Effects of the Temperature-Time Regime of Curing of Composite Patch on Repair Process Efficiency

. 2021 Dec 11 ; 13 (24) : . [epub] 20211211

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34960893

Grantová podpora
BUT FSI-S-20-6267 Brno University of Technology

Repair procedures with the use of composite patches are considered to be the most effective among the current technologies of repair of the structures of various applications. In the process of moulding-on of a patch made of polymeric composite material by means of curing, technological stresses arise in the patch. Determination of residual technological stresses is a priority task for the modelling of the repair process. Reduction of residual stresses can be achieved by optimization of the mode of repair patch curing. For meeting this objective, the method for determination of technological stresses, which arise in the structure under repair in the process of curing of a composite patch, has been developed. The method takes into account the shrinkage, change in physico-mechanical characteristics, rheological processes occurring in the binder during moulding process, and determination of stresses in the structure under repair at any time. Therefore, premature failure of the repair joint at the stage of repair can be avoided. It is shown that the method adequately describes the level of deformations and stresses in the structure being repaired at the stage of heating and holding of the composite patch. Increase in the moulding temperature leads to a reduction in residual stresses in the structure under repair. However, current stresses at the stages of heating and temperature holding are increased significantly. Reliability of assumptions and developed method is confirmed by the comparison with the experimental data. The obtained experimental graph of total deformation of the composite patch allowed us to clearly determine the moment of residual stress occurrence in the structure under repair. This moment matches quite exactly (with the discrepancy not exceeding 5 min) the gel point determined analytically based on dependence of the degree of curing on the moulding mode. Consequently, the research together with the results previously obtained allows making an integrated choice of geometric parameters of the repair composite patch and temperature-time regime of its curing in order to ensure the specified level of strength and stiffness of the structure under repair.

Zobrazit více v PubMed

Balakrishnan V.S., Seidlitz H. Potential repair techniques for automotive composites: A review. Compos. Part B-Eng. 2018;145:28–38. doi: 10.1016/j.compositesb.2018.03.016. DOI

Lovska A., Fomin O. A new fastener to ensure the reliability of a passenger car body on a train ferry. Acta Polytech. 2020;60:478–485. doi: 10.14311/AP.2020.60.0478. DOI

Mishnaevsky L. Repair of wind turbine blades: Review of methods and related computational mechanics problems. Renew. Energy. 2019;140:828–839. doi: 10.1016/j.renene.2019.03.113. DOI

Lovska A., Fomin O., Pistek V., Kucera P. Dynamic Load and Strength Determination of Carrying Structure of Wagons Transported by Ferries. J. Mar. Sci. Eng. 2020;8:902. doi: 10.3390/jmse8110902. DOI

Golovanevskiy V., Kondratiev A. Elastic Properties of Steel-Cord Rubber Conveyor Belt. Exp. Tech. 2021;45:217–226. doi: 10.1007/s40799-021-00439-3. DOI

Fomin O., Lovska A. Establishing patterns in determining the dynamics and strength freight car, which exhausted its resource. East. Eur. J. Enterp. Technol. 2020;6:21–29. doi: 10.15587/1729-4061.2020.217162. DOI

Archer E., McIlhagger A. 15-Repair of damaged aerospace composite structures. In: Irving P., Soutis C., editors. Polymer Composites in the Aerospace Industry. 2nd ed. Woodhead Publishing; Sawston, UK: 2020. pp. 441–459. DOI

Song T., Jiang B., Li Y., Ji Z., Zhou H., Jiang D., Seok I., Murugadoss V., Wen N., Colorado H. Self-healing Materials: A Review of Recent Developments. ES Mater. Manuf. 2021;14:1–19. doi: 10.30919/esmm5f465. DOI

Sun D., Yan J., Ma X., Lan M., Wang Z., Cui S., Yang J. Tribological Investigation of Self-Healing Composites Containing Metal/Polymer Microcapsules. ES Mater. Manuf. 2021;14:59–72. doi: 10.30919/esmm5f469. DOI

Chen Y., Wang Y., Su T., Chen J., Zhang C., Lai X., Jiang D., Wu Z., Sun C., Li B., et al. Self-Healing Polymer Composites Based on Hydrogen Bond Reinforced with Graphene Oxide. ES Mater. Manuf. 2019;4:31–37. doi: 10.30919/esmm5f214. DOI

Liu C., Yin Q., Li X., Hao L.F., Zhang W.B., Bao Y., Ma J.Z. A waterborne polyurethane-based leather finishing agent with excellent room temperature self-healing properties and wear-resistance. Adv. Compos. Hybrid Mater. 2021;4:138–149. doi: 10.1007/s42114-021-00206-3. DOI

Zhou W., Ji X.L., Yang S., Liu J., Ma L.H. Review on the performance improvements and non-destructive testing of patches repaired composites. Compos. Struct. 2021;263:113659. doi: 10.1016/j.compstruct.2021.113659. DOI

Plankovskyy S., Myntiuk V., Tsegelnyk Y., Zadorozhniy S., Kombarov V. 15th International Scientific-Practical Conference on Mathematical Modeling and Simulation of Systems. Volume 1265. Springer; Cham, Switzerland: 2021. Analytical methods for determining the static and dynamic behavior of thin-walled structures during machining; pp. 82–91. DOI

Wu H., Zhong Y.M., Tang Y.X., Huang Y.Q., Liu G., Sun W.T., Xie P.T., Pan D., Liu C.Z., Guo Z.H. Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Adv. Compos. Hybrid Mater. 2021 doi: 10.1007/s42114-021-00378-y. DOI

Qi G., Liu Y., Chen L., Xie P., Pan D., Shi Z., Quan B., Zhong Y., Liu C., Fan R., et al. Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv. Compos. Hybrid Mater. 2021;4:1226–1238. doi: 10.1007/s42114-021-00368-0. DOI

Kondratiev A.V., Gaidachuk V.E. Mathematical Analysis of Technological Parameters for Producing Superfine Prepregs by Flattening Carbon Fibers. Mech. Compos. Mater. 2021;57:91–100. doi: 10.1007/s11029-021-09936-3. DOI

Dveirin O.Z., Andreev O.V., Kondrat’ev A.V., Haidachuk V.Y. Stressed State in the Vicinity of a Hole in Mechanical Joint of Composite Parts. Int. Appl. Mech. 2021;57:234–247. doi: 10.1007/s10778-021-01076-4. DOI

Lovska A., Fomin O., Pistek V., Kucera P. Dynamic Load Modelling within Combined Transport Trains during Transportation on a Railway Ferry. Appl. Sci. 2020;10:5710. doi: 10.3390/app10165710. DOI

Kondratiev A., Píštěk V., Purhina S., Shevtsova M., Fomina A., Kučera P. Self-Heating Mould for Composite Manufacturing. Polymers. 2021;13:3074. doi: 10.3390/polym13183074. PubMed DOI PMC

Ugrimov S., Smetankina N., Kravchenko O., Yareshchenko V. Analysis of Laminated Composites Subjected to Impact. Lect. Notes Netw. Syst. 2021;188:234–246. doi: 10.1007/978-3-030-66717-7_19. DOI

Kim S.S., Murayama H., Kageyama K., Uzawa K., Kanai M. Study on the curing process for carbon/epoxy composites to reduce thermal residual stress. Compos. Part A-Appl. Sci. Manuf. 2012;43:1197–1202. doi: 10.1016/j.compositesa.2012.02.023. DOI

Tiwary A., Kumar R., Chohan J.S. A review on characteristics of composite and advanced materials used for aerospace applications. Mater. Today Proc. 2021 doi: 10.1016/j.matpr.2021.06.276. in press. DOI

Liang G., Chandrashekhara K. Cure kinetics and rheology characterization of soy-based epoxy resin system. J. Appl. Polym. Sci. 2006;102:3168–3180. doi: 10.1002/app.24369. DOI

Adolf D.B., Chambers R.S. A thermodynamically consistent, nonlinear viscoelastic approach for modeling thermosets during cure. J. Rheol. 2007;51:23–50. doi: 10.1122/1.2360670. DOI

Theriault R.P., Osswald T.A., Castro J.M. A numerical model of the viscosity of an epoxy prepreg resin system. Polym. Compos. 1999;20:628–633. doi: 10.1002/pc.10385. DOI

O’Brien D.J., Mather P.T., White S.R. Viscoelastic properties of an epoxy resin during cure. J. Compos. Mater. 2001;35:883–904. doi: 10.1177/a037323. DOI

Zarrelli M., Skordos A.A., Partridge I.K. Thermomechanical analysis of a toughened thermosetting system. Mech. Compos. Mater. 2008;44:181–190. doi: 10.1007/s11029-008-9009-x. DOI

Liu X.D., Guan Z.D., Wang X.D., Jiang T., Geng K.H., Li Z.S. Study on cure-induced residual stresses and spring-in deformation of L-shaped composite laminates using a simplified constitutive model considering stress relaxation. Compos. Struct. 2021;272:16. doi: 10.1016/j.compstruct.2021.114203. DOI

Muliana A.H. Spatial and temporal changes in physical properties of epoxy during curing and their effects on the residual stresses and properties of cured epoxy and composites. Appl. Eng. Sci. 2021;7:100061. doi: 10.1016/j.apples.2021.100061. DOI

Courtois A., Hirsekorn M., Benavente M., Jaillon A., Marcin L., Ruiz E., Levesque M. Viscoelastic behavior of an epoxy resin during cure below the glass transition temperature: Characterization and modeling. J. Compos. Mater. 2019;53:155–171. doi: 10.1177/0021998318781226. DOI

Fedulov B.N. Modeling of manufacturing of thermoplastic composites and residual stress prediction. Aerosp. Syst. 2018;1:81–86. doi: 10.1007/s42401-018-0018-8. DOI

Zhang G.M., Wang J.H., Ni A.Q., Li S.X. Process-induced residual stress of variable-stiffness composite laminates during cure. Compos. Struct. 2018;204:12–21. doi: 10.1016/j.compstruct.2018.07.040. DOI

Liu C., Shi Y.Y. A thermo-viscoelastic analytical model for residual stresses and spring-in angles of multilayered thin-walled curved composite parts. Thin-Walled Struct. 2020;152:106758. doi: 10.1016/j.tws.2020.106758. DOI

Bondarchuk D.A., Fedulov B.N., Fedorenko A.N., Lomakin E.V. The analysis of residual stresses in layered composites with [0°/90°] layup. PNRPU Mech. Bull. 2019;2019:17–26. doi: 10.15593/perm.mech/2019.3.02. DOI

Bondarchuk D., Fedulov B. Process modeling of carbon-epoxy composites: Residual stress development during cure and analysis of free edge effects. Aviation. 2019;23:15–22. doi: 10.3846/aviation.2019.9745. DOI

Cho J., Sun C.T. Modeling thermal residual stresses in composite patch repairs during multitemperature bonding cycles. J. Aircr. 2003;40:1200–1205. doi: 10.2514/2.7211. DOI

Bhujbal P.K., Pathan H.M. Temperature Dependent Studies on Radio Frequency Sputtered Al Doped ZnO Thin Film. Eng. Sci. 2020;10:58–67. doi: 10.30919/es8d1003. DOI

Taylor S., Chao J., Long L., Vlastos N., Wang L. Temperature-dependent Optical Characterization of VO2 Thin Film Prepared from Furnace Oxidation Method. ES Mater. Manuf. 2019;6:62–67. doi: 10.30919/esmm5f607. DOI

Djokic D., Johnston A., Rogers A., Lee-Sullivan P., Mrad N. Residual stress development during the composite patch bonding process: Measurement and modeling. Compos. Part A-Appl. Sci. Manuf. 2002;33:277–288. doi: 10.1016/S1359-835X(01)00083-5. DOI

Findik F., Unal H. Development of thermal residual strains in a single sided composite patch. Compos. Part B-Eng. 2001;32:379–383. doi: 10.1016/S1359-8368(01)00018-X. DOI

Kondratiev A., Prontsevych O. Stabilization of physical-mechanical characteristics of honeycomb filler based on the adjustment of technological techniques for its fabrication. East. Eur. J. Enterp. Technol. 2018;5:71–77. doi: 10.15587/1729-4061.2018.143674. DOI

Riccio A., Ricchiuto R., Di Caprio F., Sellitto A., Raimondo A. Numerical investigation of constitutive material models on bonded joints in scarf repaired composite laminates. Eng. Fract. Mech. 2017;173:91–106. doi: 10.1016/j.engfracmech.2017.01.003. DOI

Albedah A., Mohammed S., Bouiadjra B.B., Bouiadjra B.A.B., Benyahia F. Effect of the patch length on the effectiveness of one-sided bonded composite repair for aluminum panels. Int. J. Adhes. Adhes. 2018;81:83–89. doi: 10.1016/j.ijadhadh.2017.11.012. DOI

Czapski P., Jakubczak P., Lunt A.J.G., Kazmierczyk F., Urbaniak M., Kubiak T. Numerical and experimental studies of the influence of curing and residual stresses on buckling in thin-walled, CFRP square-section profiles. Compos. Struct. 2021;275:114411. doi: 10.1016/j.compstruct.2021.114411. DOI

Yuan Z.Y., Wang Y.J., Yang G.G., Tang A.F., Yang Z.C., Li S.J., Li Y., Song D.L. Evolution of curing residual stresses in composite using multi-scale method. Compos. Part B-Eng. 2018;155:49–61. doi: 10.1016/j.compositesb.2018.08.012. DOI

Kondratiev A. Improving the mass efficiency of a composite launch vehicle head fairing with a sandwich structure. East. Eur. J. Enterp. Technol. 2019;6:6–18. doi: 10.15587/1729-4061.2019.184551. DOI

Kondratiev A., Píštěk V., Smovziuk L., Shevtsova M., Fomina A., Kučera P. Stress–strain behaviour of reparable composite panel with step–variable thickness. Polymers. 2021;13:3830. doi: 10.3390/polym13213830. PubMed DOI PMC

Database of Material Properties during the Repair Process: FP6 SENARIO Report: D5.1. INASMET Fundacion; San Sebastian, Spain: 2010. p. 55.

Shevtsova M., Smovziuk L. In: Prompt Repair of Damaged Aircraft Skin Panels. National Aerospace University “Kharkiv Aviation Institute”, editor. National Aerospace University “Kharkiv Aviation Institute” Publisher; Kharkiv, Ukraine: 2016. (In Russian)

Hanzlik R., Pawlowski H., Dorworth L.C. Optimization of cure cycles using an ESR (Encapsulated Sample Rheometer); Proceedings of the International SAMPE Conference and Exhibition 2020; Seattle, WA, USA. 4–7 May 2020.

Kondratiev A., Gaidachuk V., Nabokina T., Kovalenko V. Determination of the influence of deflections in the thickness of a composite material on its physical and mechanical properties with a local damage to its wholeness. East. Eur. J. Enterp. Technol. 2019;4:6–13. doi: 10.15587/1729-4061.2019.174025. DOI

Vasiliev V.V., Morozov E.V. Chapter 1-Mechanics of a Unidirectional Ply. In: Vasiliev V.V., Morozov E.V., editors. Mechanics and Analysis of Composite Materials. 4th ed. Elsevier; Amsterdam, The Netherlands: 2018. pp. 1–73. DOI

Arena M., Viscardi M. Strain State Detection in Composite Structures: Review and New Challenges. J. Compos. Sci. 2020;4:60. doi: 10.3390/jcs4020060. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...