• This record comes from PubMed

Antioxidative potential of Lactobacillus sp. in ameliorating D-galactose-induced aging

. 2022 Aug ; 106 (13-16) : 4831-4843. [epub] 20220704

Language English Country Germany Media print-electronic

Document type Journal Article, Review

Grant support
DSFP contract King Saud University, Riyadh, Saudi Arabia
VEGA Project 1/0482/ 20 Scientific Grant Agency
NV19-09-00578 Ministerstvo Zdravotnictví Ceské Republiky

Links

PubMed 35781838
PubMed Central PMC9329405
DOI 10.1007/s00253-022-12041-7
PII: 10.1007/s00253-022-12041-7
Knihovny.cz E-resources

Aging is a progressive, unalterable physiological degradation process of living organisms, which leads to deterioration of biological function and eventually to senescence. The most prevalent factor responsible for aging is the accumulation of damages resulting from oxidative stress and dysbiosis. D-galactose-induced aging has become a hot topic, and extensive research is being conducted in this area. Published literature has reported that the continuous administration of D-galactose leads to the deterioration of motor and cognitive skills, resembling symptoms of aging. Hence, this procedure is employed as a model for accelerated aging. This review aims to emphasize the effect of D-galactose on various bodily organs and underline the role of the Lactobacillus sp. in the aging process, along with its anti-oxidative potential. A critical consideration to the literature describing animal models that have used the Lactobacillus sp. in amending D-galactose-induced aging is also given. KEY POINTS: • D-Galactose induces the aging process via decreasing the respiratory chain enzyme activity as well as ATP synthesis, mitochondrial dysfunction, and increased ROS production. • D-Galactose induced aging primarily affects the brain, heart, lung, liver, kidney, and skin. • The anti-oxidative potential of Lactobacillus sp. in improving D-galactose-induced aging in animal models via direct feeding and feeding of Lactobacillus-fermented food.

See more in PubMed

Ahire JJ, Mokashe NU, Patil HJ, Chaudhari BL. Antioxidative potential of folate producing probiotic Lactobacillus helveticus CD6. J Food SciTechnol. 2013;50:26–34. PubMed PMC

Ahotupa M, Saxelin M, Korpela R. Antioxidative properties of Lactobacillus GG. Nutr Today (Suppl.) 1996;31:51S–52S. doi: 10.1097/00017285-199611001-00018. DOI

Ali T, Badshah H, Kim TH, Kim MO. Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF-K B/JNK signaling pathway in aging mouse model. J Pineal Res. 2015;58:71–85. doi: 10.1111/jpi.12194. PubMed DOI

Azman KF, Zakaria R. D-Galactose-induced accelerated aging model: an overview. Biogerontology. 2019;20:763–782. doi: 10.1007/s10522-019-09837-y. PubMed DOI

Azman KF, Zakaria R. D-galactose-induced liver aging model: its underlying mechanisms and potential therapeutic interventions. Exp Gerontol. 2021;150:111372. doi: 10.1016/j.exger.2021.111372. PubMed DOI

Berry GT, Nissim I, Lin Z, Mazur AT, Gibson JB, Segal S. Endogenous synthesis of galactose in normal men and patients with hereditary galactosaemia. Lancet. 1995;346:1073–1074. doi: 10.1016/S0140-6736(95)91745-4. PubMed DOI

Berry GT, Nissim I, Mazur AT, Segal SS. The rate of endogenous galactose synthesis in normals and patients with galactose-1-phosphate uridyltransferase deficiency 704. Pediatr Res. 1998;43:122–122. doi: 10.1203/00006450-199804001-00725. DOI

Booth LN, Brunet A. The aging epigenome. Mol Cell. 2016;62:728–744. doi: 10.1016/j.molcel.2016.05.013. PubMed DOI PMC

Chen X, Cai B, Chen H, Pan J, Chen D, Sun H. Antiaging activity of low molecular weight peptide from Paphia undulate. Chin J Oceanol Limnol. 2013;31:570–580. doi: 10.1007/s00343-013-2222-z. DOI

Chen H, Long Y, Guo L. Antiaging effect of Inula britannica on aging mouse model induced by d-galactose. Evid Based Complement Alternat Med. 2016;2016:6049083. PubMed PMC

Chen J, Li Y, Zhu Q, Li T, Lu H, Wei N, Huang Y, Shi R, Ma X, Wang X, Sheng J. Anti-skin-aging effect of epigallocatechin gallate by regulating epidermal growth factor receptor pathway on aging mouse model induced by d-galactose. Mech Ageing Dev. 2017;164:1–7. doi: 10.1016/j.mad.2017.03.007. PubMed DOI

Chen WK, Tsai YL, Shibu MA, Shen CY, Chang-Lee SN, Chen RJ, Yao CH, Ban B, Kuo WW, Huang CY. Exercise training augments Sirt1-signaling and attenuates cardiac inflammation in D-galactose induced-aging rats. Aging. 2018;10:4166–4174. doi: 10.18632/aging.101714. PubMed DOI PMC

Chen B, Sun Y, Zhang J, Zhu Q, Yang Y, Niu X, Deng Z, Li Q, Wang Y. Human embryonic stem cell derived exosomes promote pressure ulcer healing in aged mice by rejuvenating senescent endothelial cells. Stem Cell Res Ther. 2019;10:142. doi: 10.1186/s13287-019-1253-6. PubMed DOI PMC

Cheng LH, Cheng SH, Wu CC, Huang CL, Wen PJ, Chang MY, Tsai YC. Lactobacillus paracasei PS23 dietary supplementation alleviates muscle aging via ghrelin stimulation in d-galactose-induced aging mice. J Funct Foods. 2021;85:104651. doi: 10.1016/j.jff.2021.104651. DOI

Coelho AI, Berry GT, Rubio-Gozalbo ME. Galactose metabolism and health. Curr Opin Clin Nutr Metab Care. 2015;18:422–427. doi: 10.1097/MCO.0000000000000189. PubMed DOI

Dehghani A, Hafizibarjin Z, Najjari R, Kaseb F, Safari F. Resveratrol and 1, 25-dihydroxyvitamin D co-administration protects the heart against D-galactose-induced aging in rats: evaluation of serum and cardiac levels of klotho. Aging Clin Exp Res. 2018;31:1195–1205. doi: 10.1007/s40520-018-1075-x. PubMed DOI

Dhanjal DS, Bhardwaj S, Sharma R, Bhardwaj K, Dinesh K, Chopra C, Nepovimova E, Singh R, Kamil K. Plant Fortification of the Diet for Anti-Ageing Effects: a review. Nutrients. 2020;12:3008. doi: 10.3390/nu12103008. PubMed DOI PMC

Fan Y, Xia J, Jia D, Zhang M, Zhang Y, Huang G, Wang Y. Mechanism of ginsenoside Rg1 renal protection in a mouse model of D-galactose-induced subacute damage. Pharm Biol. 2016;54:1815–1821. doi: 10.3109/13880209.2015.1129543. PubMed DOI

Feng Y, Yu YH, Wang ST, Ren J, Camer D, Hua YZ, Zhang Q, Huang J, Xue DL, Zhang XF, Huang XF, Liu Y. Chlorogenic acid protects D-galactose-induced liver and kidney injury via antioxidation and antiinflammation effects in mice. Pharm Biol. 2016;54:1027–1034. doi: 10.3109/13880209.2015.1093510. PubMed DOI PMC

Fijan S. Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health. 2014;11:4745–4767. doi: 10.3390/ijerph110504745. PubMed DOI PMC

Ge Q, Yang B, Liu R, Jiang D, Yu H, Wu M, Zhang W. Antioxidant activity of Lactobacillus plantarum NJAU-01 in an animal model of aging. BMC Microbiol. 2021;21:182. doi: 10.1186/s12866-021-02248-5. PubMed DOI PMC

Hall AM, Unwin RJ. The not so ‘mighty chondrion’: emergence of renal diseases due to mitochondrial dysfunction. Nephron Physiol. 2007;105:1–10. doi: 10.1159/000096860. PubMed DOI

He F, Ru X, Wen T. NRF2, a transcription factor for stress response and beyond. Int J Mol Sci. 2020;21:4777. doi: 10.3390/ijms21134777. PubMed DOI PMC

Höhn A, Weber D, Jung T, Ott C, Hugo M, Kochlik B, Kehm R, König J, Grune T, Castro JP. Happily (n)ever after: aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol. 2017;11:482–501. doi: 10.1016/j.redox.2016.12.001. PubMed DOI PMC

Holden HM, Rayment I, Thoden JB. Structure and function of enzymes of the Leloir pathway for galactose metabolism. J Biol Chem. 2003;278:43885–43888. doi: 10.1074/jbc.R300025200. PubMed DOI

Hor YY, Ooi CH, Lew LC, Jaafar MH, Lau ASY, Lee BK, Azlan A, Choi SB, Azzam G, Liong MT. The molecular mechanisms of probiotic strains in improving aging bone and muscle of D-galactose- induced aging rats. J Appl Microbiol. 2021;130:1307–1322. doi: 10.1111/jam.14776. PubMed DOI

Hsieh HM, Wu WM, Hu ML. Soy isoflavones attenuate oxidative stress and improve parameters related to aging and Alzheimer’s disease in C57BL/6J mice treated with D-galactose. Food Chem Toxicol. 2009;47:625–632. doi: 10.1016/j.fct.2008.12.026. PubMed DOI

Ishaq M, Khan A, Bacha AS, Shah T, Hanif A, Ahmad AA, Ke W, Li F, Din AU, Ding Z, Guo X. Microbiota targeted interventions of probiotic Lactobacillus as an anti-ageing approach: a review. Antioxidants (basel) 2021;10:1930. doi: 10.3390/antiox10121930. PubMed DOI PMC

Jensen H, Roos S, Jonsson H, Rud I, Grimmer S, Pijkeren JPV, Britton RA, Axelsson L. Role of Lactobacillus reuteri cell and mucus-binding protein A (CmbA) in adhesion to intestinal epithelial cells and mucus in vitro. Microbiology (reading) 2014;160:671–681. doi: 10.1099/mic.0.073551-0. PubMed DOI PMC

Jeong H, Liu Y, Kim HS. Dried plum and chokeberry ameliorate d-galactose induced aging in mice by regulation of Pl3k/Akt-mediated Nrf2 and Nf-kB pathways. Exp Gerontol. 2017;95:16–25. doi: 10.1016/j.exger.2017.05.004. PubMed DOI

Ji M, Su X, Liu J, Zhao Y, Li Z, Xu X, Li H, Nashun B. Comparison of naturally aging and D-galactose induced aging model in beagle dogs. Exp Ther Med. 2017;14:5881–5888. PubMed PMC

Kapila S, Vibha SPR. Antioxidative and hypocholesterolemic effect of Lactobacillus caseisspcasei (biodefensive properties of lactobacilli) Ind J Med Sci. 2006;60:361–370. doi: 10.4103/0019-5359.27220. PubMed DOI

Kim HS, Jeong SG, Ham JS, Chae HS, Lee JM, Ahn CN. Antioxidative and probiotic properties of Lactobacillus gasseri NLRI-312 isolated from Korean infant feces. J Animal Sci. 2006;19:1335–1341.

Klimova B, Michal N, Kamil K. Anti-aging drugs-prospect of longer life? Curr Med Chem. 2018;25:1946–1953. doi: 10.2174/0929867325666171129215251. PubMed DOI

Kullisaar T, Songisepp E, Mikelsaar M, Zilmer K, Vihalemm T, Zilmer M. Antioxidative probiotic fermented goats’ milk decreases oxidative stress-mediated atherogenicity in human. Brit J Nutr. 2003;90:449–456. doi: 10.1079/BJN2003896. PubMed DOI

Kumar H, Schütz F, Bhardwaj K, Sharma R, Nepovimova E, Dhanjal DS, Verma R, Kumar D, Kuča K, Martins NC (2021) Recent advances in the concept of paraprobiotics: Nutraceutical/functional properties for promoting children health. Crit Rev Food Sci Nutr 1–16 PubMed

Kumar A, Kumar D. Characterization of Lactobacillus isolates from dairy samples for probiotics properties. Anaerobe. 2015;33:117–123. doi: 10.1016/j.anaerobe.2015.03.004. PubMed DOI

Lai K, Elsas LJ, Wierenga KJ. Galactose toxicity in animals. IUBMB Life. 2009;61:1063–1074. doi: 10.1002/iub.262. PubMed DOI PMC

Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M. Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev. 2019;99:427–511. doi: 10.1152/physrev.00061.2017. PubMed DOI PMC

Lei L, Ou L, Yu X. The antioxidant effect of Asparagus cochinchinensis (Lour.) Merr. shoot in D-galactose induced mice aging model and in vitro. J Chin Med Assoc. 2016;79:205–211. doi: 10.1016/j.jcma.2015.06.023. PubMed DOI

Li Z-X, Huang X-B, Liao F-L. The effect of oxygen free radical rise induced by D-galactose on arterial aging in rats. Chin J Gerontol. 2005;3:729–735.

Li C, Mo Z, Xie J, Xu L, Tan L, Luo D, Chen H, Yang H, Li Y, Su Z, Su Z. Chongcao-Shencha attenuates liver and kidney injury through attenuating oxidative stress and inflammatory response in D-galactose-treated mice. Evid Based Complement Alternat Med. 2016;2016:3878740. PubMed PMC

Li S, Liu M, Zhang C, Tian C, Wang X, Song X, Jing H, Gao Z, Ren Z, Liu W, Zhang J, Jia L. Purification, in vitro antioxidant and in vivo anti-aging activities of soluble oxidative medicine and cellular longevity 11 polysaccharides by enzyme-assisted extraction from Agaricus bisporus. Int J Biol Macromol. 2018;109:457–466. doi: 10.1016/j.ijbiomac.2017.12.108. PubMed DOI

Li B, Du P, Smith EE, Wang S, Jiao Y, Guo L, Huo G, Liu F. In vitro and in vivo evaluation of an exopolysaccharide produced by Lactobacillus helveticus KLDS1.8701 for the alleviative effect on oxidative stress†. Food Funct. 2019;10:1707–1717. doi: 10.1039/C8FO01920G. PubMed DOI

Li C, Fan Y, Li S, Zhou X, Park KY, Zhao X, Liu H. Antioxidant effect of soymilk fermented by Lactobacillus plantarum HFY01 on D-galactose-induced premature aging mouse model. Front Nutr. 2021;8:667643. doi: 10.3389/fnut.2021.667643. PubMed DOI PMC

Li F, Huang H, Wu Y, Lu Z, Zhou X, Tan F, Zhao X. Lactobacillus fermentum HFY06 attenuates D-galactose-induced oxidative stress and inflammation in male Kunming mice. Food Funct. 2021;12:12479–12489. doi: 10.1039/D1FO00982F. PubMed DOI

Lin X, Xia Y, Wang G, Xiong Z, Zhang H, Lai F, Ai L. Lactobacillus plantarum AR501 alleviates the oxidative stress of D-galactose-induced aging mice liver by upregulation of Nrf2-mediated antioxidant enzyme expression. J Food Sci. 2018;83:1990–1998. doi: 10.1111/1750-3841.14200. PubMed DOI

Liu CM, Ma J, Lou Y. Chronic administration of troxerutin protects mouse kidney against D-galactose-induced oxidative DNA damage. Food Chem Toxicol. 2010;48:2809–2817. doi: 10.1016/j.fct.2010.07.011. PubMed DOI

Liu S, Chen Z, Cai X, Sun Y, Zhao C, Liu F, Liu D. Effects of dimethylaminoethanol and compound amino acid on D-galactose induced skin aging model of rat. Scientific World J. 2014;14:507351. PubMed PMC

Liu Q, Yu Z, Tian F, Zhao J, Zhang H, Zhai Q, Chen W. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microb Cell Fact. 2020;19:23. doi: 10.1186/s12934-020-1289-4. PubMed DOI PMC

Mo ZZ, Liu YH, Li CL, Xu LQ, Wen LL, Xian YF, Lin ZX, Zhan JYX, Chen JN, Xu FF. Protective effect of SFE-CO2 of ligusticum chuanxiong hort against D-galactose-induced injury in the mouse liver and kidney. Rejuvenation Res. 2017;20:231–243. doi: 10.1089/rej.2016.1870. PubMed DOI

Morava E. Galactose supplementation in phosphoglucomutase-1 deficiency; review and outlook for a novel treatable CDG. Mol Genet Metab. 2014;112:275–279. doi: 10.1016/j.ymgme.2014.06.002. PubMed DOI PMC

Noh SY, Kang SS, Yun CH, Han SH. Lipoteichoic acid from Lactobacillus plantarum inhibits Pam2CSK4-induced IL-8 production in human intestinal epithelial cells. Mol Immunol. 2015;64:183–190. doi: 10.1016/j.molimm.2014.11.014. PubMed DOI

Qian Y, Zhang J, Zhou X, Yi R, Mu J, Long X, Pan Y, Zhao X, Liu W. Lactobacillus plantarum CQPC11 Isolated from Sichuan pickled cabbages antagonizes D-galactose-induced oxidation and aging in mice. Molecules. 2018;23:2326. doi: 10.3390/molecules23092326. PubMed DOI PMC

Ruan Q, Liu F, Gao Z, Kong D, Hu X, Shi D, Bao Z, Yu Z. The anti-inflamm-aging and hepatoprotective effects of huperzine A in D-galactose-treated rats. Mech Ageing Dev. 2013;134:89–97. doi: 10.1016/j.mad.2012.12.005. PubMed DOI

Saleh DO, Mansour DF, Hashad IM, Bakeer RM. Effects of sulforaphane on D-galactose-induced liver aging in rats: role of keap-1/nrf-2 pathway. Eur J Pharmacol. 2019;855:40–49. doi: 10.1016/j.ejphar.2019.04.043. PubMed DOI

Setbo E, Campbell K, O’Cuiv P, Hubbard R. Utility of probiotics for maintenance or improvement of health status in older people-a scoping review. J Nutr Health Aging. 2019;23:364–372. doi: 10.1007/s12603-019-1187-9. PubMed DOI

Shida K, Kiyoshima-Shibata JR, Kaji M, Nagaoka M, Nanno M. Peptidoglycan from Lactobacilli inhibits interleukin-12 production by macrophages induced by Lactobacillus casei through toll-like receptor 2-dependent and independent mechanisms. Immunology. 2009;128:e858–e869. doi: 10.1111/j.1365-2567.2009.03095.x. PubMed DOI PMC

Shwe T, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Role of D-galactose-induced brain aging and its potential used for therapeutic interventions. Exp Gerontol. 2018;101:13–36. doi: 10.1016/j.exger.2017.10.029. PubMed DOI

Sukoyan G, Tsivtsivadze E, Golovach V, Kezeli T, Demina N. Anti-aging effect of Cynara cardunculus L. var. Cynara scolymus L. extract in d-galactose-induced skin aging model in rats. Pharmacol Pharm. 2018;9:428–439. doi: 10.4236/pp.2018.910032. DOI

Sun Y, Wang D, Zhu J, Zhang H. Effects of cistanche desertica polysacchrides on the constitution of protein and anti-oxidative capacity of lune in aging mice. Chin Pharmacol Bull. 2001;17:101–103.

Suo H, Liu S, Li J, Ding Y, Wang H, Zhang Y, Zhao X, Song JL (2018) Lactobacillus paracasei ssp. paracasei YBJ01 reduced d-galactose-induced oxidation in male Kuming mice. J Dairy Sci 101:10664–10674 PubMed

Teame T, Wang A, Xie M, Zhang Z, Yang Y, Ding Q, Gao C, Olsen RE, Ran C, Zhou Z (2020) Paraprobiotics and postbiotics of probiotic Lactobacilli, their positive effects on the host and action mechanisms: A review. Front Nutr 7:570344 PubMed PMC

Tian Y, Zou B, Yang L, Xu SF, Yang J, Yao P, Li CM. High molecular weight persimmon tannin ameliorates cognition deficits and attenuates oxidative damage in senescent mice induced by d-galactose. Food Chem Toxicol. 2011;49:1728–1736. doi: 10.1016/j.fct.2011.04.018. PubMed DOI

Umbayev B, Askarova S, Almabayeva A, Saliev T, Masoud AR, Bulanin D. Galactose-induced skin aging: the role of oxidative stress. Oxid Med Cell Longev. 2020;2020:145656. doi: 10.1155/2020/7145656. PubMed DOI PMC

Wang AS, Dreesen O. Biomarkers of cellular senescence and skin aging. Front Genet. 2018;9:247. doi: 10.3389/fgene.2018.00247. PubMed DOI PMC

Wang AN, Yi XW, Yu HF, Dong B, Qiao SY. Free radical scavenging activity of Lactobacillus fermentum in vitro and its antioxidative effect on growing-finishing pigs. J Appl Microbiol. 2009;107:1140–1148. doi: 10.1111/j.1365-2672.2009.04294.x. PubMed DOI

Wang Y, Wang M, Xiao XS, Huo J, Zhang WD. The anti-wrinkle efficacy of argireline. J Cosmet Laser Ther. 2013;15:237–241. doi: 10.3109/14764172.2013.769273. PubMed DOI

Wang J, Zhao X, Yang Y, Zhao A, Yang Z. Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. Int J Biol Macromol. 2015;74:119–126. doi: 10.1016/j.ijbiomac.2014.12.006. PubMed DOI

Wang H, Wei S, Xue X, You Y, Ma Q. Adipose stem cells’ antagonism in glycosylation of D-galactose-induced skin aging of nude mice and its skin recovery function. Int J Immunopathol Pharmacol. 2016;29:376–385. doi: 10.1177/0394632016634348. PubMed DOI PMC

Woo JY, Gu W, Kim KA, Jhang SE, Han MJ, Kim DH. Lactobacillus pentosus var. plantarum C29 ameliorates memory impairment and inflammaging in a D-galactose-induced accelerated aging mouse model. Anaerobe. 2014;27:22–26. doi: 10.1016/j.anaerobe.2014.03.003. PubMed DOI

Xu D, Yang J, Yu W, Wei J. Anthocyanins from black chokeberry delayed ageing related degenerative changes in the heart. Indian J Pharm Educ. 2019;53:112–116. doi: 10.5530/ijper.53.1.15. DOI

Yanar K, Aydin S, Cakatay U, Mengi M, Buyukpinarbasili N, Atukeren P, Sitar ME, Sonmez A, Uslu E. Protein and DNA oxidation in different anatomic regions of rat brain in a mimetic ageing model. Basic Clin Pharmacol Toxicol. 2011;109:423–433. doi: 10.1111/j.1742-7843.2011.00756.x. PubMed DOI

Yang J, Dong C, Ren F, Xie Y, Liu H, Zhang H, Jin J. Lactobacillus paracasei M11–4 isolated from fermented rice demonstrates good antioxidant properties in vitro and in vivo. J Sci Food Agric. 2022;102:3107–3118. doi: 10.1002/jsfa.11652. PubMed DOI

Ye Y, Jia RR, Tang L, Chen F. In vivo antioxidant and anti-skin-aging activities of ethyl acetate extraction from Idesia polycarpa defatted fruit residue in aging mice induced by d-galactose. Evid Based Complement Alternat Med. 2014;2014:185716. PubMed PMC

Yoon YH, Byun JR. Occurrence of glutathione sulfhydryl (GHS) and antioxidant activities in probiotic Lactobacillus spp. Asian-Aust J Ani Sci. 2004;17:1582–1585. doi: 10.5713/ajas.2004.1582. DOI

Yu X, Li S, Yang D, Qiu L, Wu Y, Wang D, Shah NP, Xu F, Wei H. A novel strain of Lactobacillus mucosae isolated from a Gaotian villager improves in vitro and in vivo antioxidant as well as biological properties in d-galactose-induced aging mice. J Dairy Sci. 2016;99:903–914. doi: 10.3168/jds.2015-10265. PubMed DOI

Zeng L, Lin L, Peng Y, Yuan D, Zhang S, Gong Z, Xiao W. L-Theanine attenuates liver aging by inhibiting advanced glycation end products in D-galactose-induced rats and reversing an imbalance of oxidative stress and inflammation. Exp Gerontol. 2020;131:110823. doi: 10.1016/j.exger.2019.110823. PubMed DOI

Zhang D, Li C, Shi R, Zhao F, Yang Z. Lactobacillus fermentum JX306 restrain d-galactose-induced oxidative stress of mice through its antioxidant activity. Pol J Microbiol. 2020;69:205–215. doi: 10.33073/pjm-2020-024. PubMed DOI PMC

Zhao J, Tian F, Yan S, Zhai Q, Zhang H, Chen W. Lactobacillus plantarum CCFM10 alleviating oxidative stress and restoring the gut microbiota in D-galactose-induced aging mice. Food Funct. 2018;9:917–924. doi: 10.1039/C7FO01574G. PubMed DOI

Zhao X, Yi R, Zhou X, Mu J, Long X, Pan Y, Song JL, Park KY. Preventive effect of Lactobacillus plantarum KSFY02 isolated from naturally fermented yogurt from Xinjiang, China, on d-galactose-induced oxidative aging in mice. J Dairy Sci. 2019;102:5899–5912. doi: 10.3168/jds.2018-16033. PubMed DOI

Zhou X, Du HH, Jiang M, Zhou C, Deng Y, Long X, Zhao X. Antioxidant effect of Lactobacillus fermentum CQPC04-fermented soy milk on D-galactose-induced oxidative aging mice. Front Nutr. 2021;8:727467. doi: 10.3389/fnut.2021.727467. PubMed DOI PMC

Zhou X, Sun H, Tan F, Yi R, Zhou C, Deng Y, Mu J, Zhao X. Anti-aging effect of Lactobacillus plantarum HFY09-fermented soymilk on D-galactose-induced oxidative aging in mice through modulation of the Nrf2 signaling pathway. J Funct Foods. 2021;78:104386. doi: 10.1016/j.jff.2021.104386. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...