Stress-Strain Behaviour of Reparable Composite Panel with Step-Variable Thickness

. 2021 Nov 05 ; 13 (21) : . [epub] 20211105

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34771386

Grantová podpora
BUT FSI-S-20-6267 Brno University of Technology

There is an urgent problem of finding an economically viable method of maintenance and restoration of the bearing capacity of structures of various applications. Repair of structures with patches made of polymeric composite materials is one of the most promising repair technologies. However, an improper choice of parameters of the composite patch leads to unjustified increase in the structure mass and the cost of its further operation. These situations result from the lack of reliable methods for developing the repair process, which take into account the influence of the patch geometry and conditions for performance of repair works on the bearing capacity of the repaired structure. The mathematical model of the reparable composite shell-type panel taking into account inhomogeneity of transverse shear deformations at stepped variation of its thickness has been developed. In contrast to the classical theory of layered shells, the model allows simplifying a three-dimensional problem by setting of the displacement field on the layers' interfaces and their linear interpolation over thickness of the panel, as well as considering the transverse shear deformations resulting from the strength, temperature, or shrinkage loading. According to results, the maximum rise in stresses in the case of a notched panel occurs in the weakened layer, and it is from this layer the failure of the structure will start. In the event of the patch, the panel surface opposite the reinforcement is the most loaded (i.e., susceptible to failure) surface. To confirm the reliability of the developed model, we compared the analytical calculations with the results of experimental and numerical studies of the deformed state of a panel of step-variable thickness by the method of holographic interferometry and modelling by the finite element method. Displacement fields available from experiments correspond to the predicted theoretical results. The resulting maximum error does not exceed 7%. The data obtained during numerical modelling allowed us to conclude that the accuracy of theoretical calculations is sufficient for engineering practice. Results of the work can be used to solve the practical problems such as determination of stress-strain behaviour of a damaged structure or structure after repair, specification of the permissible delamination dimensions, and defining of parameters of the bonded repair process.

Zobrazit více v PubMed

Balakrishnan V.S., Seidlitz H. Potential repair techniques for automotive composites: A review. Compos. Part. B Eng. 2018;145:28–38. doi: 10.1016/j.compositesb.2018.03.016. DOI

Lovska A., Fomin O. A New Fastener to Ensure the Reliability of a Passenger Car Body on a Train Ferry. Acta Polytech. 2020;60 doi: 10.14311/AP.2020.60.0478. DOI

Lovska A., Fomin O., Píštěk V., Kučera P. Dynamic Load and Strength Determination of Carrying Structure of Wagons Transported by Ferries. J. Mar. Sci. Eng. 2020;8:902. doi: 10.3390/jmse8110902. DOI

Kondratiev A. Improving the mass efficiency of a composite launch vehicle head fairing with a sandwich structure. Eastern-Eur. J. Enterp. Technol. 2019;6:6–18. doi: 10.15587/1729-4061.2019.184551. DOI

Fomin O.V. Improvement of upper bundling of side wall of gondola cars of 12-9745 model. Metall. Min. Ind. 2015;7:45–48.

Lovska A., Fomin O., Píštěk V., Kučera P. Dynamic Load Modelling within Combined Transport Trains during Transportation on a Railway Ferry. Appl. Sci. 2020;10:5710. doi: 10.3390/app10165710. DOI

Zhou W., Ji X.-L., Yang S., Liu J., Ma L.-H. Review on the performance improvements and non-destructive testing of patches repaired composites. Compos. Struct. 2021;263:113659. doi: 10.1016/j.compstruct.2021.113659. DOI

Arıkan V., Karakuzu R., Alpyildiz T. Improvement of load carrying capacity of sandwich composites by different patch repair types. Polym. Test. 2018;72:257–262. doi: 10.1016/j.polymertesting.2018.10.039. DOI

Junior M.W., Reis J., Mattos H.D.C. Polymer-based composite repair system for severely corroded circumferential welds in steel pipes. Eng. Fail. Anal. 2017;81:135–144. doi: 10.1016/j.engfailanal.2017.08.001. DOI

Kondratiev A., Píštěk V., Purhina S., Shevtsova M., Fomina A., Kučera P. Self-Heating Mould for Composite Manufacturing. Polymers. 2021;13:3074. doi: 10.3390/polym13183074. PubMed DOI PMC

Hsissou R., Seghiri R., Benzekri Z., Hilali M., Rafik M., Elharfi A. Polymer composite materials: A comprehensive review. Compos. Struct. 2021;262:113640. doi: 10.1016/j.compstruct.2021.113640. DOI

Kondratiev A., Slivinsky M. Method for determining the thickness of a binder layer at its non-uniform mass transfer inside the channel of a honeycomb filler made from polymeric paper. Eastern-Eur. J. Enterp. Technol. 2018;6:42–48. doi: 10.15587/1729-4061.2018.150387. DOI

Tiwary A., Kumar R., Chohan J.S. A review on characteristics of composite and advanced materials used for aerospace applications. Mater. Today Proc. 2021 doi: 10.1016/j.matpr.2021.06.276. in press. DOI

Tawfik B.E., Leheta H., Elhewy A., Elsayed T. Weight reduction and strengthening of marine hatch covers by using composite materials. Int. J. Nav. Arch. Ocean Eng. 2017;9:185–198. doi: 10.1016/j.ijnaoe.2016.09.005. DOI

Alabtah F.G., Mahdi E., Eliyan F.F. The use of fiber reinforced polymeric composites in pipelines: A review. Compos. Struct. 2021;276:114595. doi: 10.1016/j.compstruct.2021.114595. DOI

Birman V., Kardomateas G.A. Review of current trends in research and applications of sandwich structures. Compos. Part B Eng. 2018;142:221–240. doi: 10.1016/j.compositesb.2018.01.027. DOI

Archer E., McIlhagger A. 15—Repair of Damaged Aerospace Composite Structures. In: Irving P.E., Soutis C., editors. Polymer Composites in the Aerospace Industry. 2nd ed. Woodhead Publishing; Sawston, UK: 2020. pp. 441–459. DOI

Fomin O., Lovska A., Píštěk V., Kučera P. Dynamic load effect on the transportation safety of tank containers as part of combined trains on railway ferries. Vibroeng. PROCEDIA. 2019;29:124–129. doi: 10.21595/vp.2019.21138. DOI

Dveirin O.Z., Andreev O.V., Kondrat’Ev A.V., Haidachuk V.Y. Stressed State in the Vicinity of a Hole in Mechanical Joint of Composite Parts. Int. Appl. Mech. 2021;57:234–247. doi: 10.1007/s10778-021-01076-4. DOI

Ugrimov S., Smetankina N., Kravchenko O., Yareshchenko V. Integrated Computer Technologies in Mechanical Engineering—2020. Springer; Cham, Switzerland: 2021. Analysis of Laminated Composites Subjected to Impact; pp. 234–246. (Lecture Notes in Networks and Systems). DOI

Fomin O., Lovska A. Establishing patterns in determining the dynamics and strength of a covered freight car, which exhausted its resource. Eastern-Eur. J. Enterp. Technol. 2020;6:21–29. doi: 10.15587/1729-4061.2020.217162. DOI

Holtmannspötter J., Czarnecki J.V., Feucht F., Wetzel M., Gudladt H.-J., Hofmann T., Meyer J.C., Niedernhuber M. On the Fabrication and Automation of Reliable Bonded Composite Repairs. J. Adhes. 2014;91:39–70. doi: 10.1080/00218464.2014.896211. DOI

Kondratiev A., Gaidachuk V., Nabokina T., Kovalenko V. Determination of the influence of deflections in the thickness of a composite material on its physical and mechanical properties with a local damage to its wholeness. Eastern-Eur. J. Enterp. Technol. 2019;4:6–13. doi: 10.15587/1729-4061.2019.174025. DOI

Vasiliev V.V., Morozov E.V. Chapter 11—Circular Cylindrical Shells. In: Vasiliev V.V., Morozov E.V., editors. Advanced Mechanics of Composite Materials. 3rd ed. Elsevier; Amsterdam, The Netherlands: 2013. pp. 685–743. DOI

Grigorenko A.Y., Müller W.H., Grigorenko Y.M., Vlaikov G.G. Recent Developments in Anisotropic Heterogeneous Shell Theory: General Theory and Applications of Classical Theory. Volume 1. Springer; Singapore: 2016. Briefs in Continuum Mechanics. DOI

Grigorenko A.Y., Müller W.H., Grigorenko Y.M., Vlaikov G.G. Recent Developments in Anisotropic Heterogeneous Shell Theory. Applications of Refined and Three-Dimensional Theory. Volume IIA. Springer; Singapore: 2016. Briefs in Continuum Mechanics. DOI

Ugrimov S., Shupikov A. Layered orthotropic plates. Generalized theory. Compos. Struct. 2015;129:224–235. doi: 10.1016/j.compstruct.2015.04.004. DOI

Jones R. A scientific evaluation of the approximate 2D theories for composite repairs to cracked metallic components. Compos. Struct. 2009;87:151–160. doi: 10.1016/j.compstruct.2008.05.022. DOI

Gavva L.M., Firsanov V.V. Analytical Review of Account Methods and Experimental Approaches to Stress-Strain State Investigation of Structurally-Anisotropic Aircraft Panels Made from Composite Materials. IOP Conf. Series Mater. Sci. Eng. 2020;927:012067. doi: 10.1088/1757-899X/927/1/012067. DOI

Gohari S., Mouloodi S., Mozafari F., Alebrahim R., Moslemi N., Burvill C., Albarody T.M.B. A new analytical solution for elastic flexure of thick multi-layered composite hybrid plates resting on Winkler elastic foundation in air and water. Ocean Eng. 2021;235:109372. doi: 10.1016/j.oceaneng.2021.109372. DOI

Köllner A. Predicting buckling-driven delamination propagation in composite laminates: An analytical modelling approach. Compos. Struct. 2021;266:113776. doi: 10.1016/j.compstruct.2021.113776. DOI

Shabanijafroudi N., Ganesan R. A new methodology for buckling, postbuckling and delamination growth behavior of composite laminates with delamination. Compos. Struct. 2021;268:113951. doi: 10.1016/j.compstruct.2021.113951. DOI

Chen X., Wu Z., Nie G., Weaver P. Buckling analysis of variable angle tow composite plates with a through-the-width or an embedded rectangular delamination. Int. J. Solids Struct. 2018;138:166–180. doi: 10.1016/j.ijsolstr.2018.01.010. DOI

Sun X., Hallett S. Failure mechanisms and damage evolution of laminated composites under compression after impact (CAI): Experimental and numerical study. Compos. Part A Appl. Sci. Manuf. 2018;104:41–59. doi: 10.1016/j.compositesa.2017.10.026. DOI

Tan W., Falzon B.G., Chiu L.N., Price M. Predicting low velocity impact damage and Compression-After-Impact (CAI) behaviour of composite laminates. Compos. Part A Appl. Sci. Manuf. 2015;71:212–226. doi: 10.1016/j.compositesa.2015.01.025. DOI

Firsanov V.V. The Basic Stress—Strain State of a Circular Plate of Variable Thickness Based on a Nonclassical Theory. J. Mach. Manuf. Reliab. 2019;48:54–60. doi: 10.3103/S1052618819010072. DOI

Pierce R.S., Falzon B.G. Modelling the size and strength benefits of optimised step/scarf joints and repairs in composite structures. Compos. Part B Eng. 2019;173:107020. doi: 10.1016/j.compositesb.2019.107020. DOI

Firsanov V.V. The Stressed State of the “Boundary Layer” Type in Cylindrical Shells Investigated according to a Nonclassical Theory. J. Mach. Manuf. Reliab. 2018;47:241–248. doi: 10.3103/S1052618818030068. DOI

Kondratiev A., Smovziuk L., Shevtsova M., Nabokina T., Tsaritsynskyi A. Study of Stress-Strain Behavior of the Laminated Plate Damaged by Delamination. IOP Conf. Series Mater. Sci. Eng. 2021;1164:012034. doi: 10.1088/1757-899X/1164/1/012034. DOI

Katsamakas A.A., Papanikolaou V.K., Thermou G.E. A FEM-based model to study the behavior of SRG-strengthened R/C beams. Compos. Struct. 2021;266:113796. doi: 10.1016/j.compstruct.2021.113796. DOI

Abir M., Tay T., Ridha M., Lee H. Modelling damage growth in composites subjected to impact and compression after impact. Compos. Struct. 2017;168:13–25. doi: 10.1016/j.compstruct.2017.02.018. DOI

Saghir F., Gohari S., Mozafari F., Moslemi N., Burvill C., Smith A., Lucas S. Mechanical characterization of particulated FRP composite pipes: A comprehensive experimental study. Polym. Test. 2020;93:107001. doi: 10.1016/j.polymertesting.2020.107001. DOI

Ipek G., Arman Y., Çelik A. The effect of delamination size and location to buckling behavior of composite materials. Compos. Part B Eng. 2018;155:69–76. doi: 10.1016/j.compositesb.2018.08.009. DOI

Rhead A.T., Butler R., Hunt G.W. Compressive strength of composite laminates with delamination-induced interaction of panel and sublaminate buckling modes. Compos. Struct. 2017;171:326–334. doi: 10.1016/j.compstruct.2017.03.011. DOI

Albedah A., Mohammed S.M.K., Bouiadjra B.B., Bouiadjra B.A.B., Benyahia F. Effect of the patch length on the effectiveness of one-sided bonded composite repair for aluminum panels. Int. J. Adhes. Adhes. 2018;81:83–89. doi: 10.1016/j.ijadhadh.2017.11.012. DOI

Lee Y.-J., Lee J.-R., Ihn J.-B. Composite repair patch evaluation using pulse-echo laser ultrasonic correlation mapping method. Compos. Struct. 2018;204:395–401. doi: 10.1016/j.compstruct.2018.07.124. DOI

Guo Q., Yao W., Li W., Gupta N. Constitutive models for the structural analysis of composite materials for the finite element analysis: A review of recent practices. Compos. Struct. 2020;260:113267. doi: 10.1016/j.compstruct.2020.113267. DOI

Tkachenko V., Sapronova S., Kulbovskiy I., Fomin O. Research into resistance to the motion of railroad undercarriages related to directing the wheelsets by a rail track. Eastern-Eur. J. Enterp. Technol. 2017;5:65–72. doi: 10.15587/1729-4061.2017.109791. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...