-
Je něco špatně v tomto záznamu ?
Secondary structure is required for 3' splice site recognition in yeast
O. Gahura, C. Hammann, A. Valentová, F. Půta, P. Folk,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2005
Free Medical Journals
od 1996
PubMed Central
od 1974
Europe PubMed Central
od 1974
Open Access Digital Library
od 1996-01-01 do 2030-12-31
Open Access Digital Library
od 1974-01-01
Open Access Digital Library
od 1996-01-01
Open Access Digital Library
od 1996-01-01
Medline Complete (EBSCOhost)
od 1996-01-01
Oxford Journals Open Access Collection
od 1996-01-01
ROAD: Directory of Open Access Scholarly Resources
od 1974
PubMed
21893588
DOI
10.1093/nar/gkr662
Knihovny.cz E-zdroje
- MeSH
- Ascomycota genetika MeSH
- fungální RNA chemie MeSH
- introny MeSH
- kofilin 1 genetika MeSH
- konformace nukleové kyseliny MeSH
- místa sestřihu RNA MeSH
- molekulární sekvence - údaje MeSH
- Saccharomyces cerevisiae - proteiny genetika MeSH
- Saccharomyces cerevisiae genetika MeSH
- sekvence nukleotidů MeSH
- sestřih RNA MeSH
- teplota MeSH
- ubikvitin konjugující enzymy genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Higher order RNA structures can mask splicing signals, loop out exons, or constitute riboswitches all of which contributes to the complexity of splicing regulation. We identified a G to A substitution between branch point (BP) and 3' splice site (3'ss) of Saccharomyces cerevisiae COF1 intron, which dramatically impaired its splicing. RNA structure prediction and in-line probing showed that this mutation disrupted a stem in the BP-3'ss region. Analyses of various COF1 intron modifications revealed that the secondary structure brought about the reduction of BP to 3'ss distance and masked potential 3'ss. We demonstrated the same structural requisite for the splicing of UBC13 intron. Moreover, RNAfold predicted stable structures for almost all distant BP introns in S. cerevisiae and for selected examples in several other Saccharomycotina species. The employment of intramolecular structure to localize 3'ss for the second splicing step suggests the existence of pre-mRNA structure-based mechanism of 3'ss recognition.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12022511
- 003
- CZ-PrNML
- 005
- 20120906123838.0
- 007
- ta
- 008
- 120806e20110905xxk f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1093/nar/gkr662 $2 doi
- 035 __
- $a (PubMed)21893588
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Gahura, Ondřej $u Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic.
- 245 10
- $a Secondary structure is required for 3' splice site recognition in yeast / $c O. Gahura, C. Hammann, A. Valentová, F. Půta, P. Folk,
- 504 __
- $a $b
- 520 9_
- $a Higher order RNA structures can mask splicing signals, loop out exons, or constitute riboswitches all of which contributes to the complexity of splicing regulation. We identified a G to A substitution between branch point (BP) and 3' splice site (3'ss) of Saccharomyces cerevisiae COF1 intron, which dramatically impaired its splicing. RNA structure prediction and in-line probing showed that this mutation disrupted a stem in the BP-3'ss region. Analyses of various COF1 intron modifications revealed that the secondary structure brought about the reduction of BP to 3'ss distance and masked potential 3'ss. We demonstrated the same structural requisite for the splicing of UBC13 intron. Moreover, RNAfold predicted stable structures for almost all distant BP introns in S. cerevisiae and for selected examples in several other Saccharomycotina species. The employment of intramolecular structure to localize 3'ss for the second splicing step suggests the existence of pre-mRNA structure-based mechanism of 3'ss recognition.
- 650 _2
- $a Ascomycota $x genetika $7 D001203
- 650 _2
- $a sekvence nukleotidů $7 D001483
- 650 _2
- $a kofilin 1 $x genetika $7 D051338
- 650 _2
- $a introny $7 D007438
- 650 _2
- $a molekulární sekvence - údaje $7 D008969
- 650 _2
- $a konformace nukleové kyseliny $7 D009690
- 650 _2
- $a místa sestřihu RNA $7 D022821
- 650 _2
- $a sestřih RNA $7 D012326
- 650 _2
- $a fungální RNA $x chemie $7 D012331
- 650 _2
- $a Saccharomyces cerevisiae $x genetika $7 D012441
- 650 _2
- $a Saccharomyces cerevisiae - proteiny $x genetika $7 D029701
- 650 _2
- $a teplota $7 D013696
- 650 _2
- $a ubikvitin konjugující enzymy $x genetika $7 D044763
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Hammann, Christian
- 700 1_
- $a Valentová, Anna
- 700 1_
- $a Půta, František
- 700 1_
- $a Folk, Petr
- 773 0_
- $w MED00003554 $t Nucleic acids research $x 1362-4962 $g Roč. 39, č. 22 (20110905), s. 9759-67
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/21893588 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m
- 990 __
- $a 20120806 $b ABA008
- 991 __
- $a 20120906124009 $b ABA008
- 999 __
- $a ok $b bmc $g 944424 $s 779808
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2011 $b 39 $c 22 $d 9759-67 $e 20110905 $i 1362-4962 $m Nucleic acids research $n Nucleic Acids Res $x MED00003554
- LZP __
- $a Pubmed-20120806/12/01