updated Review of Randomized Clinical Trials Testing the Improvement of Cognitive Function of Ginkgo biloba Extract in Healthy People and Alzheimer’s Patients. Front. Pharmacol. 2020;10:1688. doi: 10.3389/fphar.2019.01688. PubMed DOI PMC
Pastorino G., Cornara L., Soares S., Rodrigues F., Oliveira M.B.P.P. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phyther. Res. 2018;32:2323–2339. doi: 10.1002/ptr.6178. PubMed DOI PMC
Frattaruolo L., Carullo G., Brindisi M., Mazzotta S., Bellissimo L., Rago V., Curcio R., Dolce V., Aiello F., Cappello A.R. Antioxidant and anti-inflammatory activities of flavanones from glycyrrhiza glabra L. (licorice) leaf phytocomplexes: Identification of licoflavanone as a modulator of NF-kB/MAPK pathway. Antioxidants. 2019;8:186. doi: 10.3390/antiox8060186. PubMed DOI PMC
Grodzicki W., Dziendzikowska K. The role of selected bioactive compounds in the prevention of alzheimer’s disease. Antioxidants. 2020;9:229. doi: 10.3390/antiox9030229. PubMed DOI PMC
Ciganović P., Jakimiuk K., Tomczyk M., Končić M.Z. Glycerolic licorice extracts as active cosmeceutical ingredients: Extraction optimization, chemical characterization, and biological activity. Antioxidants. 2019;8:445. doi: 10.3390/antiox8100445. PubMed DOI PMC
Balmus I.M., Ciobica A. Main Plant Extracts’ Active Properties Effective on Scopolamine-Induced Memory Loss. Am. J. Alzheimers Dis. Other Demen. 2017;32:418–428. doi: 10.1177/1533317517715906. PubMed DOI PMC
Dhingra D., Parle M., Kulkarni S.K. Memory enhancing activity of Glycyrrhiza glabra in mice. J. Ethnopharmacol. 2004;91:361–365. doi: 10.1016/j.jep.2004.01.016. PubMed DOI
Rokot N.T., Kairupan T.S., Cheng K.C., Runtuwene J., Kapantow N.H., Amitani M., Morinaga A., Amitani H., Asakawa A., Inui A. A Role of Ginseng and Its Constituents in the Treatment of Central Nervous System Disorders. Evid. Based Complement. Altern. Med. 2016;2016:2614742. doi: 10.1155/2016/2614742. PubMed DOI PMC
Yu H., Zhao J., You J., Li J., Ma H., Chen X. Factors influencing cultivated ginseng (Panax ginseng C. A. Meyer) bioactive compounds. PLoS ONE. 2019;14:e0223763. doi: 10.1371/journal.pone.0223763. PubMed DOI PMC
Kumar G.P., Khanum F. Neuroprotective potential of phytochemicals. Pharmacogn. Rev. 2012;6:81–90. doi: 10.4103/0973-7847.99898. PubMed DOI PMC
Wee J.J., Mee Park K., Chung A.-S. Biological Activities of Ginseng and Its Application to Human Health. In: Benzie I.F.F., Wachtel-Galor S., editors. Herbal Medicine: Biomolecular and Clinical Aspects. CRC Press/Taylor and Francis; Boca Raton, FL, USA: 2011.
Lee Y.M., Yoon H., Park H.M., Song B.C., Yeum K.J. Implications of red Panax ginseng in oxidative stress associated chronic diseases. J. Ginseng Res. 2017;41:113–119. doi: 10.1016/j.jgr.2016.03.003. PubMed DOI PMC
Caldwell L.K., Dupont W.H., Beeler M.K., Post E.M., Barnhart E.C., Hardesty V.H., Anders J.P., Borden E.C., Volek J.S., Kraemer W.J. The effects of a Korean ginseng, GINST15, on perceptual effort, psychomotor performance, and physical performance in men and women. J. Sport. Sci. Med. 2018;17:92–100. PubMed PMC
Kim J., Cho S.Y., Kim S.H., Cho D., Kim S., Park C.W., Shimizu T., Cho J.Y., Seo D.B., Shin S.S. Effects of Korean ginseng berry on skin antipigmentation and antiaging via FoxO3a activation. J. Ginseng Res. 2017;41:277–283. doi: 10.1016/j.jgr.2016.05.005. PubMed DOI PMC
Hwang E., Park S.Y., Jo H., Lee D.G., Kim H.T., Kim Y.M., Yin C.S., Yi T.H. Efficacy and Safety of Enzyme-Modified Panax ginseng for Anti-Wrinkle Therapy in Healthy Skin: A Single-Center, Randomized, Double-Blind, Placebo-Controlled Study. Rejuvenation Res. 2015;18:449–457. doi: 10.1089/rej.2015.1660. PubMed DOI
Shahidi F., Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects-A review. J. Funct. Foods. 2015;18:820–897. doi: 10.1016/j.jff.2015.06.018. DOI
Quero J., Mármol I., Cerrada E., Rodríguez-Yoldi M.J. Insight into the potential application of polyphenol-rich dietary intervention in degenerative disease management. Food Funct. 2020;11:2805–2825. doi: 10.1039/D0FO00216J. PubMed DOI
Pandey K.B., Rizvi S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009;2:270–278. doi: 10.4161/oxim.2.5.9498. PubMed DOI PMC
Dunaway S., Odin R., Zhou L., Ji L., Zhang Y., Kadekaro A.L. Natural antioxidants: Multiple mechanisms to protect skin from solar radiation. Front. Pharmacol. 2018;9:392. doi: 10.3389/fphar.2018.00392. PubMed DOI PMC
D’Orazio J., Jarrett S., Amaro-Ortiz A., Scott T. UV radiation and the skin. Int. J. Mol. Sci. 2013;14:12222–12248. doi: 10.3390/ijms140612222. PubMed DOI PMC
Adhikari B., Dhungana S.K., Waqas Ali M., Adhikari A., Kim I.D., Shin D.H. Antioxidant activities, polyphenol, flavonoid, and amino acid contents in peanut shell. J. Saudi Soc. Agric. Sci. 2019;18:437–442. doi: 10.1016/j.jssas.2018.02.004. DOI
Camins A., Junyent F., Verdaguer E., Beas-Zarate C., Rojas-Mayorquín A., Ortuño-Sahagún D., Pallàs M. Resveratrol: An Antiaging Drug with Potential Therapeutic Applications in Treating Diseases. Pharmaceuticals. 2009;2:194–205. doi: 10.3390/ph2030194. PubMed DOI PMC
Salehi B., Mishra A.P., Nigam M., Sener B., Kilic M., Sharifi-Rad M., Fokou P.V.T., Martins N., Sharifi-Rad J. Resveratrol: A double-edged sword in health benefits. Biomedicines. 2018;6:91. doi: 10.3390/biomedicines6030091. PubMed DOI PMC
Quadros Gomes B.A., Bastos Silva J.P., Rodrigues Romeiro C.F., dos Santos S.M., Rodrigues C.A., Gonçalves P.R., Sakai J.T., Santos Mendes P.F., Pompeu Varela E.L., Monteiro M.C. Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: Role of SIRT1. Oxid. Med. Cell. Longev. 2018;2018:8152373. PubMed PMC
Bhat K.P.L., Pezzuto J.M. Cancer chemopreventive activity of resveratrol. Ann. N. Y. Acad. Sci. 2002;957:210–229. doi: 10.1111/j.1749-6632.2002.tb02918.x. PubMed DOI
Bastianetto S., Dumont Y., Duranton A., Vercauteren F., Breton L., Quirion R. Protective Action of Resveratrol in Human Skin: Possible Involvement of Specific Receptor Binding Sites. PLoS ONE. 2010;5:e12935. doi: 10.1371/journal.pone.0012935. PubMed DOI PMC
Giardina S., Michelotti A., Zavattini G., Finzi S., Ghisalberti C., Marzatico F. Efficacy study in vitro: Assessment of the properties of resveratrol and resveratrol + N-acetyl-cysteine on proliferation and inhibition of collagen activity. Minerva Ginecol. 2010;62:195–201. PubMed
Demidenko Z.N., Blagosklonny M.V. At concentrations that inhibit mTOR, resveratrol suppresses cellular senescence. Cell Cycle. 2009;8:1901–1904. doi: 10.4161/cc.8.12.8810. PubMed DOI
Xia L., Wang X.X., Hu X.S., Guo X.G., Shang Y.P., Chen H.J., Zeng C.L., Zhang F.R., Chen J.Z. Resveratrol reduces endothelial progenitor cells senescence through augmentation of telomerase activity by Akt-dependent mechanisms. Br. J. Pharmacol. 2008;155:387–394. doi: 10.1038/bjp.2008.272. PubMed DOI PMC
Giovannelli L., Pitozzi V., Jacomelli M., Mulinacci N., Laurenzana A., Dolara P., Mocali A. Protective effects of resveratrol against senescence-associated changes in cultured human fibroblasts. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2011;66 A:9–18. doi: 10.1093/gerona/glq161. PubMed DOI
López-Lluch G., Irusta P.M., Navas P., de Cabo R. Mitochondrial biogenesis and healthy aging. Exp. Gerontol. 2008;43:813–819. doi: 10.1016/j.exger.2008.06.014. PubMed DOI PMC
Lagouge M., Argmann C., Gerhart-Hines Z., Meziane H., Lerin C., Daussin F., Messadeq N., Milne J., Lambert P., Elliott P., et al. Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1α. Cell. 2006;127:1109–1122. doi: 10.1016/j.cell.2006.11.013. PubMed DOI
Wang T., Li Q., Bi K. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci. 2018;13:12–23. doi: 10.1016/j.ajps.2017.08.004. PubMed DOI PMC
Antika L.D., Lee E.J., Kim Y.H., Kang M.K., Park S.H., Kim D.Y., Oh H., Choi Y.J., Kang Y.H. Dietary phlorizin enhances osteoblastogenic bone formation through enhancing β-catenin activity via GSK-3β inhibition in a model of senile osteoporosis. J. Nutr. Biochem. 2017;49:42–52. doi: 10.1016/j.jnutbio.2017.07.014. PubMed DOI
Makarova E., Górnaś P., Konrade I., Tirzite D., Cirule H., Gulbe A., Pugajeva I., Seglina D., Dambrova M. Acute anti-hyperglycaemic effects of an unripe apple preparation containing phlorizin in healthy volunteers: A preliminary study. J. Sci. Food Agric. 2014;95:560–568. doi: 10.1002/jsfa.6779. PubMed DOI
Mela D.J., Cao X.Z., Dobriyal R., Fowler M.I., Lin L., Joshi M., Mulder T.J.P., Murray P.G., Peters H.P.F., Vermeer M.A., et al. The effect of 8 plant extracts and combinations on post-prandial blood glucose and insulin responses in healthy adults: A randomized controlled trial. Nutr. Metab. 2020;17:51. doi: 10.1186/s12986-020-00471-x. PubMed DOI PMC
Laiteerapong N., Karter A.J., Liu J.Y., Moffet H.H., Sudore R., Schillinger D., John P.M., Huang E.S. Correlates of quality of life in older adults with diabetes: The diabetes & aging study. Diabetes Care. 2011;34:1749–1753. doi: 10.2337/dc10-2424. PubMed DOI PMC
Ayaz M., Sadiq A., Junaid M., Ullah F., Ovais M., Ullah I., Ahmed J., Shahid M. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front. Aging Neurosci. 2019;11:155. doi: 10.3389/fnagi.2019.00155. PubMed DOI PMC
Zhang Y.J., Gan R.Y., Li S., Zhou Y., Li A.N., Xu D.P., Li H.B., Kitts D.D. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules. 2015;20:21138–21156. doi: 10.3390/molecules201219753. PubMed DOI PMC
Kschonsek J., Wolfram T., Stöckl A., Böhm V. Polyphenolic compounds analysis of old and new apple cultivars and contribution of polyphenolic profile to the in vitro antioxidant capacity. Antioxidants. 2018;7:20. doi: 10.3390/antiox7010020. PubMed DOI PMC
Boyer J., Liu R.H. Apple phytochemicals and their health benefits. Nutr. J. 2004;3:5. doi: 10.1186/1475-2891-3-5. PubMed DOI PMC
Vafa M.R., Haghighatjoo E., Shidfar F., Afshari S., Gohari M.R., Ziaee A. Effects of apple consumption on lipid profile of hyperlipidemic and overweight men. Int. J. Prev. Med. 2011;2:94–100. PubMed PMC
Peng C., Chan H.Y.E., Huang Y., Yu H., Chen Z.Y. Apple polyphenols extend the mean lifespan of Drosophila melanogaster. J. Agric. Food Chem. 2011;59:2097–2106. doi: 10.1021/jf1046267. PubMed DOI
Cory H., Passarelli S., Szeto J., Tamez M., Mattei J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018;5:87. doi: 10.3389/fnut.2018.00087. PubMed DOI PMC
Kalt W., Cassidy A., Howard L.R., Krikorian R., Stull A.J., Tremblay F., Zamora-Ros R. Recent Research on the Health Benefits of Blueberries and Their Anthocyanins. Adv. Nutr. 2020;11:224–236. doi: 10.1093/advances/nmz065. PubMed DOI PMC
Shukitt-Hale B., Thangthaeng N., Miller M.G., Poulose S.M., Carey A.N., Fisher D.R. Blueberries Improve Neuroinflammation and Cognition differentially Depending on Individual Cognitive baseline Status. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2019;74:977–983. doi: 10.1093/gerona/glz048. PubMed DOI PMC
Joseph J.A., Shukitt-Hale B., Casadesus G. Reversing the deleterious effects of aging on neuronal communication and behavior: Beneficial properties of fruit polyphenolic compounds. Am. J. Clin. Nutr. 2005;81:313S–316S. doi: 10.1093/ajcn/81.1.313S. PubMed DOI
Galli R.L., Bielinski D.F., Szprengiel A., Shukitt-Hale B., Joseph J.A. Blueberry supplemented diet reverses age-related decline in hippocampal HSP70 neuroprotection. Neurobiol. Aging. 2006;27:344–350. doi: 10.1016/j.neurobiolaging.2005.01.017. PubMed DOI
Goyarzu P., Malin D.H., Lau F.C., Taglialatela G., Moon W.D., Jennings R., Moy E., Moy D., Lippold S., Shukitt-Hale B., et al. Blueberry supplemented diet: Effects on object recognition memory and nuclear factor-kappa B levels in aged rats. Nutr. Neurosci. 2004;7:75–83. doi: 10.1080/10284150410001710410. PubMed DOI
Peng C., Zuo Y., Kwan K.M., Liang Y., Ma K.Y., Chan H.Y.E., Huang Y., Yu H., Chen Z.Y. Blueberry extract prolongs lifespan of Drosophila melanogaster. Exp. Gerontol. 2012;47:170–178. doi: 10.1016/j.exger.2011.12.001. PubMed DOI
Su Y.L., Leung L.K., Huang Y., Chen Z.Y. Stability of tea theaflavins and catechins. Food Chem. 2003;83:189–195. doi: 10.1016/S0308-8146(03)00062-1. DOI
Musial C., Kuban-Jankowska A., Gorska-Ponikowska M. Beneficial properties of green tea catechins. Int. J. Mol. Sci. 2020;21:1744. doi: 10.3390/ijms21051744. PubMed DOI PMC
Yan Z., Zhong Y., Duan Y., Chen Q., Li F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim. Nutr. 2020;6:115–123. doi: 10.1016/j.aninu.2020.01.001. PubMed DOI PMC
Li Y.M., Chan H.Y.E., Huang Y., Chen Z.Y. Green tea catechins upregulate Superoxide dismutase and catalase in fruit flies. Mol. Nutr. Food Res. 2007;51:546–554. doi: 10.1002/mnfr.200600238. PubMed DOI
Oyetakinwhite P., Tribout H., Baron E. Protective mechanisms of green tea polyphenols in skin. Oxid. Med. Cell. Longev. 2012;2012:560682. doi: 10.1155/2012/560682. PubMed DOI PMC
Elmets C.A., Singh D., Tubesing K., Matsui M., Katiyar S., Mukhtar H. Cutaneous photoprotection from ultraviolet injury by green tea polyphenols. J. Am. Acad. Dermatol. 2001;44:425–432. doi: 10.1067/mjd.2001.112919. PubMed DOI
Chiu A.E., Chan J.L., Kern D.G., Kohler S., Rehmus W.E., Kimball A.B. Double-blinded, placebo-controlled trial of green tea extracts in the clinical and histologic appearance of photoaging skin. Dermatol. Surg. 2005;31:855–860. doi: 10.1111/j.1524-4725.2005.31731. PubMed DOI
Shaikh R., Pund M., Dawane A., Iliyas S. Evaluation of anticancer, antioxidant, and possible anti-inflammatory properties of selected medicinal plants used in indian traditional medication. J. Tradit. Complement. Med. 2014;4:253–257. doi: 10.4103/2225-4110.128904. PubMed DOI PMC
Azevedo J., Fernandes I., Faria A., Oliveira J., Fernandes A., de Freitas V., Mateus N. Antioxidant properties of anthocyanidins, anthocyanidin-3-glucosides and respective portisins. Food Chem. 2010;119:518–523. doi: 10.1016/j.foodchem.2009.06.050. DOI
Zuo Y., Peng C., Liang Y., Ma K.Y., Yu H., Edwin Chan H.Y., Chen Z.Y. Black rice extract extends the lifespan of fruit flies. Food Funct. 2012;3:1271–1279. doi: 10.1039/c2fo30135k. PubMed DOI
Huang J.J., Zhao S.M., Jin L., Huang L.J., He X., Wei Q. Anti-aging effect of black rice in subacute aging model mice. Chin. J. Clin. Rehabil. 2006;10:82–84.
Institute of Medicine (US) Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. National Academies Press (US); Washington, DC, USA: 2000. Panel on Dietary Antioxidants and Related Compounds β-Carotene and Other Carotenoids. PubMed
Stahl W., Sies H. β-Carotene and other carotenoids in protection from sunlight. Am. J. Clin. Nutr. 2012;96:1179S–1184S. doi: 10.3945/ajcn.112.034819. PubMed DOI
Pritwani R., Mathur P. β-carotene Content of Some Commonly Consumed Vegetables and Fruits Available in Delhi, India. J. Nutr. Food Sci. 2017;7:5. doi: 10.4172/2155-9600.1000625. DOI
Jaswir I., Noviendri D., Hasrini R.F., Octavianti F. Carotenoids: Sources, medicinal properties and their application in food and nutraceutical industry. J. Med. Plant Res. 2011;5:7119–7131. doi: 10.5897/JMPRx11.011. DOI
Parrado C., Philips N., Gilaberte Y., Juarranz A., González S. Oral photoprotection: Effective agents and potential candidates. Front. Med. 2018;5:188. doi: 10.3389/fmed.2018.00188. PubMed DOI PMC
Boccardi V., Arosio B., Cari L., Bastiani P., Scamosci M., Casati M., Ferri E., Bertagnoli L., Ciccone S., Rossi P.D., et al. Beta-carotene, telomerase activity and Alzheimer’s disease in old age subjects. Eur. J. Nutr. 2020;59:119–126. doi: 10.1007/s00394-019-01892-y. PubMed DOI
The Alpha-Tocopherol Beta Carotene Cancer Prevention Study Group The effect of vitamin e and beta carotene on the incidence of lung cancer and other cancers in male smokers. N. Engl. J. Med. 1994;330:1029–1035. doi: 10.1056/NEJM199404143301501. PubMed DOI
Evans J.A., Johnson E.J. The role of phytonutrients in skin health. Nutrients. 2010;2:903–928. doi: 10.3390/nu2080903. PubMed DOI PMC
Ascenso A., Pedrosa T., Pinho S., Pinho F., De Oliveira J.M.P.F., Marques H.C., Oliveira H., Simões S., Santos C. The Effect of Lycopene Preexposure on UV-B-Irradiated Human Keratinocytes. Oxid. Med. Cell. Longev. 2016;2016 doi: 10.1155/2016/8214631. PubMed DOI PMC
Przybylska S. Lycopene–A bioactive carotenoid offering multiple health benefits: A review. Int. J. Food Sci. Technol. 2020;55:11–32. doi: 10.1111/ijfs.14260. DOI
Darvin M.E., Sterry W., Lademann J., Vergou T. The role of carotenoids in human skin. Molecules. 2011;16:10491–10506. doi: 10.3390/molecules161210491. DOI
Cheng J., Miller B., Balbuena E., Eroglu A. Lycopene protects against smoking-induced lung cancer by inducing base excision repair. Antioxidants. 2020;9:643. doi: 10.3390/antiox9070643. PubMed DOI PMC
Singh B., Singh J.P., Kaur A., Singh N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res. Int. 2020;132:109114. doi: 10.1016/j.foodres.2020.109114. PubMed DOI
Carr A., Maggini S. Vitamin C and Immune Function. Nutrients. 2017;9:1211. doi: 10.3390/nu9111211. PubMed DOI PMC
Hemilä H. Vitamin C and Infections. Nutrients. 2017;9:339. doi: 10.3390/nu9040339. PubMed DOI PMC
Souyoul S.A., Saussy K.P., Lupo M.P. Nutraceuticals: A Review. Dermatol. Ther. 2018;8:5–16. doi: 10.1007/s13555-018-0221-x. PubMed DOI PMC
Brickley M., Ives R. The Bioarchaeology of Metabolic Bone Disease. Elsevier; Amsterdam, The Netherlands: 2008. Vitamin C Deficiency Scurvy; pp. 1–74.
Galli F., Azzi A., Birringer M., Cook-Mills J.M., Eggersdorfer M., Frank J., Cruciani G., Lorkowski S., Özer N.K. Vitamin E: Emerging aspects and new directions. Free Radic. Biol. Med. 2017;102:16–36. doi: 10.1016/j.freeradbiomed.2016.09.017. PubMed DOI
Sivakanesan R. Molecular Basis and Emerging Strategies for Anti-Aging Interventions. Springer; Singapore: 2018. Antioxidants for health and longevity; pp. 323–341.
Leonard P.J., Losowsky M.S., Pulvertaft C.N. Vitamin-E Deficiency. Br. Med. J. 1966;1:1301–1302. doi: 10.1136/bmj.1.5498.1301-c. PubMed DOI
Keen M., Hassan I. Vitamin E in dermatology. Indian Dermatol. Online J. 2016;7:311. doi: 10.4103/2229-5178.185494. PubMed DOI PMC
Fryer M.J. Evidence for the photoprotective effects of vitamin E. Photochem. Photobiol. 1993;58:304–312. doi: 10.1111/j.1751-1097.1993.tb09566.x. PubMed DOI
Chan A.C., Tran K., Raynor T., Ganz P.R., Chow C.K. Regeneration of vitamin E in human platelets-PubMed. J. Biol. Chem. 1991;266:17290–17295. PubMed
Makrantonaki E., Zouboulis C.C. Skin alterations and diseases in advanced age. Drug Discov. Today Dis. Mech. 2008;5:e153–e162. doi: 10.1016/j.ddmec.2008.05.008. DOI
McVean M., Liebler D.C. Prevention of DNA photodamage by vitamin E compounds and sunscreens: Roles of ultraviolet absorbance and cellular uptake. Mol. Carcinog. 1999;24:169–176. doi: 10.1002/(SICI)1098-2744(199903)24:3<169::AID-MC3>3.0.CO;2-A. PubMed DOI
Passi S., Morrone A., De Luca C., Picardo M., Ippolito F. Blood levels of vitamin E, polyunsaturated fatty acids of phospholipids, lipoperoxides and glutathione peroxidase in patients affected with seborrheic dermatitis. J. Dermatol. Sci. 1991;2:171–178. doi: 10.1016/0923-1811(91)90064-5. PubMed DOI
Ekanayake-Mudiyanselage S., Thiele J. Sebaceous glands as transporters of vitamin E. Hautarzt. 2006;57:291–296. doi: 10.1007/s00105-005-1090-7. PubMed DOI
Eberlein-König B., Ring J. Relevance of vitamins C and E in cutaneous photoprotection. J. Cosmet. Dermatol. 2005;4:4–9. doi: 10.1111/j.1473-2165.2005.00151.x. PubMed DOI
Shahidi F. Nutraceuticals, functional foods and dietary supplements in health and disease. J. Food Drug Anal. 2012;20:226–230.
Pem D., Jeewon R. Fruit and vegetable intake: Benefits and progress of nutrition education interventions-narrative review article. Iran. J. Public Health. 2015;44:1309–1321. PubMed PMC
Petruk G., Del Giudice R., Rigano M.M., Monti D.M. Antioxidants from plants protect against skin photoaging. Oxid. Med. Cell. Longev. 2018;2018:1454936. doi: 10.1155/2018/1454936. PubMed DOI PMC
Cimino F., Cristani M., Saija A., Bonina F.P., Virgili F. Protective effects of a red orange extract on UVB-induced damage in human keratinocytes. Biofactors. 2007;30:129–138. doi: 10.1002/biof.5520300206. PubMed DOI
Fujii T., Wakaizumi M., Ikami T., Saito M. Amla (Emblica officinalis Gaertn.) extract promotes procollagen production and inhibits matrix metalloproteinase-1 in human skin fibroblasts. J. Ethnopharmacol. 2008;119:53–57. doi: 10.1016/j.jep.2008.05.039. PubMed DOI
Adil M.D., Kaiser P., Satti N.K., Zargar A.M., Vishwakarma R.A., Tasduq S.A. Effect of Emblica officinalis (fruit) against UVB-induced photo-aging in human skin fibroblasts. J. Ethnopharmacol. 2010;132:109–114. doi: 10.1016/j.jep.2010.07.047. PubMed DOI
Nema N.K., Maity N., Sarkar B., Mukherjee P.K. Cucumis sativus fruit-potential antioxidant, anti-hyaluronidase, and anti-elastase agent. Arch. Dermatol. Res. 2011;303:247–252. doi: 10.1007/s00403-010-1103-y. PubMed DOI
Cao X., Sun Y., Lin Y., Pan Y., Farooq U., Xiang L., Qi J. Antiaging of cucurbitane glycosides from fruits of Momordica charantia L. Oxid. Med. Cell. Longev. 2018;2018 doi: 10.1155/2018/1538632. PubMed DOI PMC
Lourith N., Kanlayavattanakul M., Chaikul P., Chansriniyom C., Bunwatcharaphansakun P. In vitro and cellular activities of the selected fruits residues for skin aging treatment. An. Acad. Bras. Cienc. 2017;89:577–589. doi: 10.1590/0001-3765201720160849. PubMed DOI
Apraj V.D., Pandita N.S. Evaluation of skin anti-aging potential of Citrus reticulata blanco peel. Pharmacogn. Res. 2016;8:160–168. doi: 10.4103/0974-8490.182913. PubMed DOI PMC
Girsang E., Lister I.N.E., Ginting C.N., Khu A., Samin B., Widowati W., Wibowo S., Rizal R. Chemical Constituents of Snake Fruit (Salacca zalacca (Gaert.) Voss) Peel and in silico Anti-aging Analysis. Mol. Cell. Biomed. Sci. 2019;3:122. doi: 10.21705/mcbs.v3i2.80. DOI
Kim D.B., Shin G.H., Kim J.M., Kim Y.H., Lee J.H., Lee J.S., Song H.J., Choe S.Y., Park I.J., Cho J.H., et al. Antioxidant and anti-ageing activities of citrus-based juice mixture. Food Chem. 2016;194:920–927. doi: 10.1016/j.foodchem.2015.08.094. PubMed DOI
Lee M.J., Jeong N.H., Jang B.S. Antioxidative activity and antiaging effect of carrot glycoprotein. J. Ind. Eng. Chem. 2015;25:216–221. doi: 10.1016/j.jiec.2014.10.037. DOI
Zemour K., Labdelli A., Adda A., Dellal A., Talou T., Merah O. Phenol Content and Antioxidant and Antiaging Activity of Safflower Seed Oil (Carthamus Tinctorius L.) Cosmetics. 2019;6:55. doi: 10.3390/cosmetics6030055. DOI
Itoh S., Yamaguchi M., Shigeyama K., Sakaguchi I. The Anti-Aging Potential of Extracts from Chaenomeles sinensis. Cosmetics. 2019;6:21. doi: 10.3390/cosmetics6010021. DOI
Foolad N., Vaughn A.R., Rybak I., Burney W.A., Chodur G.M., Newman J.W., Steinberg F.M., Sivamani R.K. Prospective randomized controlled pilot study on the effects of almond consumption on skin lipids and wrinkles. Phyther. Res. 2019;33:3212–3217. doi: 10.1002/ptr.6495. PubMed DOI PMC
Wang L., Cui J., Jin B., Zhao J., Xu H., Lu Z., Li W., Li X., Li L., Liang E., et al. Multifeature analyses of vascular cambial cells reveal longevity mechanisms in old Ginkgo biloba trees. Proc. Natl. Acad. Sci. USA. 2020;117:2201–2210. doi: 10.1073/pnas.1916548117. PubMed DOI PMC
Shailaja M., Damodara Gowda K.M., Vishakh K., Suchetha Kumari N. Anti-aging Role of Curcumin by Modulating the Inflammatory Markers in Albino Wistar Rats. J. Natl. Med. Assoc. 2017;109:9–13. doi: 10.1016/j.jnma.2017.01.005. PubMed DOI
Shin S., Lee J.A., Son D., Park D., Jung E. Anti-Skin-Aging Activity of a Standardized Extract from Panax ginseng Leaves In Vitro and In Human Volunteer. Cosmetics. 2017;4:18. doi: 10.3390/cosmetics4020018. DOI
Hwang E., Park S.Y., Yin C.S., Kim H.T., Kim Y.M., Yi T.H. Antiaging effects of the mixture of Panax ginseng and Crataegus pinnatifida in human dermal fibroblasts and healthy human skin. J. Ginseng Res. 2017;41:69–77. doi: 10.1016/j.jgr.2016.01.001. PubMed DOI PMC
Choi H.R., Nam K.M., Lee H.S., Yang S.H., Kim Y.S., Lee J., Date A., Toyama K., Park K.C. Phlorizin, an active ingredient of eleutherococcus senticosus, increases proliferative potential of keratinocytes with inhibition of MiR135b and increased expression of type IV collagen. Oxid. Med. Cell. Longev. 2016;2016 doi: 10.1155/2016/3859721. PubMed DOI PMC
Shoko T., Maharaj V.J., Naidoo D., Tselanyane M., Nthambeleni R., Khorombi E., Apostolides Z. Anti-aging potential of extracts from Sclerocarya birrea (A. Rich.) Hochst and its chemical profiling by UPLC-Q-TOF-MS. BMC Complement. Altern. Med. 2018;18:54. doi: 10.1186/s12906-018-2112-1. PubMed DOI PMC
Shimizu C., Wakita Y., Inoue T., Hiramitsu M., Okada M., Mitani Y., Segawa S., Tsuchiya Y., Nabeshima T. Effects of lifelong intake of lemon polyphenols on aging and intestinal microbiome in the senescence-accelerated mouse prone 1 (SAMP1) Sci. Rep. 2019;9:3671. doi: 10.1038/s41598-019-40253-x. PubMed DOI PMC
Lu X., Zhou Y., Wu T., Hao L. Ameliorative effect of black rice anthocyanin on senescent mice induced by d-galactose. Food Funct. 2014;5:2892–2897. doi: 10.1039/C4FO00391H. PubMed DOI
Xiong L.G., Chen Y.J., Tong J.W., Gong Y.S., Huang J.A., Liu Z.H. Epigallocatechin-3-gallate promotes healthy lifespan through mitohormesis during early-to-mid adulthood in Caenorhabditis elegans. Redox Biol. 2018;14:305–315. doi: 10.1016/j.redox.2017.09.019. PubMed DOI PMC
Ratnasooriya W.D., Abeysekera W.K.S.M., Muthunayake T.B.S., Ratnasooriya C.D.T. In vitro antiglycation and cross-link breaking activities of Sri Lankan low-grown orthodox orange pekoe grade black tea (Camellia sinensis L) Trop. J. Pharm. Res. 2014;13:567–571. doi: 10.4314/tjpr.v13i4.12. DOI
Yoo D.S., Min Jeon J., Jeong Choi M., Sang Lee H., Woo Cheon J., Hoi Kim S., Ryu Ju S. Potential anti-wrinkle effects of m. spaientum l. leaves extract. BioEvolution. 2015;2:56–61.
Widowati W., Fauziah N., Herdiman H., Afni M., Afifah E., Kusuma H.S.W., Nufus H., Arumwardana S., Rihibiha D.D. Antioxidant and anti aging assays of Oryza sativa extracts, vanillin and coumaric acid. J. Nat. Remedies. 2016;16:88–99. doi: 10.18311/jnr/2016/7220. DOI
Antioxidative potential of Lactobacillus sp. in ameliorating D-galactose-induced aging
Pleurotus Macrofungi-Assisted Nanoparticle Synthesis and Its Potential Applications: A Review
Conifer-Derived Metallic Nanoparticles: Green Synthesis and Biological Applications