Effect of Heating Conditions during Moulding on Residual Stress-Strain Behaviour of a Composite Panel

. 2022 Apr 20 ; 14 (9) : . [epub] 20220420

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35566834

Grantová podpora
BUT FSI-S-20-6267 Brno University of Technology

Currently, we observe extensive use of products made of polymeric composite materials in various industries. These materials are being increasingly used to manufacture large-sized structural parts that bear significant loads. However, increase in the volume of composites used in critical structures is impeded by the instability of properties of the resulting products. In most cases, the reason for this is the residual thermal stress-strain behaviour of the composite structure. This paper deals with the development of a method to predict the residual stress-strain behaviour depending on the heating conditions and distribution of the temperature field over the thickness of the moulded composite package. The method establishes the relationship between moulding process parameters and the effect of the auxiliary and basic equipment on the distribution of the temperature field, stresses, and strains in the moulded product. It is shown that the rate of temperature change at the stage of heating has its effect on the amount of residual deformation of the structure. Experimental studies have been carried out to determine the influence of several factors (rates of heating and cooling) on the residual deflection of the composite panel. Experimental data proves that specimens moulded under conditions of an increased heating rate get a greater deflection than those moulded at a lower heating rate. The error of results during the full-scale experiment did not exceed 6.8%. Our results provide an opportunity to determine the residual thermal stress-strain behaviour of the moulded structure with the required degree of accuracy without a series of experiments. It allows us to significantly simplify the practical implementation of the developed method and avoid any additional production costs.

Zobrazit více v PubMed

Rubino F., Nisticò A., Tucci F., Carlone P. Marine Application of Fiber Reinforced Composites: A Review. J. Mar. Sci. Eng. 2020;8:26. doi: 10.3390/jmse8010026. DOI

Slyvynskyi V.I., Sanin A.F., Kharchenko M.E., Kondratyev A.V. Thermally and dimensionally stable structures of carbon-carbon laminated composites for space applications; Proceedings of the 65th International Astronautical Congress 2014: Our World Needs Space; Toronto, ON, Canada. September 29–3 October 2014; pp. 5739–5751.

Elfaki I., Abdalgadir S. Composite sandwich structures in advanced civil engineering applications–A review. Comput. Res. Prog. Appl. Sci. Eng. 2020;6:259–262.

Ugrimov S., Smetankina N., Kravchenko O., Yareshchenko V. Integrated Computer Technologies in Mechanical Engineering-2020. November 2020. Volume 188. Springer; Cham, Switzerland: 2021. Analysis of Laminated Composites Subjected to Impact; pp. 234–246. DOI

Hsissou R., Seghiri R., Benzekri Z., Hilali M., Rafik M., Elharfi A. Polymer composite materials: A comprehensive review. Compos. Struct. 2021;262:113640. doi: 10.1016/j.compstruct.2021.113640. DOI

Fomin O., Lovskaya A., Plakhtiy A., Nerubatsky V. The influence of implementation of circular pipes in load-bearing structures of bodies of freight cars on their physico-mechanical properties. Sci. Bull. Nat. Mining Univ. 2017;6:89–96.

Kondratiev A., Slivinsky M. Method for determining the thickness of a binder layer at its non-uniform mass transfer inside the channel of a honeycomb filler made from polymeric paper. East.-Eur. J. Enterp. Technol. 2018;5:42–48. doi: 10.15587/1729-4061.2018.150387. DOI

Kondratiev A., Prontsevych O. Stabilization of physical-mechanical characteristics of Honeycomb Filler based on the adjustment of technological techniques for its fabrication. East.-Eur. J. Enterp. Technol. 2018;1:71–77. doi: 10.15587/1729-4061.2018.143674. DOI

Gavva L.M., Firsanov V.V. Mathematical Models and Methods for Calculating the Stress-Strain State of Aircraft Panels from Composite Materials Taking into Account the Production Technology. Mechan. Solids. 2020;55:403–412. doi: 10.3103/S002565442003005X. DOI

Baran I., Cinar K., Ersoy N., Akkerman R., Hattel J.H. A Review on the Mechanical Modeling of Composite Manufacturing Processes. Arch. Comput. Methods Eng. 2017;24:365–395. doi: 10.1007/s11831-016-9167-2. PubMed DOI PMC

Kim S.S., Murayama H., Kageyama K., Uzawa K., Kanai M. Study on the curing process for carbon/epoxy composites to reduce thermal residual stress. Compos. Part A Appl. Sci. Manuf. 2012;43:1197–1202. doi: 10.1016/j.compositesa.2012.02.023. DOI

Boitsov B.V., Gavva L.M., Pugachev Y.N. The Stress–Strain State of Structurally Anisotropic Panels from Composite Materials under Force and Process Temperature Exposure. Polym. Sci. Ser. D. 2019;12:85–90. doi: 10.1134/S1995421219010039. DOI

Tiwary A., Kumar R., Chohan J.S. A review on characteristics of composite and advanced materials used for aerospace applications. Mater. Today Proc. 2021. in press . DOI

Budelmann D., Schmidt C., Meiners D. Prepreg tack: A review of mechanisms, measurement, and manufacturing implication. Polym. Compos. 2020;41:3440–3458. doi: 10.1002/pc.25642. DOI

Zhang G.M., Wang J.H., Ni A.Q., Li S.X. Process-induced residual stress of variable-stiffness composite laminates during cure. Compos. Struct. 2018;204:12–21. doi: 10.1016/j.compstruct.2018.07.040. DOI

Kondratiev A., Gaidachuk V., Nabokina T., Kovalenko V. Determination of the influence of deflections in the thickness of a composite material on its physical and mechanical properties with a local damage to its wholeness. East.-Eur. J. Enterp. Technol. 2019;1:6–13. doi: 10.15587/1729-4061.2019.174025. DOI

Carlone P., Rubino F., Paradiso V., Tucci F. Multi-scale modeling and online monitoring of resin flow through dual-scale textiles in liquid composite molding processes. Int. J. Adv. Manuf. Technol. 2018;96:2215–2230. doi: 10.1007/s00170-018-1703-9. DOI

Lionetto F., Moscatello A., Totaro G., Raffone M., Maffezzoli A. Experimental and Numerical Study of Vacuum Resin Infusion of Stiffened Carbon Fiber Reinforced Panels. Materials. 2020;13:4800. doi: 10.3390/ma13214800. DOI

Rocha H., Semprimoschnig C., Nunes J.P. Sensors for process and structural health monitoring of aerospace composites: A review. Eng. Struct. 2021;237:112231. doi: 10.1016/j.engstruct.2021.112231. DOI

Karpus V., Ivanov V., Dehtiarov I., Zajac J., Kurochkina V. Technological assurance of complex parts manufacturing. Lect. Not. Mechan. Eng. 2019:51–61. doi: 10.1007/978-3-319-93587-4_6. DOI

Otrosh Y., Kovalov A., Semkiv O., Rudeshko I., Diven V. Methodology remaining lifetime determination of the building structures; Proceedings of the 7th International Scientific Conference “Reliability and Durability of Railway Transport Engineering Structures and Buildings”, Transbud-2011; Kharkiv, Ukraine. 14–16 November 2018; pp. 1–7. DOI

Fomin O., Gerlici J., Lovskaya A., Kravchenko K., Prokopenko P., Fomina A., Hauser V. Research of the strength of the bearing structure of the flat wagon body from round pipes during transportation on the railway ferry; Proceedings of the 10th International Scientific Conference Horizons of Railway Transport, HORT 2018; Strecno, Slovakia. 11–12 October 2018; pp. 1–5. DOI

Slyvynskyi V.I., Alyamovskyi A.I., Kondratjev A.V., Kharchenko M.E. Carbon honeycomb plastic as light-weight and durable structural material; Proceedings of the 63rd International Astronautical Congress 2012; Naples, Italy. 1–5 October 2012; Red Hook, NY, USA: Curran; 2012. pp. 6519–6529.

Tkachenko D., Tsegelnyk Y., Myntiuk S., Myntiuk V. Spectral Methods Application in Problems of the Thin-walled Structures Deformation. J. Appl. Comput. Mechan. 2022;8:641–654. doi: 10.22055/jacm.2021.38346.3207. DOI

Suriani M.J., Rapi H.Z., Ilyas R.A., Petru M., Sapuan S.M. Delamination and Manufacturing Defects in Natural Fiber-Reinforced Hybrid Composite: A Review. Polymers. 2021;13:1323. doi: 10.3390/polym13081323. PubMed DOI PMC

Fedulov B.N. Modeling of manufacturing of thermoplastic composites and residual stress prediction. Aerosp. Syst. 2018;1:81–86. doi: 10.1007/s42401-018-0018-8. DOI

Li D.N., Li X.D., Dai J.F., Xi S.B. A Comparison of Curing Process-Induced Residual Stresses and Cure Shrinkage in Micro-Scale Composite Structures with Different Constitutive Laws. Appl. Compos. Mater. 2018;25:67–84. doi: 10.1007/s10443-017-9608-6. DOI

Yuan Z.Y., Wang Y.J., Yang G.G., Tang A.F., Yang Z.C., Li S.J., Li Y., Song D.L. Evolution of curing residual stresses in composite using multi-scale method. Compos. Part B-Eng. 2018;155:49–61. doi: 10.1016/j.compositesb.2018.08.012. DOI

Brauner C., Frerich T., Herrmann A.S. Cure-dependent thermomechanical modelling of the stress relaxation behaviour of composite materials during manufacturing. J. Compos. Mater. 2017;51:877–898. doi: 10.1177/0021998316656924. DOI

Cameron C.J., Saseendran S., Stig F., Rouhi M. A rapid method for simulating residual stress to enable optimization against cure induced distortion. J. Compos. Mater. 2021;55:3799–3812. doi: 10.1177/00219983211024341. DOI

Sfar Zbed R., Sobotka V., Le Corre S. A Three-Dimensional Thermo-Chemical Characterization during the Whole Curing Cycle of a Carbon/Epoxy Prepreg; Proceedings of the 24th International Conference on Material Forming (ESAFORM 2021); Online. 14–16 April 2021; DOI

Nixon-Pearson O.J., Belnoue J.P.H., Ivanov D.S., Potter K.D., Hallett S.R. An experimental investigation of the consolidation behaviour of uncured prepregs under processing conditions. J. Compos. Mater. 2017;51:1911–1924. doi: 10.1177/0021998316665681. DOI

Kondratiev A., Píštěk V., Smovziuk L., Shevtsova M., Fomina A., Kučera P., Prokop A. Effects of the Temperature–Time Regime of Curing of Composite Patch on Repair Process Efficiency. Polymers. 2021;13:4342. doi: 10.3390/polym13244342. PubMed DOI PMC

Kondratiev A., Píštěk V., Smovziuk L., Shevtsova M., Fomina A., Kučera P. Stress–strain behaviour of reparable composite panel with step–variable thickness. Polymers. 2021;13:3830. doi: 10.3390/polym13213830. PubMed DOI PMC

Muliana A.H. Spatial and temporal changes in physical properties of epoxy during curing and their effects on the residual stresses and properties of cured epoxy and composites. Appl. Eng. Sci. 2021;7:100061. doi: 10.1016/j.apples.2021.100061. DOI

Fernlund G., Rahman N., Courdji R., Bresslauer M., Poursartip A., Willden K., Nelson K. Experimental and numerical study of the effect of cure cycle, tool surface, geometry, and lay-up on the dimensional fidelity of autoclave-processed composite parts. Compos. Part A-Appl. Sci. Manuf. 2002;33:341–351. doi: 10.1016/S1359-835X(01)00123-3. DOI

Dveirin O.Z., Andreev O.V., Kondrat’ev A.V., Haidachuk V.Y. Stressed State in the Vicinity of a Hole in Mechanical Joint of Composite Parts. Int. Appl. Mechan. 2021;57:234–247. doi: 10.1007/s10778-021-01076-4. DOI

Grigorenko A.Y., Grigorenko Y.M., Müller W.H., Vlaikov G.G. Recent Developments in Anisotropic Heterogeneous Shell Theory: General Theory and Applications of Classical Theory-Volume 1. SpringerBriefs Cont. Mechan. 2016 doi: 10.1007/978-981-10-0353-0. DOI

Vasiliev V.V., Morozov E.V. Chapter 3-Mechanics of Laminates. In: Vasiliev V.V., Morozov E.V., editors. Advanced Mechanics of Composite Materials and Structures. 4th ed. Elsevier; Amsterdam, The Netherlands: 2018. pp. 191–242. DOI

Vasiliev V.V., Morozov E.V. Chapter 5-Environmental, Special Loading, and Manufacturing Effects. In: Vasiliev V.V., Morozov E.V., editors. Advanced Mechanics of Composite Materials and Structures. 4th ed. Elsevier; Amsterdam, The Netherlands: 2018. pp. 295–375. DOI

Kondratiev A., Píštěk V., Purhina S., Shevtsova M., Fomina A., Kučera P. Self-Heating Mould for Composite Manufacturing. Polymers. 2021;13:3074. doi: 10.3390/polym13183074. PubMed DOI PMC

Centea T., Grunenfelder L.K., Nutt S.R. A review of out-of-autoclave prepregs-Material properties, process phenomena, and manufacturing considerations. Compos. Part A-Appl. Sci. Manuf. 2015;70:132–154. doi: 10.1016/j.compositesa.2014.09.029. DOI

Shevtsova M., Smovziuk L. Prompt Repair of Damaged Aircraft Skin Panels. National Aerospace University “Kharkiv Aviation Institute” Publ.; Kharkiv, Ukraine: 2016.

Birman V., Kardomateas G.A. Review of current trends in research and applications of sandwich structures. Compos. Part B-Eng. 2018;142:221–240. doi: 10.1016/j.compositesb.2018.01.027. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...