Determination of the Composite Panel Moulding Pressure Value
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
BUT FSI-S-20-6267
Brno University of Technology
PubMed
35745968
PubMed Central
PMC9231081
DOI
10.3390/polym14122392
PII: polym14122392
Knihovny.cz E-zdroje
- Klíčová slova
- equipment, process parameters, temperature differential, thermoelasticity,
- Publikační typ
- časopisecké články MeSH
Currently, prefabricated panel structures are typical products made of polymeric composite materials. The integrity of the composite panels, their structure and accuracy of making a contour are largely associated with the manifestation of residual technological stresses. The above phenomena and associated stress-strain behaviour inevitably occur in the process of moulding of the composite products. However, their value, nature, time of occurrence and dynamics of growth can be fully controlled and regulated. The paper deals with the study of the effect of moulding pressure on the quality of a composite product. A dependence is presented that allows us to determine the time for the degassing of the polymeric composite material package at the given temperature and pressure to obtain a monolithic and nonporous structure. It is shown that the peak of the maximum volatile-matter yield for the considered binder types lies in the temperature range where the degree of curing does not exceed 10%; that is, the viscosity values do not prevent the removal of volatile fractions. The effect of moulding pressure on the values of the volume content of the reinforcing material has been studied, and the dependence of the required thickness of the absorbent layer on the parameters of the package of polymer composite material and pressure has been obtained. The dependence of the required thickness of absorbent layer on the parameters of the package of polymeric composite material and pressure has been obtained. The mathematical model developed by us provides an opportunity to predict the stress-strain behaviour of a composite structure at any time during the moulding process. The model is closely related to chemo-viscous and thermal models. It allowed us to synthetize a method for choosing the rational parameters of the moulding process (temperature, pressure, and time), materials of additional layers and equipment. The experiments proved the presence of several defects, such as de-lamination of edges, waviness, swelling and poor adhesion of upper layers in the specimen of the composite panel cooled stepwise in the absence of the vacuum pressure. The surface quality of the specimen of the panel cooled stepwise under vacuum pressure was significantly better, and no visible defects were observed. The obtained theoretical values of deflections, considering the change in physic-mechanical characteristics that depend on the temperature and rheonomic properties of the material, showed an error that did not exceed 7%, compared to the experimental data. Our results can be applied at the enterprises engaged in designing and manufacturing panel structures of polymeric composite materials.
Zobrazit více v PubMed
Rubino F., Nisticò A., Tucci F., Carlone P. Marine Application of Fiber Reinforced Composites: A Review. J. Mar. Sci. Eng. 2020;8:26. doi: 10.3390/jmse8010026. DOI
Elfaki I., Abdalgadir S. Composite sandwich structures in advanced civil engineering applications—A review. Comput. Res. Progr. Appl. Sci. Eng. 2020;6:259–262.
Ugrimov S., Smetankina N., Kravchenko O., Yareshchenko V. Integrated Computer Technologies in Mechanical Engineering-2020. ICTM 2020. Volume 188. Springer; Cham, Switzerland: 2021. Analysis of Laminated Composites Subjected to Impact; pp. 234–246. Lecture Notes in Computer Science. DOI
Fomin O., Lovskaya A., Plakhtiy A., Nerubatsky V. The influence of implementation of circular pipes in load-bearing structures of bodies of freight cars on their physico-mechanical properties. Sci. Bull. Nat. Min. Univ. 2017;6:89–96.
Kombarov V., Kryzhyvets Y., Biletskyi I., Tsegelnyk Y., Aksonov Y., Piddubna L. Numerical Control of Fiberglass Pipe Bends Manufacturing; Proceedings of the 2021 IEEE 2nd KhPI Week on Advanced Technology (KhPIWeek); Kharkiv, Ukraine. 13–17 September 2021; pp. 357–362. DOI
Hsissou R., Seghiri R., Benzekri Z., Hilali M., Rafik M., Elharfi A. Polymer composite materials: A comprehensive review. Compos. Struct. 2021;262:113640. doi: 10.1016/j.compstruct.2021.113640. DOI
Kondratiev A., Slyvyns’kyy V., Gaydachuk V., Kirichenko V. Basic parameters’ optimization concept for composite nose fairings of launchers; Proceedings of the 62nd International Astronautical Congress; Cape Town, South Africa. 3–7 October 2011; New York, NY, USA: Curran; 2012. pp. 5701–5710.
Tiwary A., Kumar R., Chohan J.S. A review on characteristics of composite and advanced materials used for aerospace applications. Mater. Today Proc. 2021 doi: 10.1016/j.matpr.2021.06.276. in press. DOI
Kondratiev A., Slivinsky M. Method for determining the thickness of a binder layer at its non-uniform mass transfer inside the channel of a honeycomb filler made from polymeric paper. East.-Eur. J. Enterp. Technol. 2018;5:42–48. doi: 10.15587/1729-4061.2018.150387. DOI
Baran I., Cinar K., Ersoy N., Akkerman R., Hattel J.H. A Review on the Mechanical Modeling of Composite Manufacturing Processes. Arch. Comput. Methods Eng. 2017;24:365–395. doi: 10.1007/s11831-016-9167-2. PubMed DOI PMC
Kondratiev A., Prontsevych O. Stabilization of physical-mechanical characteristics of Honeycomb Filler based on the adjustment of technological techniques for its fabrication. East.-Eur. J. Enterp. Technol. 2018;5:71–77. doi: 10.15587/1729-4061.2018.143674. DOI
Kim S.S., Murayama H., Kageyama K., Uzawa K., Kanai M. Study on the curing process for carbon/epoxy composites to reduce thermal residual stress. Compos. A Appl. Sci. Manuf. 2012;43:1197–1202. doi: 10.1016/j.compositesa.2012.02.023. DOI
Karpus V., Ivanov V., Dehtiarov I., Zajac J., Kurochkina V. Advances in Design, Simulation and Manufacturing. DSMIE 2018. Springer; Cham, Switzerland: 2019. Technological assurance of complex parts manufacturing; pp. 51–61. Lecture Notes in Mechanical Engineering. DOI
Boitsov B.V., Gavva L.M., Pugachev Y.N. The Stress–Strain State of Structurally Anisotropic Panels from Composite Materials under Force and Process Temperature Exposure. Polym. Sci. Ser. D. 2019;12:85–90. doi: 10.1134/S1995421219010039. DOI
Kumar A., Sharma K., Dixit A.R. Carbon nanotube- and graphene-reinforced multiphase polymeric composites: Review on their properties and applications. J. Mater. Sci. 2020;55:2682–2724. doi: 10.1007/s10853-019-04196-y. DOI
Budelmann D., Schmidt C., Meiners D. Prepreg tack: A review of mechanisms, measurement, and manufacturing implication. Polym. Compos. 2020;41:3440–3458. doi: 10.1002/pc.25642. DOI
Fomin O., Gerlici J., Lovskaya A., Kravchenko K., Prokopenko P., Fomina A., Hauser V. Research of the strength of the bearing structure of the flat wagon body from round pipes during transportation on the railway ferry; Proceedings of the 10th International Scientific Conference Horizons of Railway Transport, HORT 2018; Strecno, Slovakia. 11–12 October 2018; p. 00003. DOI
Fedulov B.N. Modeling of manufacturing of thermoplastic composites and residual stress prediction. Aerosp. Syst. 2018;1:81–86. doi: 10.1007/s42401-018-0018-8. DOI
Gaidachuk V.E., Kondratiev A.V., Chesnokov A.V. Changes in the thermal and dimensional stability of the structure of a polymer composite after carbonization. Mech. Compos. Mater. 2017;52:799–806. doi: 10.1007/s11029-017-9631-6. DOI
Carlone P., Rubino F., Paradiso V., Tucci F. Multi-scale modeling and online monitoring of resin flow through dual-scale textiles in liquid composite molding processes. Int. J. Adv. Manuf. Technol. 2018;96:2215–2230. doi: 10.1007/s00170-018-1703-9. DOI
Lionetto F., Moscatello A., Totaro G., Raffone M., Maffezzoli A. Experimental and Numerical Study of Vacuum Resin Infusion of Stiffened Carbon Fiber Reinforced Panels. Materials. 2020;13:4800. doi: 10.3390/ma13214800. PubMed DOI PMC
Li D.N., Li X.D., Dai J.F., Xi S.B. A Comparison of Curing Process-Induced Residual Stresses and Cure Shrinkage in Micro-Scale Composite Structures with Different Constitutive Laws. Appl. Compos. Mater. 2018;25:67–84. doi: 10.1007/s10443-017-9608-6. DOI
Yuan Z.Y., Wang Y.J., Yang G.G., Tang A.F., Yang Z.C., Li S.J., Li Y., Song D.L. Evolution of curing residual stresses in composite using multi-scale method. Compos. B—Eng. 2018;155:49–61. doi: 10.1016/j.compositesb.2018.08.012. DOI
Brauner C., Frerich T., Herrmann A.S. Cure-dependent thermomechanical modelling of the stress relaxation behaviour of composite materials during manufacturing. J. Compos. Mater. 2017;51:877–898. doi: 10.1177/0021998316656924. DOI
Muliana A.H. Spatial and temporal changes in physical properties of epoxy during curing and their effects on the residual stresses and properties of cured epoxy and composites. Appl. Eng. Sci. 2021;7:100061. doi: 10.1016/j.apples.2021.100061. DOI
Zhang G.M., Wang J.H., Ni A.Q., Li S.X. Process-induced residual stress of variable-stiffness composite laminates during cure. Compos. Struct. 2018;204:12–21. doi: 10.1016/j.compstruct.2018.07.040. DOI
Cameron C.J., Saseendran S., Stig F., Rouhi M. A rapid method for simulating residual stress to enable optimization against cure induced distortion. J. Compos. Mater. 2021;55:3799–3812. doi: 10.1177/00219983211024341. DOI
Kondratiev A., Píštěk V., Smovziuk L., Shevtsova M., Fomina A., Kučera P., Prokop A. Effects of the Temperature–Time Regime of Curing of Composite Patch on Repair Process Efficiency. Polymers. 2021;13:4342. doi: 10.3390/polym13244342. PubMed DOI PMC
Kondratiev A., Píštěk V., Smovziuk L., Shevtsova M., Fomina A., Kučera P. Stress–strain behaviour of reparable composite panel with step–variable thickness. Polymers. 2021;13:3830. doi: 10.3390/polym13213830. PubMed DOI PMC
Zhao Y., Xu R., Xiao Y., Wang H., Zhang W., Zhang G. Mechanical Performances of Phenolic Modified Epoxy Resins at Room and High Temperatures. Coatings. 2022;12:643. doi: 10.3390/coatings12050643. DOI
Fernlund G., Rahman N., Courdji R., Bresslauer M., Poursartip A., Willden K., Nelson K. Experimental and numerical study of the effect of cure cycle, tool surface, geometry, and lay-up on the dimensional fidelity of autoclave-processed composite parts. Compos. A—Appl. Sci. Manuf. 2002;33:341–351. doi: 10.1016/S1359-835X(01)00123-3. DOI
Deng B., Shi Y.Y., Yu T., Zhao P. Influence Mechanism and Optimization Analysis of Technological Parameters for the Composite Prepreg Tape Winding Process. Polymers. 2020;12:1843. doi: 10.3390/polym12081843. PubMed DOI PMC
Suriani M.J., Rapi H.Z., Ilyas R.A., Petru M., Sapuan S.M. Delamination and Manufacturing Defects in Natural Fiber-Reinforced Hybrid Composite: A Review. Polymers. 2021;13:1323. doi: 10.3390/polym13081323. PubMed DOI PMC
Rodionov V.V. Optimization of molding the polymeric composite material with improved characteristics. Plast. Massy. 2019;3–4:55–58. doi: 10.35164/0554-2901-2019-3-4-55-58. DOI
Blagonadezhin V.L., Vorontsov A.N., Murzakhanov G.K. Technological problems of mechanics of structures made of composite-materials. Mech. Compos. Mater. 1988;23:608–625. doi: 10.1007/BF00605687. DOI
Vambol O., Purhina S., Stavychenko V., Shevtsova M. Modeling the Process of Molding Composite Structures. National Aerospace University “Kharkiv Aviation Institute” Publishing; Kharkiv, Ukraine: 2016.
Sfar Zbed R., Sobotka V., Le Corre S. A Three-Dimensional Thermo-Chemical Characterization During the Whole Curing Cycle of a Carbon/Epoxy Prepreg; Proceedings of the ESAFORM 2021—24th International Conference on Material Forming; Liège, Belgium. 14–16 April 2021; DOI
Nixon-Pearson O.J., Belnoue J.P.H., Ivanov D.S., Potter K.D., Hallett S.R. An experimental investigation of the consolidation behaviour of uncured prepregs under processing conditions. J. Compos. Mater. 2017;51:1911–1924. doi: 10.1177/0021998316665681. DOI
Rocha H., Semprimoschnig C., Nunes J.P. Sensors for process and structural health monitoring of aerospace composites: A review. Eng. Struct. 2021;237:112231. doi: 10.1016/j.engstruct.2021.112231. DOI
Nemirovskii Y.V., Yankovskii A.P. Effect of the thermal action and thermosensitivity of phase materials on the load-carrrying capacity of momentless shells with an equal-stressed reinforcement. Mech. Compos. Mater. 2002;38:525–538. doi: 10.1023/A:1021778626055. DOI
Teters G., Kregers A. Optimization of a composite plate buckling under thermal action with account of reliability. Mech. Compos. Mater. 2000;36:453–458. doi: 10.1023/A:1006750431407. DOI
Kolosov A.E., Virchenko G.A., Kolosova E.P., Virchenko G.I. Structural and technological design of ways for preparing reactoplastic composite fiber materials based on structural parametric modeling. Chem. Pet. Eng. 2015;51:493–500. doi: 10.1007/s10556-015-0075-3. DOI
Tomashevskii V.T., Yakovlev V.S. Models in the engineering mechanics of polymer-matrix composite systems. Int. Appl. Mech. 2004;40:601–621. doi: 10.1023/B:INAM.0000041391.28104.b7. DOI
Dveirin O.Z., Andreev O.V., Kondrat’ev A.V., Haidachuk V.Y. Stressed State in the Vicinity of a Hole in Mechanical Joint of Composite Parts. Int. Appl. Mech. 2021;57:234–247. doi: 10.1007/s10778-021-01076-4. DOI
Kondratiev A., Píštěk V., Purhina S., Shevtsova M., Fomina A., Kučera P. Self-Heating Mould for Composite Manufacturing. Polymers. 2021;13:3074. doi: 10.3390/polym13183074. PubMed DOI PMC
Slyvynskyi V.I., Sanin A.F., Kharchenko M.E., Kondratyev A.V. Thermally and dimensionally stable structures of carbon-carbon laminated composites for space applications; Proceedings of the 65th International Astronautical Congress 2014: Our World Needs Space; Toronto, ON, Canada. 29 September–3 October 2014; pp. 5739–5751.
Centea T., Grunenfelder L.K., Nutt S.R. A review of out-of-autoclave prepregs—Material properties, process phenomena, and manufacturing considerations. Compos. A—Appl. Sci. Manuf. 2015;70:132–154. doi: 10.1016/j.compositesa.2014.09.029. DOI
Vasiliev V.V., Morozov E.V. Chapter 5—Environmental, Special Loading, and Manufacturing Effects. In: Vasiliev V.V., Morozov E.V., editors. Advanced Mechanics of Composite Materials and Structures. 4th ed. Elsevier; Amsterdam, The Netherlands: 2018. pp. 295–375. DOI
Shah V. Handbook of Plastics Testing and Failure Analysis. 4th ed. John Wiley and Sons, Inc.; Hoboken, NJ, USA: 2020. p. 528.