Delamination and Manufacturing Defects in Natural Fiber-Reinforced Hybrid Composite: A Review

. 2021 Apr 18 ; 13 (8) : . [epub] 20210418

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33919480

Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007293 Ministry of Education, Youth and Sports of the Czech Republic and the European Union (Euro-pean Structural and Investment Funds - Operational Programme Research, Development and Education) in the frames of the project "Modular platform for autonomous chas

In recent years, most boat fabrication companies use 100% synthetic fiber-reinforced composite materials, due to their high performance of mechanical properties. In the new trend of research on the fabrication of boat structure using natural fiber hybrid with kevlar/fiberglass-reinforced composite, the result of tensile, bending, and impact strength showed that glass fiber-reinforced polyester composite gave high strength with increasing glass fiber contents. At some point, realizing the cost of synthetic fiber is getting higher, researchers today have started to use natural fibers that are seen as a more cost-effective option. Natural fibers, however, have some disadvantages, such as high moisture absorption, due to repelling nature; low wettability; low thermal stability; and quality variation, which lead to the degradation of composite properties. In recent times, hybridization is recommended by most researchers as a solution to natural fiber's weaknesses and to reduce the use of synthetic fibers that are not environmentally friendly. In addition, hybrid composite has its own special advantages, i.e., balanced strength and stiffness, reduced weight and cost, improved fatigue resistance and fracture toughness, and improved impact resistance. The synthetic-nature fiber hybrid composites are used in a variety of applications as a modern material that has attracted most manufacturing industries' attention to shift to using the hybrid composite. Some of the previous studies stated that delamination and manufacturing had influenced the performance of the hybrid composites. In order to expand the use of natural fiber as a successful reinforcement in hybrid composite, the factor that affects the manufacturing defects needs to be investigated. In this review paper, a compilation of the reviews on the delamination and a few common manufacturing defect types illustrating the overview of the impact on the mechanical properties encountered by most of the composite manufacturing industries are presented.

Zobrazit více v PubMed

EL-Wazery M.S., EL-Elamy M.I., Zoalfakar S.H. Mechanical properties of glass fiber reinforced polyester composites. Int. J. Appl. Sci. Eng. 2017;14:121–131. doi: 10.6703/IJASE.2017.14(3).121. DOI

Shalwan A., Yousif B. In state of art: Mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater. Des. 2013;48:14–24. doi: 10.1016/j.matdes.2012.07.014. DOI

Mohammed L., Ansari M.N.M., Pua G., Jawaid M., Islam M.S. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. Int. J. Polym. Sci. 2015;2015 doi: 10.1155/2015/243947. DOI

Nurazzi N.M., Khalina A., Sapuan S.M., Ilyas R.A., Rafiqah S.A., Hanafee Z.M. Thermal properties of treated sugar palm yarn/glass fiber reinforced unsaturated polyester hybrid composites. J. Mater. Res. Technol. 2020;9:1606–1618. doi: 10.1016/j.jmrt.2019.11.086. DOI

Aisyah H.A., Paridah M.T., Sapuan S.M., Khalina A., Berkalp O.B., Lee S.H., Lee C.H., Nurazzi N.M., Ramli N., Wahab M.S., et al. Thermal Properties of Woven Kenaf/Carbon Fibre-Reinforced Epoxy Hybrid Composite Panels. Int. J. Polym. Sci. 2019;2019:1–8. doi: 10.1155/2019/5258621. PubMed DOI

Sapuan S.M., Aulia H.S., Ilyas R.A., Atiqah A., Dele-Afolabi T.T., Nurazzi M.N., Supian A.B.M., Atikah M.S.N. Mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites. Polymers. 2020;12:2211. doi: 10.3390/polym12102211. PubMed DOI PMC

Kumar T.S.M., Chandrasekar M., Senthilkumar K., Ilyas R.A., Sapuan S.M., Hariram N., Rajulu A.V., Rajini N., Siengchin S. Characterization, Thermal and Antimicrobial Properties of Hybrid Cellulose Nanocomposite Films with in-Situ Generated Copper Nanoparticles in Tamarindus indica Nut Powder. J. Polym. Environ. 2020:1–10. doi: 10.1007/s10924-020-01939-w. PubMed DOI

Atiqah A., Jawaid M., Sapuan S.M., Ishak M.R., Ansari M.N.M., Ilyas R.A. Physical and thermal properties of treated sugar palm/glass fibre reinforced thermoplastic polyurethane hybrid composites. J. Mater. Res. Technol. 2019;8:3726–3732. doi: 10.1016/j.jmrt.2019.06.032. DOI

Norizan M.N., Abdan K., Ilyas R.A. Proceedings of the Prosiding Seminar Enau Kebangsaan. Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia; Bahau, Negeri Sembilan, Malaysia: Apr 1, 2019. Effect of water absorption on treated sugar palm yarn fibre/glass fibre hybrid composites; pp. 78–81.

Ibrahim M.I.J., Sapuan S.M., Zainudin E.S., Zuhri M.Y.M. Preparation and characterization of cornhusk/sugar palm fiber reinforced Cornstarch-based hybrid composites. J. Mater. Res. Technol. 2020;9:200–211. doi: 10.1016/j.jmrt.2019.10.045. DOI

Afzaluddin A., Jawaid M., Salit M.S., Ishak M.R. Physical and mechanical properties of sugar palm/glass fiber reinforced thermoplastic polyurethane hybrid composites. J. Mater. Res. Technol. 2019;8:950–959. doi: 10.1016/j.jmrt.2018.04.024. DOI

Alsubari S., Zuhri M.Y.M., Sapuan S.M., Ishak M.R., Ilyas R.A., Asyraf M.R.M. Potential of Natural Fiber Reinforced Polymer Composites in Sandwich Structures: A Review on Its Mechanical Properties. Polymers. 2021;13:423. doi: 10.3390/polym13030423. PubMed DOI PMC

Ramasamy M., Arul Daniel A., Nithya M., Sathees Kumar S., Pugazhenthi R. Characterization of natural—Synthetic fiber reinforced epoxy based composite—Hybridization of kenaf fiber and kevlar fiber. Mater. Today Proc. 2020 doi: 10.1016/j.matpr.2020.07.243. DOI

Asumani O.M.L., Reid R.G., Paskaramoorthy R. The effects of alkali-silane treatment on the tensile and flexural properties of short fibre non-woven kenaf reinforced polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2012;43:1431–1440. doi: 10.1016/j.compositesa.2012.04.007. DOI

Mohd Nurazzi N., Asyraf M.R.M., Khalina A., Abdullah N., Sabaruddin F.A., Kamarudin S.H., Ahmad S., Mahat A.M., Lee C.L., Aisyah H.A., et al. Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymers. 2021;13:1047. doi: 10.3390/polym13071047. PubMed DOI PMC

Chermoshentseva A.S., Pokrovskiy A.M., Bokhoeva L.A. The behavior of delaminations in composite materials—Experimental results. IOP Conf. Ser. Mater. Sci. Eng. 2016;116 doi: 10.1088/1757-899X/116/1/012005. DOI

Wisnom M.R. The role of delamination in failure of fibre-reinforced composites. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012;370:1850–1870. doi: 10.1098/rsta.2011.0441. PubMed DOI

Imran M., Khan R., Badshah S. A review on the effect of delamination on the performance of composite plate. Pak. J. Sci. Ind. Res. Ser. A Phys. Sci. 2018;61:173–182.

Hwang S.-F., Mao C.-P. Failure of delaminated interply hybrid composite plates under compression. Compos. Sci. Technol. 2001;61:1513–1527. doi: 10.1016/S0266-3538(01)00048-3. DOI

Potter K., Khan B., Wisnom M., Bell T., Stevens J. Variability, fibre waviness and misalignment in the determination of the properties of composite materials and structures. Compos. Part A Appl. Sci. Manuf. 2008;39:1343–1354. doi: 10.1016/j.compositesa.2008.04.016. DOI

Ghayoor H., Marsden C.C., Hoa S.V., Melro A.R. Numerical analysis of resin-rich areas and their effects on failure initiation of composites. Compos. Part A Appl. Sci. Manuf. 2019;117:125–133. doi: 10.1016/j.compositesa.2018.11.016. DOI

Rajak D.K., Pagar D.D., Menezes P.L., Linul E. Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers. 2019;11:1667. doi: 10.3390/polym11101667. PubMed DOI PMC

Suriani M.J., Ali A., Khalina A., Sapuan S.M., Abdullah S. Detection of Defects in Kenaf/Epoxy using Infrared Thermal Imaging Technique. Procedia Chem. 2012;4:172–178. doi: 10.1016/j.proche.2012.06.024. DOI

Elkington M., Bloom D., Ward C., Chatzimichali A., Potter K. Hand layup: Understanding the manual process. Adv. Manuf. Polym. Compos. Sci. 2015;1:138–151. doi: 10.1080/20550340.2015.1114801. DOI

Talreja R. Manufacturing defects in composites and their effects on performance. Polym. Compos. Aerosp. Ind. 2015:99–113. doi: 10.1016/B978-0-85709-523-7.00005-0. DOI

Mehdikhani M., Gorbatikh L., Verpoest I., Lomov S.V. Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance. J. Compos. Mater. 2019;53:1579–1669. doi: 10.1177/0021998318772152. DOI

Ornaghi H.L., Neves R.M., Monticeli F.M., Almeida J.H.S. Viscoelastic characteristics of carbon fiber-reinforced epoxy filament wound laminates. Compos. Commun. 2020;21 doi: 10.1016/j.coco.2020.100418. DOI

Liu X., Chen F. A review of void formation and its effects on the mechanical performance of carbon fiber reinforced plastic. Eng. Trans. 2016;64:33–51.

Lundström T.S., Gebart B.R., Lundemo C.Y. Void Formation in RTM. J. Reinf. Plast. Compos. 1993;12:1339–1349. doi: 10.1177/073168449301201207. DOI

Lundström T.S., Gebart B.R. Influence from process parameters on void formation in resin transfer molding. Polym. Compos. 1994;15:25–33. doi: 10.1002/pc.750150105. DOI

Afendi M., Banks W.M., Kirkwood D. Bubble free resin for infusion process. Compos. Part A Appl. Sci. Manuf. 2005;36:739–746. doi: 10.1016/j.compositesa.2004.10.030. DOI

Kang M.K., Lee W., II, Hahn H.T. Formation of microvoids during resin-transfer molding process. Compos. Sci. Technol. 2000;60:2427–2434. doi: 10.1016/S0266-3538(00)00036-1. DOI

Dong C., Tsai T.C. Formation of resin-rich zones in composites processing. Adv. Mater. Res. 2010;123–125:543–546. doi: 10.4028/www.scientific.net/AMR.123-125.543. DOI

Glinz J., Šleichrt J., Kytýř D., Ayalur-Karunakaran S., Zabler S., Kastner J., Senck S. Phase-contrast and dark-field imaging for the inspection of resin-rich areas and fiber orientation in non-crimp vacuum infusion carbon-fiber-reinforced polymers. J. Mater. Sci. 2021;56:9712–9727. doi: 10.1007/s10853-021-05907-0. DOI

Koutsonas S. Modelling race-tracking variability of resin rich zones on 90° composite 2.2 twill fibre curved plate. Compos. Sci. Technol. 2018;168:448–459. doi: 10.1016/j.compscitech.2018.08.001. DOI

Haesch A., Clarkson T., Ivens J., Lomov S.V., Verpoest I., Gorbatikh L. Localization of carbon nanotubes in resin rich zones of a woven composite linked to the dispersion state. Nanocomposites. 2015;1:204–213. doi: 10.1080/20550324.2015.1117306. DOI

Holmberg J.A., Berglund L.A. Manufacturing and performance of RTM U-beams. Compos. Part A Appl. Sci. Manuf. 1997;28:513–521. doi: 10.1016/S1359-835X(97)00001-8. DOI

Ahmadian H., Yang M., Soghrati S. Effect of resin-rich zones on the failure response of carbon fiber reinforced polymers. Int. J. Solids Struct. 2020;188–189:74–87. doi: 10.1016/j.ijsolstr.2019.10.004. DOI

Idrees M., Ibrahim A.M.H., Tekerek E., Kontsos A., Palmese G.R., Alvarez N.J. The effect of resin-rich layers on mechanical properties of 3D printed woven fiber-reinforced composites. Compos. Part A Appl. Sci. Manuf. 2021;144:106339. doi: 10.1016/j.compositesa.2021.106339. DOI

Placet V. Composites: Part A Characterization of the thermo-mechanical behaviour of Hemp fibres intended for the manufacturing of high performance composites. Compos. Part A. 2009;40:1111–1118. doi: 10.1016/j.compositesa.2009.04.031. DOI

Placet V., Cisse O. Influence of environmental relative humidity on the tensile and rotational behaviour of hemp fibres. J. Mater. Sci. 2012:3435–3446. doi: 10.1007/s10853-011-6191-3. DOI

Cook W.D., Mehrabi M., Edward G.H. Ageing and yielding in model epoxy thermosets. Polymer. 1999;40:1209–1218. doi: 10.1016/S0032-3861(98)00343-7. DOI

Kumar D.S., Shukla M.J., Mahato K.K., Rathore D.K., Prusty R.K., Ray B.C. Effect of post-curing on thermal and mechanical behavior of GFRP composites. IOP Conf. Ser. Mater. Sci. Eng. 2015 doi: 10.1088/1757-899X/75/1/012012. DOI

Symp M. © 2005 WILEY-VCH Verlag GmbH & KGaA, Weinheim. Angew. Chem. Int. Ed. 2005:195–201. doi: 10.1002/masy.200550425. DOI

Masseteau B., Michaud F., Irle M., Roy A., Alise G. Composites: Part A An evaluation of the effects of moisture content on the modulus of elasticity of a unidirectional flax fiber composite. Compos. Part A. 2014;60:32–37. doi: 10.1016/j.compositesa.2014.01.011. DOI

Gomina M. Effects of the hygrothermal environment on the mechanical properties of flax fibres. J. Compos. Mater. 2014 doi: 10.1177/0021998313490217. DOI

Thor M., Sause M.G.R., Hinterhölzl R.M. Mechanisms of Origin and Classification of Out-of-Plane Fiber Waviness in Composite Materials—A Review. J. Compos. Sci. 2020;4:130. doi: 10.3390/jcs4030130. DOI

Hsiao H.M., Daniel I.M. Effect of fiber waviness on stiffness and strength reduction of unidirectional composites under compressive loading. Compos. Sci. Technol. 1996;56:581–593. doi: 10.1016/0266-3538(96)00045-0. DOI

Parlevliet P.P., Bersee H.E.N., Beukers A. Residual stresses in thermoplastic composites—a study of the literature. Part III: Effects of thermal residual stresses. Compos. Part A Appl. Sci. Manuf. 2007;38:1581–1596. doi: 10.1016/j.compositesa.2006.12.005. DOI

Baran I., Cinar K., Ersoy N., Akkerman R., Hattel J.H. A Review on the Mechanical Modeling of Composite Manufacturing Processes. Arch. Comput. Methods Eng. 2017;24:365–395. doi: 10.1007/s11831-016-9167-2. PubMed DOI PMC

Soll W., Gutowski T.G. Forming thermoplastic composite parts; Proceedings of the 33rd International SAMPE Symposium and Exhibition; Anaheim, CA, USA. 7–10 March 1988; pp. 15–19.

Mallick P.K. In: Processing of Polymer Matrix Composites. 1st ed. Mallick P.K., editor. CRC Press; Boca Raton, FL, USA: 2018.

Aström B.T. Thermoplastic composite sheet forming: Materials and manufacturing techniques. In: Bhattacharyya D., editor. Composite Materials Series. Elsevier; Amsterdam, The Netherlands: 1997. pp. 27–73.

Hubert P., Centea T., Grunefelder L., Nutt S., Kratz J., Levy A. Out-of-Autoclave Prepreg Processing. 2nd ed. Elsevier Ltd.; Amsterdam, The Netherlands: 2018.

Hassan M.H., Othman A.R., Kamaruddin S. A review on the manufacturing defects of complex-shaped laminate in aircraft composite structures. Int. J. Adv. Manuf. Technol. 2017;91:4081–4094. doi: 10.1007/s00170-017-0096-5. DOI

Ilyas R.A., Sapuan S.M. Biopolymers and Biocomposites: Chemistry and Technology. Curr. Anal. Chem. 2020;16:500–503. doi: 10.2174/157341101605200603095311. DOI

Ilyas R.A., Sapuan S.M. The Preparation Methods and Processing of Natural Fibre Bio-polymer Composites. Curr. Org. Synth. 2020;16:1068–1070. doi: 10.2174/157017941608200120105616. PubMed DOI

Li X., Tabil L.G., Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. J. Polym. Environ. 2007;15:25–33. doi: 10.1007/s10924-006-0042-3. DOI

Atikah M.S.N., Ilyas R.A., Sapuan S.M., Ishak M.R., Zainudin E.S., Ibrahim R., Atiqah A., Ansari M.N.M., Jumaidin R. Degradation and physical properties of sugar palm starch/sugar palm nanofibrillated cellulose bionanocomposite. Polimery. 2019;64:680–689. doi: 10.14314/polimery.2019.10.5. DOI

Abral H., Ariksa J., Mahardika M., Handayani D., Aminah I., Sandrawati N., Sapuan S.M., Ilyas R.A. Highly transparent and antimicrobial PVA based bionanocomposites reinforced by ginger nanofiber. Polym. Test. 2019:106186. doi: 10.1016/j.polymertesting.2019.106186. DOI

Syafri E., Sudirman , Mashadi , Yulianti E., Deswita , Asrofi M., Abral H., Sapuan S.M., Ilyas R.A., Fudholi A. Effect of sonication time on the thermal stability, moisture absorption, and biodegradation of water hyacinth (Eichhornia crassipes) nanocellulose-filled bengkuang (Pachyrhizus erosus) starch biocomposites. J. Mater. Res. Technol. 2019;8:6223–6231. doi: 10.1016/j.jmrt.2019.10.016. DOI

Mukaffa H., Asrofi M., Sujito , Asnawi , Hermawan Y., Sumarji , Qoryah R.D.H., Sapuan S.M., Ilyas R.A., Atiqah A. Effect of alkali treatment of piper betle fiber on tensile properties as biocomposite based polylactic acid: Solvent cast-film method. Mater. Today Proc. 2021 doi: 10.1016/j.matpr.2021.02.218. in press. DOI

Ilyas R.A., Sapuan S.M., Atikah M.S.N., Asyraf M.R.M., Rafiqah S.A., Aisyah H.A., Nurazzi N.M., Norrrahim M.N.F. Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (Arenga pinnata (Wurmb.) Merr) Text. Res. J. 2021;91:152–167. doi: 10.1177/0040517520932393. DOI

Rozilah A., Jaafar C.N.A., Sapuan S.M., Zainol I., Ilyas R.A. The Effects of Silver Nanoparticles Compositions on the Mechanical, Physiochemical, Antibacterial, and Morphology Properties of Sugar Palm Starch Biocomposites for Antibacterial Coating. Polymers. 2020;12:2605. doi: 10.3390/polym12112605. PubMed DOI PMC

Sabaruddin F.A., Paridah M.T., Sapuan S.M., Ilyas R.A., Lee S.H., Abdan K., Mazlan N., Roseley A.S.M., Abdul Khalil H.P.S. The effects of unbleached and bleached nanocellulose on the thermal and flammability of polypropylene-reinforced kenaf core hybrid polymer bionanocomposites. Polymers. 2020;13:116. doi: 10.3390/polym13010116. PubMed DOI PMC

Ilyas R.A., Sapuan S.M., Ibrahim R., Abral H., Ishak M.R., Zainudin E.S., Asrofi M., Atikah M.S.N., Huzaifah M.R.M., Radzi A.M., et al. Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: A comprehensive approach from macro to nano scale. J. Mater. Res. Technol. 2019;8 doi: 10.1016/j.jmrt.2019.04.011. DOI

Ilyas R.A., Sapuan S.M., Ishak M.R., Zainudin E.S. Sugar palm nanofibrillated cellulose (Arenga pinnata (Wurmb.) Merr): Effect of cycles on their yield, physic-chemical, morphological and thermal behavior. Int. J. Biol. Macromol. 2019;123:379–388. doi: 10.1016/j.ijbiomac.2018.11.124. PubMed DOI

Ilyas R.A., Sapuan S.M., Ishak M.R., Zainudin E.S. Water transport properties of bio-nanocomposites reinforced by sugar palm (arenga pinnata) nanofibrillated cellulose. J. Adv. Res. Fluid Mech. Therm. Sci. 2018;51:234–246.

Ilyas R.A., Sapuan S.M., Ishak M.R. Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata) Carbohydr. Polym. 2018;181:1038–1051. doi: 10.1016/j.carbpol.2017.11.045. PubMed DOI

Ilyas R.A., Sapuan S.M., Ibrahim R., Abral H., Ishak M.R., Zainudin E.S., Atikah M.S.N., Mohd Nurazzi N., Atiqah A., Ansari M.N.M., et al. Effect of sugar palm nanofibrillated celluloseconcentrations on morphological, mechanical andphysical properties of biodegradable films basedon agro-waste sugar palm (Arenga pinnata (Wurmb.) Merr) starch. J. Mater. Res. Technol. 2019;8:4819–4830. doi: 10.1016/j.jmrt.2019.08.028. DOI

Ilyas R.A., Sapuan S.M., Atiqah A., Ibrahim R., Abral H., Ishak M.R., Zainudin E.S., Nurazzi N.M., Atikah M.S.N., Ansari M.N.M., et al. Sugar palm (Arenga pinnata [Wurmb.] Merr) starch films containing sugar palm nanofibrillated cellulose as reinforcement: Water barrier properties. Polym. Compos. 2020;41:459–467. doi: 10.1002/pc.25379. DOI

Abral H., Ariksa J., Mahardika M., Handayani D., Aminah I., Sandrawati N., Pratama A.B., Fajri N., Sapuan S.M., Ilyas R.A. Transparent and antimicrobial cellulose film from ginger nanofiber. Food Hydrocoll. 2020;98:105266. doi: 10.1016/j.foodhyd.2019.105266. DOI

Ilyas R.A., Sapuan S.M., Ibrahim R., Abral H., Ishak M.R., Zainudin E.S., Atiqah A., Atikah M.S.N., Syafri E., Asrofi M., et al. Thermal, Biodegradability and Water Barrier Properties of Bio-Nanocomposites Based on Plasticised Sugar Palm Starch and Nanofibrillated Celluloses from Sugar Palm Fibres. J. Biobased Mater. Bioenergy. 2020;14:234–248. doi: 10.1166/jbmb.2020.1951. DOI

Ilyas R.A., Sapuan S.M., Sanyang M.L., Ishak M.R., Zainudin E.S. Nanocrystalline cellulose as reinforcement for polymeric matrix nanocomposites and its potential applications: A Review. Curr. Anal. Chem. 2018;14:203–225. doi: 10.2174/1573411013666171003155624. DOI

Cosgrove D.J. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 2005;6:850–861. doi: 10.1038/nrm1746. PubMed DOI

Martins M.A., Kiyohara P.K., Joekes I. Scanning electron microscopy study of raw and chemically modified sisal fibers. J. Appl. Polym. Sci. 2004;94:2333–2340. doi: 10.1002/app.21203. DOI

Ferreira F.V., Mariano M., Rabelo S.C., Gouveia R.F., Lona L.M.F. Isolation and surface modification of cellulose nanocrystals from sugarcane bagasse waste: From a micro- to a nano-scale view. Appl. Surf. Sci. 2018;436:1113–1122. doi: 10.1016/j.apsusc.2017.12.137. DOI

Jarvis M.C. Structure of native cellulose microfibrils, the starting point for nanocellulose manufacture. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018;376:20170045. doi: 10.1098/rsta.2017.0045. PubMed DOI

Norrrahim M.N.F., Mohd Kasim N.A., Knight V.F., Abdul Halim N., Ahmad Shah N.A., Mohd Noor S.A., Jamal S.H., Ong K.K., Wan Yunus W.M.Z., Ahmad Farid M.A., et al. Performance Evaluation of Cellulose Nanofiber Reinforced Polymer Composites. Funct. Compos. Struct. 2021;149:543–547. doi: 10.1088/2631-6331/abeef6. DOI

Aiza Jaafar C.N., Zainol I., Ishak N.S., Ilyas R.A., Sapuan S.M. Effects of the Liquid Natural Rubber (LNR) on Mechanical Properties and Microstructure of Epoxy/Silica/Kenaf Hybrid Composite for Potential Automotive Applications. J. Mater. Res. Technol. 2021;12:1026–1038. doi: 10.1016/j.jmrt.2021.03.020. DOI

Abral H., Chairani M.K., Rizki M.D., Mahardika M., Handayani D., Sugiarti E., Muslimin A.N., Sapuan S.M., Ilyas R.A. Characterization of compressed bacterial cellulose nanopaper film after exposure to dry and humid conditions. J. Mater. Res. Technol. 2021;11:896–904. doi: 10.1016/j.jmrt.2021.01.057. DOI

Omran A.A.B., Mohammed A.A.B.A., Sapuan S.M., Ilyas R.A., Asyraf M.R.M., Koloor S.S.R., Petrů M. Micro- and Nanocellulose in Polymer Composite Materials: A Review. Polymers. 2021;13:231. doi: 10.3390/polym13020231. PubMed DOI PMC

Aisyah H.A., Paridah M.T., Sapuan S.M., Ilyas R.A., Khalina A., Nurazzi N.M., Lee S.H., Lee C.H. A Comprehensive Review on Advanced Sustainable Woven Natural Fibre Polymer Composites. Polymers. 2021;13:471. doi: 10.3390/polym13030471. PubMed DOI PMC

Nurazzi N.M., Asyraf M.R.M., Khalina A., Abdullah N., Aisyah H.A., Rafiqah S.A., Sabaruddin F.A., Kamarudin S.H., Norrrahim M.N.F., Ilyas R.A., et al. A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers. 2021;13:646. doi: 10.3390/polym13040646. PubMed DOI PMC

Abral H., Pratama A.B., Handayani D., Mahardika M., Aminah I., Sandrawati N., Sugiarti E., Muslimin A.N., Sapuan S.M., Ilyas R.A. Antimicrobial Edible Film Prepared from Bacterial Cellulose Nanofibers/Starch/Chitosan for a Food Packaging Alternative. Int. J. Polym. Sci. 2021;2021:1–11. doi: 10.1155/2021/6641284. DOI

Alvarez V.A., Ruseckaite R.A., Vazquez A. Mechanical Properties and Water Absorption Behavior of Composites Made from a Biodegradable Matrix and Alkaline-Treated Sisal Fibers. J. Compos. Mater. 2003;37:1575–1588. doi: 10.1177/0021998303035180. DOI

Alemdar A., Sain M. Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Bioresour. Technol. 2008;99:1664–1671. doi: 10.1016/j.biortech.2007.04.029. PubMed DOI

Julie Chandra C.S., George N., Narayanankutty S.K. Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr. Polym. 2016;142:158–166. doi: 10.1016/j.carbpol.2016.01.015. PubMed DOI

Chirayil C.J., Joy J., Mathew L., Mozetic M., Koetz J., Thomas S. Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Ind. Crops Prod. 2014;59:27–34. doi: 10.1016/j.indcrop.2014.04.020. DOI

Cherian B.M., Leão A.L., de Souza S.F., Thomas S., Pothan L.A., Kottaisamy M. Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr. Polym. 2010;81:720–725. doi: 10.1016/j.carbpol.2010.03.046. DOI

Syafri E., Kasim A., Abral H., Asben A. Cellulose nanofibers isolation and characterization from ramie using a chemical-ultrasonic treatment. J. Nat. Fibers. 2018;16:1–11. doi: 10.1080/15440478.2018.1455073. DOI

Megashah L.N., Ariffin H., Zakaria M.R., Hassan M.A. Properties of Cellulose Extract from Different Types of Oil Palm Biomass. IOP Conf. Ser. Mater. Sci. Eng. 2018;368 doi: 10.1088/1757-899X/368/1/012049. DOI

Jonoobi M., Khazaeian A., Tahir P.M., Azry S.S., Oksman K. Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose. 2011;18:1085–1095. doi: 10.1007/s10570-011-9546-7. DOI

Corrêa A.C., de Morais Teixeira E., Pessan L.A., Mattoso L.H.C. Cellulose nanofibers from curaua fibers. Cellulose. 2010;17:1183–1192. doi: 10.1007/s10570-010-9453-3. DOI

Tibolla H., Pelissari F.M., Menegalli F.C. Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT Food Sci. Technol. 2014;59:1311–1318. doi: 10.1016/j.lwt.2014.04.011. DOI

De Teixeira E.M., Bondancia T.J., Teodoro K.B.R., Corrêa A.C., Marconcini J.M., Mattoso L.H.C. Sugarcane bagasse whiskers: Extraction and characterizations. Ind. Crops Prod. 2011;33:63–66. doi: 10.1016/j.indcrop.2010.08.009. DOI

Jonoobi M., Harun J., Shakeri A., Misra M., Oksmand K. Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources. 2009;4:626–639. doi: 10.15376/biores.4.2.626-639. DOI

Bendahou A., Habibi Y., Kaddami H., Dufresne A. Physico-chemical characterization of palm from Phoenix Dactylifera-L, preparation of cellulose whiskers and natural rubber-based nanocomposites. J. Biobased Mater. Bioenergy. 2009;3:81–90. doi: 10.1166/jbmb.2009.1011. DOI

Chan C.H., Chia C.H., Zakaria S., Ahmad I., Dufresne A. Production and characterisation of cellulose and nano- crystalline cellulose from kenaf core wood. BioResources. 2013;8:785–794. doi: 10.15376/biores.8.1.785-794. DOI

Abral H., Dalimunthe M.H., Hartono J., Efendi R.P., Asrofi M., Sugiarti E., Sapuan S.M., Park J.W., Kim H.J. Characterization of Tapioca Starch Biopolymer Composites Reinforced with Micro Scale Water Hyacinth Fibers. Starch/Staerke. 2018;70:1–8. doi: 10.1002/star.201700287. DOI

Alemdar A., Sain M. Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Compos. Sci. Technol. 2008;68:557–565. doi: 10.1016/j.compscitech.2007.05.044. DOI

Li M., Wang L.J., Li D., Cheng Y.L., Adhikari B. Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp. Carbohydr. Polym. 2014;102:136–143. doi: 10.1016/j.carbpol.2013.11.021. PubMed DOI

Sheltami R.M., Abdullah I., Ahmad I., Dufresne A., Kargarzadeh H. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius) Carbohydr. Polym. 2012;88:772–779. doi: 10.1016/j.carbpol.2012.01.062. DOI

Hagstrand P.O., Bonjour F., Månson J.A.E. The influence of void content on the structural flexural performance of unidirectional glass fibre reinforced polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2005;36:705–714. doi: 10.1016/j.compositesa.2004.03.007. DOI

Huang H., Talreja R. Effects of void geometry on elastic properties of unidirectional fiber reinforced composites. Compos. Sci. Technol. 2005;65:1964–1981. doi: 10.1016/j.compscitech.2005.02.019. DOI

Liebig W.V., Viets C., Schulte K., Fiedler B. Influence of voids on the compressive failure behaviour of fibrereinforced composites. Compos. Sci. Technol. 2015;117:225–233. doi: 10.1016/j.compscitech.2015.06.020. DOI

Ruiz E., Achim V., Soukane S., Trochu F., Bréard J. Optimization of injection flow rate to minimize micro/macro-voids formation in resin transfer molded composites. Compos. Sci. Technol. 2006;66:475–486. doi: 10.1016/j.compscitech.2005.06.013. DOI

Lukaszewicz D.H.J.A., Potter K.D. The internal structure and conformation of prepreg with respect to reliable automated processing. Compos. Part A Appl. Sci. Manuf. 2011;42:283–292. doi: 10.1016/j.compositesa.2010.11.014. DOI

Liu L., Zhang B.M., Wang D.F., Wu Z.J. Effects of cure cycles on void content and mechanical properties of composite laminates. Compos. Struct. 2006;73:303–309. doi: 10.1016/j.compstruct.2005.02.001. DOI

Dong C. Effects of Process-Induced Voids on the Properties of Fibre Reinforced Composites. J. Mater. Sci. Technol. 2016;32:597–604. doi: 10.1016/j.jmst.2016.04.011. DOI

Syafiq R., Sapuan S.M., Zuhri M.Y.M., Ilyas R.A., Nazrin A., Sherwani S.F.K., Khalina A. Antimicrobial activities of starch-based biopolymers and biocomposites incorporated with plant essential oils: A review. Polymers. 2020;12:2403. doi: 10.3390/polym12102403. PubMed DOI PMC

Nazrin A., Sapuan S.M., Zuhri M.Y.M., Ilyas R.A., Syafiq R., Sherwani S.F.K. Nanocellulose Reinforced Thermoplastic Starch (TPS), Polylactic Acid (PLA), and Polybutylene Succinate (PBS) for Food Packaging Applications. Front. Chem. 2020;8:1–12. doi: 10.3389/fchem.2020.00213. PubMed DOI PMC

Asyraf M.R.M., Ishak M.R., Sapuan S.M., Yidris N., Ilyas R.A., Rafidah M., Razman M.R. Potential Application of Green Composites for Cross Arm Component in Transmission Tower: A Brief Review. Int. J. Polym. Sci. 2020;2020:1–15. doi: 10.1155/2020/8878300. DOI

Asyraf M.R.M., Ishak M.R., Sapuan S.M., Yidris N., Shahroze R.M., Johari A.N., Rafidah M., Ilyas R.A. Creep test rig for cantilever beam: Fundamentals, prospects and present views. J. Mech. Eng. Sci. 2020;14:2. doi: 10.15282/jmes.14.2.2020.26.0538. DOI

Azammi A.M.N., Ilyas R.A., Sapuan S.M., Ibrahim R., Atikah M.S.N., Asrofi M., Atiqah A. Interfaces in Particle and Fibre Reinforced Composites. Elsevier; London, UK: 2020. Characterization studies of biopolymeric matrix and cellulose fibres based composites related to functionalized fibre-matrix interface; pp. 29–93.

Sari N.H., Pruncu C.I., Sapuan S.M., Ilyas R.A., Catur A.D., Suteja S., Sutaryono Y.A., Pullen G. The effect of water immersion and fibre content on properties of corn husk fibres reinforced thermoset polyester composite. Polym. Test. 2020;91:106751. doi: 10.1016/j.polymertesting.2020.106751. DOI

Asrofi M., Sujito , Syafri E., Sapuan S.M., Ilyas R.A. Improvement of Biocomposite Properties Based Tapioca Starch and Sugarcane Bagasse Cellulose Nanofibers. Key Eng. Mater. 2020;849:96–101. doi: 10.4028/www.scientific.net/KEM.849.96. DOI

Jumaidin R., Khiruddin M.A.A., Asyul Sutan Saidi Z., Salit M.S., Ilyas R.A. Effect of cogon grass fibre on the thermal, mechanical and biodegradation properties of thermoplastic cassava starch biocomposite. Int. J. Biol. Macromol. 2020;146 doi: 10.1016/j.ijbiomac.2019.11.011. PubMed DOI

El-Shekeil Y.A., Sapuan S.M., Jawaid M., Al-Shuja’a O.M. Influence of fiber content on mechanical, morphological and thermal properties of kenaf fibers reinforced poly (vinyl chloride)/thermoplastic polyurethane poly-blend composites. Mater. Des. 2014;58:130–135. doi: 10.1016/j.matdes.2014.01.047. DOI

Özturk S. Effect of Fiber Loading on the Mechanical Properties of Kenaf and Fiberfrax Fiber-reinforced Phenol-Formaldehyde Composites. J. Compos. Mater. 2010;44:2265–2288. doi: 10.1177/0021998310364265. DOI

Xiao B., Huang Q., Chen H., Chen X., Long G. A fractal model for capillary flow through a single tortuous capillary with roughened surfaces in fibrous porous media. Fractals. 2021;29:2150017. doi: 10.1142/S0218348X21500171. DOI

Zakikhani P., Zahari R., Sultan M.T.H., Majid D.L. Extraction and preparation of bamboo fibre-reinforced composites. Mater. Des. 2014;63:820–828. doi: 10.1016/j.matdes.2014.06.058. DOI

Ramnath B.V., Manickavasagam V.M., Elanchezhian C., Krishna C.V., Karthik S., Saravanan K. Determination of mechanical properties of intra-layer abaca—jute—glass fiber reinforced composite. J. Mater. 2014;60:643–652. doi: 10.1016/j.matdes.2014.03.061. DOI

Al-Bahadly E.A.O. Ph.D. Thesis. Swinburne University of Techology; Melbourne, Austalia: 2013. The Mechanical Properties of Natural Fiber Composites; p. 245.

Karthi N., Kumaresan K., Sathish S., Gokulkumar S., Prabhu L., Vigneshkumar N. An overview: Natural fiber reinforced hybrid composites, chemical treatments and application areas. Mater. Today Proc. 2020 doi: 10.1016/j.matpr.2020.01.011. DOI

Boopalan M., Niranjanaa M., Umapathy M.J. Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites. Compos. Part B Eng. 2013;51:54–57. doi: 10.1016/j.compositesb.2013.02.033. DOI

Sanjay M.R., Madhu P., Jawaid M., Senthamaraikannan P., Senthil S., Pradeep S. Characterization and Properties of Natural Fiber Polymer Composites: A Comprehensive Review. J. Clean. Prod. 2017;172:566–581. doi: 10.1016/j.jclepro.2017.10.101. DOI

Kalaprasad G., Pradeep P., Mathew G., Pavithran C., Thomas S. Thermal conductivity and thermal diffusivity analyses of low-density polyethylene composites reinforced with sisal, glass and intimately mixed sisal/glass fibres. Compos. Sci. Technol. 2000;60:2967–2977. doi: 10.1016/S0266-3538(00)00162-7. DOI

Mahjoub R., Yatim J.M., Mohd Sam A.R., Hashemi S.H. Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Constr. Build. Mater. 2014 doi: 10.1016/j.conbuildmat.2014.01.036. DOI

Brahmakumar M., Pavithran C., Pillai R.M. Science and Coconut fibre reinforced polyethylene composites: Effect of natural waxy surface layer of the fibre on fibre / matrix interfacial bonding and strength of composites. Compos. Sci. Technol. 2005;65:563–569. doi: 10.1016/j.compscitech.2004.09.020. DOI

Baihaqi N.M.Z.N., Khalina A., Nurazzi N.M., Aisyah H.A., Sapuan S.M., Ilyas R.A. Effect of fiber content and their hybridization on bending and torsional strength of hybrid epoxy composites reinforced with carbon and sugar palm fibers. Polimery. 2021;66:36–43. doi: 10.14314/polimery.2021.1.5. DOI

Noorunnisa Khanam P., Abdul Khalil H.P.S., Jawaid M., Ramachandra Reddy G., Surya Narayana C., Venkata Naidu S. Sisal/Carbon Fibre Reinforced Hybrid Composites: Tensile, Flexural and Chemical Resistance Properties. J. Polym. Environ. 2010;18:727–733. doi: 10.1007/s10924-010-0210-3. DOI

Ramesh M., Palanikumar K., Reddy K.H. Mechanical property evaluation of sisal–jute–glass fiber reinforced polyester composites. Compos. Part B Eng. 2013;48:1–9. doi: 10.1016/j.compositesb.2012.12.004. DOI

Kumar N.R., Prasad G.R., Rao B.R. Investigation on mechanical properties of short vakka fiber glass reinforced hybrid thermoplastic composites. Int. J. Eng. Res. Technol. 2012;2:3701–3706.

Al-Maadeed M.A., Labidi S. Natural Fibre Composites. Elsevier; Amsterdam, The Netherlands: 2014. Recycled polymers in natural fibre-reinforced polymer composites; pp. 103–114.

Shanmugam D., Thiruchitrambalam M. Static and dynamic mechanical properties of alkali treated unidirectional continuous Palmyra Palm Leaf Stalk Fiber/jute fiber reinforced hybrid polyester composites. Mater. Des. 2013;50:533–542. doi: 10.1016/j.matdes.2013.03.048. DOI

Srinivasan V., Rajendra Boopathy S., Sangeetha D., Vijaya Ramnath B. Evaluation of mechanical and thermal properties of banana–flax based natural fibre composite. Mater. Des. 2014;60:620–627. doi: 10.1016/j.matdes.2014.03.014. DOI

Asaithambi B., Ganesan G., Ananda Kumar S. Bio-composites: Development and mechanical characterization of banana/sisal fibre reinforced poly lactic acid (PLA) hybrid composites. Fibers Polym. 2014;15:847–854. doi: 10.1007/s12221-014-0847-y. DOI

Asaithambi B., Ganesan G.S., Ananda Kumar S. Banana/sisal fibers reinforced poly(lactic acid) hybrid biocomposites; influence of chemical modification of BSF towards thermal properties. Polym. Compos. 2017;38:1053–1062. doi: 10.1002/pc.23668. DOI

Khan M.A., Ganster J., Fink H.-P. Hybrid composites of jute and man-made cellulose fibers with polypropylene by injection moulding. Compos. Part A Appl. Sci. Manuf. 2009;40:846–851. doi: 10.1016/j.compositesa.2009.04.015. DOI

Dhakal H.N., Zhang Z.Y., Guthrie R., MacMullen J., Bennett N. Development of flax/carbon fibre hybrid composites for enhanced properties. Carbohydr. Polym. 2013;96:1–8. doi: 10.1016/j.carbpol.2013.03.074. PubMed DOI

Ahmed K.S., Vijayarangan S. Tensile, flexural and interlaminar shear properties of woven jute and jute-glass fabric reinforced polyester composites. J. Mater. Process. Technol. 2008;207:330–335. doi: 10.1016/j.jmatprotec.2008.06.038. DOI

Ramnath B.V., Kokan S.J., Raja R.N., Sathyanarayanan R., Elanchezhian C., Prasad A.R., Manickavasagam V.M. Evaluation of mechanical properties of abaca–jute–glass fibre reinforced epoxy composite. Mater. Des. 2013;51:357–366. doi: 10.1016/j.matdes.2013.03.102. DOI

Almeida J.H.S., Amico S.C., Botelho E.C., Amado F.D.R. Hybridization effect on the mechanical properties of curaua/glass fiber composites. Compos. Part B Eng. 2013;55:492–497. doi: 10.1016/j.compositesb.2013.07.014. DOI

Zhang Y., Li Y., Ma H., Yu T. Tensile and interfacial properties of unidirectional flax/glass fiber reinforced hybrid composites. Compos. Sci. Technol. 2013;88:172–177. doi: 10.1016/j.compscitech.2013.08.037. DOI

Akil H.M., Santulli C., Sarasini F., Tirillò J., Valente T. Environmental effects on the mechanical behaviour of pultruded jute/glass fibre-reinforced polyester hybrid composites. Compos. Sci. Technol. 2014;94:62–70. doi: 10.1016/j.compscitech.2014.01.017. DOI

Atiqah A., Maleque M.A., Jawaid M., Iqbal M. Development of kenaf-glass reinforced unsaturated polyester hybrid composite for structural applications. Compos. Part B Eng. 2014;56 doi: 10.1016/j.compositesb.2013.08.019. DOI

Singh B., Gupta M., Verma A. Mechanical behaviour of particulate hybrid composite laminates as potential building materials. Constr. Build. Mater. 1995;9:39–44. doi: 10.1016/0950-0618(95)92859-F. DOI

Arthanarieswaran V.P., Kumaravel A., Kathirselvam M. Evaluation of mechanical properties of banana and sisal fiber reinforced epoxy composites: Influence of glass fiber hybridization. Mater. Des. 2014;64:194–202. doi: 10.1016/j.matdes.2014.07.058. DOI

Yahaya R., Sapuan S.M., Jawaid M., Leman Z., Zainudin E.S. Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf–aramid hybrid laminated composites. Mater. Des. 2015;67:173–179. doi: 10.1016/j.matdes.2014.11.024. DOI

Yahaya R., Sapuan S.M., Leman Z., Zainudin E.S. Selection of Natural Fibre for Hybrid Laminated Composites Vehicle Spall Liners Using Analytical Hierarchy Process (AHP) Appl. Mech. Mater. 2014;564:400–405. doi: 10.4028/www.scientific.net/AMM.564.400. DOI

Noorunnisa Khanam P., Abdul Khalil H.P.S., Ramachandra Reddy G., Venkata Naidu S. Tensile, Flexural and Chemical Resistance Properties of Sisal Fibre Reinforced Polymer Composites: Effect of Fibre Surface Treatment. J. Polym. Environ. 2011;19:115–119. doi: 10.1007/s10924-010-0219-7. DOI

Fiore V., Di Bella G., Valenza A. Glass–basalt/epoxy hybrid composites for marine applications. Mater. Des. 2011;32:2091–2099. doi: 10.1016/j.matdes.2010.11.043. DOI

Petrucci R., Santulli C., Puglia D., Sarasini F., Torre L., Kenny J.M. Mechanical characterisation of hybrid composite laminates based on basalt fibres in combination with flax, hemp and glass fibres manufactured by vacuum infusion. Mater. Des. 2013;49:728–735. doi: 10.1016/j.matdes.2013.02.014. DOI

Pavithran C., Mukherjee P.S., Brahmakumar M., Damodaran A.D. Impact properties of sisal-glass hybrid laminates. J. Mater. Sci. 1991;26:455–459. doi: 10.1007/BF00576542. DOI

Yahaya R., Sapuan S.M., Jawaid M., Leman Z., Zainudin E.S. Mechanical performance of woven kenaf-Kevlar hybrid composites. J. Reinf. Plast. Compos. 2014;33 doi: 10.1177/0731684414559864. DOI

Yahaya R., Sapuan S.M., Jawaid M., Leman Z., Zainudin E.S. Effects of kenaf contents and fiber orientation on physical, mechanical, and morphological properties of hybrid laminated composites for vehicle spall liners. Polym. Compos. 2015;36:1469–1476. doi: 10.1002/pc.23053. DOI

Narendar R., Priya Dasan K., Nair M. Development of coir pith/nylon fabric/epoxy hybrid composites: Mechanical and ageing studies. Mater. Des. 2014;54:644–651. doi: 10.1016/j.matdes.2013.08.080. DOI

Eesaee M., Shojaei A. Effect of nanoclays on the mechanical properties and durability of novolac phenolic resin/woven glass fiber composite at various chemical environments. Compos. Part A Appl. Sci. Manuf. 2014;63:149–158. doi: 10.1016/j.compositesa.2014.04.008. DOI

Bledzki A.K., Franciszczak P., Meljon A. High performance hybrid PP and PLA biocomposites reinforced with short man-made cellulose fibres and softwood flour. Compos. Part A Appl. Sci. Manuf. 2015;74:132–139. doi: 10.1016/j.compositesa.2015.03.029. DOI

Rout A.K., Satapathy A. Study on mechanical and tribo-performance of rice-husk filled glass–epoxy hybrid composites. Mater. Des. 2012;41:131–141. doi: 10.1016/j.matdes.2012.05.002. DOI

Arbelaiz A., Fernandez B., Cantero G., Llano-Ponte R., Valea A., Mondragon I. Mechanical properties of flax fibre/polypropylene composites. Influence of fibre/matrix modification and glass fibre hybridization. Compos. Part A Appl. Sci. Manuf. 2005;36:1637–1644. doi: 10.1016/j.compositesa.2005.03.021. DOI

Reis P.N.B., Ferreira J.A.M., Antunes F.V., Costa J.D.M. Flexural behaviour of hybrid laminated composites. Compos. Part A Appl. Sci. Manuf. 2007;38:1612–1620. doi: 10.1016/j.compositesa.2006.11.010. DOI

Yu X., Wei C., Lu S., Yu J., Xu D., Lu C. Preparation and mechanical properties of TLCP/ UP / GF in-situ hybrid composites. Trans. Nonferrous Met. Soc. China. 2006;16:s529–s533. doi: 10.1016/S1003-6326(06)60250-1. DOI

Jawaid M., Abdul Khalil H.P.S., Abu Bakar A. Mechanical performance of oil palm empty fruit bunches/jute fibres reinforced epoxy hybrid composites. Mater. Sci. Eng. A. 2010;527:7944–7949. doi: 10.1016/j.msea.2010.09.005. DOI

Jawaid M., Abdul Khalil H.P.S., Hassan A., Dungani R., Hadiyane A. Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites. Compos. Part B Eng. 2013;45:619–624. doi: 10.1016/j.compositesb.2012.04.068. DOI

Santulli C., Sarasini F., Tirillò J., Valente T., Valente M., Caruso A.P., Infantino M., Nisini E., Minak G. Mechanical behaviour of jute cloth/wool felts hybrid laminates. Mater. Des. 2013;50:309–321. doi: 10.1016/j.matdes.2013.02.079. DOI

Alavudeen A., Rajini N., Karthikeyan S., Thiruchitrambalam M., Venkateshwaren N. Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation. Mater. Des. 2015;66:246–257. doi: 10.1016/j.matdes.2014.10.067. DOI

Venkateshwaran N., ElayaPerumal A., Alavudeen A., Thiruchitrambalam M. Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites. Mater. Des. 2011;32:4017–4021. doi: 10.1016/j.matdes.2011.03.002. DOI

Athijayamani A., Thiruchitrambalam M., Manikandan V., Pazhanivel B. Mechanical properties of natural fibers reinforced polyester hybrid composite. Int. J. Plast. Technol. 2010;14:104–116. doi: 10.1007/s12588-009-0016-0. DOI

Athijayamani A., Thiruchitrambalam M., Natarajan U., Pazhanivel B. Effect of moisture absorption on the mechanical properties of randomly oriented natural fibers/polyester hybrid composite. Mater. Sci. Eng. 2009;517:344–353. doi: 10.1016/j.msea.2009.04.027. DOI

Venkateshwaran N., ElayaPerumal A. Mechanical and water absorption properties of woven jute/banana hybrid composites. Fibers Polym. 2012;13:907–914. doi: 10.1007/s12221-012-0907-0. DOI

Pérez-Fonseca A.A., Robledo-Ortíz J.R., Ramirez-Arreola D.E., Ortega-Gudiño P., Rodrigue D., González-Núñez R. Effect of hybridization on the physical and mechanical properties of high density polyethylene–(pine/agave) composites. Mater. Des. 2014;64:35–43. doi: 10.1016/j.matdes.2014.07.025. DOI

Graupner N., Herrmann A.S., Müssig J. Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas. Compos. Part A Appl. Sci. Manuf. 2009;40:810–821. doi: 10.1016/j.compositesa.2009.04.003. DOI

Suriani M.J., Sapuan S.M., Ruzaidi C.M., Naveen J., Syukriyah H. Correlation of manufacturing defects and impact behaviors of kenaf fiber reinforced hybrid fiberglass/Kevlar polyester composite. Polimery. 2021;66:30–35. doi: 10.14314/polimery.2021.1.4. DOI

Kaliappan P., Kesavan R., Ramnath B.V. Investigation on effect of fibre hybridization and orientation. Bull. Mater. Sci. 2016 doi: 10.1007/s12034-017-1420-2. DOI

Faur-Csukat G. Development of composite structures for ballistic protection. Mater. Sci. Forum. 2007;538:151–159. doi: 10.4028/www.scientific.net/MSF.537-538.151. DOI

Huber T., Bickerton S., Müssig J., Pang S., Staiger M.P. Solvent infusion processing of all-cellulose composite materials. Carbohydr. Polym. 2012;90:730–733. doi: 10.1016/j.carbpol.2012.05.047. PubMed DOI

Ibrahin N., Hadithon K., Abdan K. Effect of Fiber Treatment on Mechanical Properties of Kenaf Fiber—Ecoflex Composites. J. Reinf. Plast. Compos. 2010;29:2192–2198. doi: 10.1177/0731684409347592. DOI

Aslan M., Tufan M., Küçükömeroğlu T. Tribological and mechanical performance of sisal-filled waste carbon and glass fibre hybrid composites. Compos. Part B. 2018 doi: 10.1016/j.compositesb.2017.12.039. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...