Kenaf Fiber/Pet Yarn Reinforced Epoxy Hybrid Polymer Composites: Morphological, Tensile, and Flammability Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007293.
Ministry of Education, Youth and Sports of the Czech Republic and the European Union (Euro-pean Structural and Investment Funds - Operational Programme Research, Development and Education)
PubMed
34068794
PubMed Central
PMC8126255
DOI
10.3390/polym13091532
PII: polym13091532
Knihovny.cz E-zdroje
- Klíčová slova
- epoxy, fire retardant, flammability, hybrid composite, kenaf composite, morphology, pet yarn, tensile,
- Publikační typ
- časopisecké články MeSH
The application of natural fibers is rapidly growing in many sectors, such as construction, automobile, and furniture. Kenaf fiber (KF) is a natural fiber that is in demand owing to its eco-friendly and renewable nature. Nowadays, there are various new applications for kenaf, such as in absorbents and building materials. It also has commercial applications, such as in the automotive industry. Magnesium hydroxide (Mg(OH)2) is used as a fire retardant as it is low in cost and has good flame retardancy, while polyester yarn (PET) has high tensile strength. The aim of this study was to determine the horizontal burning rate, tensile strength, and surface morphology of kenaf fiber/PET yarn reinforced epoxy fire retardant composites. The composites were prepared by hybridized epoxy and Mg(OH)2 PET with different amounts of KF content (0%, 20%, 35%, and 50%) using the cold press method. The specimen with 35% KF (epoxy/PET/KF-35) displayed better flammability properties and had the lowest average burning rate of 14.55 mm/min, while epoxy/PET/KF-50 with 50% KF had the highest tensile strength of all the samples. This was due to fewer defects being detected on the surface morphology of epoxy/PET/KF-35 compared to the other samples, which influenced the mechanical properties of the composites.
Zobrazit více v PubMed
Mohd Nurazzi N., Asyraf M.R.M., Khalina A., Abdullah N., Sabaruddin F.A., Kamarudin S.H., Ahmad S., Mahat A.M., Lee C.L., Aisyah H.A., et al. Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymers. 2021;13:1047. doi: 10.3390/polym13071047. PubMed DOI PMC
Suriani M.J., Rapi H.Z., Ilyas R.A., Petrů M., Sapuan S.M. Delamination and Manufacturing Defects in Natural Fiber-Reinforced Hybrid Composite: A Review. Polymers. 2021;13:1323. doi: 10.3390/polym13081323. PubMed DOI PMC
Nurazzi N.M., Asyraf M.R.M., Khalina A., Abdullah N., Aisyah H.A., Rafiqah S.A., Sabaruddin F.A., Kamarudin S.H., Norrrahim M.N.F., Ilyas R.A., et al. A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers. 2021;13:646. doi: 10.3390/polym13040646. PubMed DOI PMC
Asyraf M.R.M., Ishak M.R., Sapuan S.M., Yidris N., Ilyas R.A. Woods and composites cantilever beam: A comprehensive review of experimental and numerical creep methodologies. J. Mater. Res. Technol. 2020;9:6759–6776. doi: 10.1016/j.jmrt.2020.01.013. DOI
Ilyas R.A., Sapuan S.M. Biopolymers and Biocomposites: Chemistry and Technology. Curr. Anal. Chem. 2020;16:500–503. doi: 10.2174/157341101605200603095311. DOI
Ilyas R.A., Sapuan S.M. The Preparation Methods and Processing of Natural Fibre Bio-polymer Composites. Curr. Org. Synth. 2020;16:1068–1070. doi: 10.2174/157017941608200120105616. PubMed DOI
Diyana Z.N., Jumaidin R., Selamat M.Z., Ghazali I., Julmohammad N., Huda N., Ilyas R.A. Physical Properties of Thermoplastic Starch Derived from Natural Resources and Its Blends: A Review. Polymers. 2021;13:1396. doi: 10.3390/polym13091396. PubMed DOI PMC
Ilyas R.A., Sapuan S.M., Harussani M.M., Hakimi M.Y.A.Y., Haziq M.Z.M., Atikah M.S.N., Asyraf M.R.M., Ishak M.R., Razman M.R., Nurazzi N.M., et al. Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications. Polymers. 2021;13:1326. doi: 10.3390/polym13081326. PubMed DOI PMC
Ilyas R.A., Sapuan S.M., Atikah M.S.N., Asyraf M.R.M., Rafiqah S.A., Aisyah H.A., Nurazzi N.M., Norrrahim M.N.F. Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (Arenga pinnata (Wurmb.) Merr) Text. Res. J. 2021;91:152–167. doi: 10.1177/0040517520932393. DOI
Ilyas R.A., Sapuan S.M., Ibrahim R., Abral H., Ishak M.R., Zainudin E.S., Atiqah A., Atikah M.S.N., Syafri E., Asrofi M., et al. Thermal, Biodegradability and Water Barrier Properties of Bio-Nanocomposites Based on Plasticised Sugar Palm Starch and Nanofibrillated Celluloses from Sugar Palm Fibres. J. Biobased Mater. Bioenergy. 2020;14:234–248. doi: 10.1166/jbmb.2020.1951. DOI
Ilyas R.A., Sapuan S.M., Ishak M.R. Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga pinnata) Carbohydr. Polym. 2018;181:1038–1051. doi: 10.1016/j.carbpol.2017.11.045. PubMed DOI
Ilyas R.A., Sapuan S.M., Ibrahim R., Abral H., Ishak M.R., Zainudin E.S., Atikah M.S.N., Mohd Nurazzi N., Atiqah A., Ansari M.N.M., et al. Effect of sugar palm nanofibrillated celluloseconcentrations on morphological, mechanical andphysical properties of biodegradable films basedon agro-waste sugar palm (Arenga pinnata(Wurmb.) Merr) starch. J. Mater. Res. Technol. 2019;8:4819–4830. doi: 10.1016/j.jmrt.2019.08.028. DOI
Ilyas R.A., Sapuan S.M., Ishak M.R., Zainudin E.S. Sugar palm nanofibrillated cellulose (Arenga pinnata (Wurmb.) Merr): Effect of cycles on their yield, physic-chemical, morphological and thermal behavior. Int. J. Biol. Macromol. 2019;123:379–388. doi: 10.1016/j.ijbiomac.2018.11.124. PubMed DOI
Ilyas R.A., Sapuan S.M., Atiqah A., Ibrahim R., Abral H., Ishak M.R., Zainudin E.S., Nurazzi N.M., Atikah M.S.N., Ansari M.N.M., et al. Sugar palm (Arenga pinnata [Wurmb.] Merr) starch films containing sugar palm nanofibrillated cellulose as reinforcement: Water barrier properties. Polym. Compos. 2020;41:459–467. doi: 10.1002/pc.25379. DOI
Ilyas R.A., Sapuan S.M., Ibrahim R., Abral H., Ishak M.R., Zainudin E.S., Asrofi M., Atikah M.S.N., Huzaifah M.R.M., Radzi A.M., et al. Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: A comprehensive approach from macro to nano scale. J. Mater. Res. Technol. 2019;8:2753–2766. doi: 10.1016/j.jmrt.2019.04.011. DOI
Suriani M.J., Radzi F.S.M., Ilyas R.A., Petrů M., Sapuan S.M., Ruzaidi C.M. Flammability, Tensile, and Morphological Properties of Oil Palm Empty Fruit Bunches Fiber/Pet Yarn-Reinforced Epoxy Fire Retardant Hybrid Polymer Composites. Polymers. 2021;13:1282. doi: 10.3390/polym13081282. PubMed DOI PMC
Jumaidin R., Adam N.W., Ilyas R.A., Hussin M.S.F., Taha M.M., Mansor M.R., Azlan U.A.-A., Yob M.S. Water transport and physical properties of sugarcane bagasse fibre reinforced thermoplastic potato starch biocomposite. J. Adv. Res. Fluid Mech. Therm. Sci. 2019;61:273–281.
Asrofi M., Syafri S.E., Sapuan S.M., Ilyas R.A. Improvement of Biocomposite Properties Based Tapioca Starch and Sugarcane Bagasse Cellulose Nanofibers. Key Eng. Mater. 2020;849:96–101. doi: 10.4028/www.scientific.net/KEM.849.96. DOI
Asrofi M., Sapuan S.M., Ilyas R.A., Ramesh M. Characteristic of composite bioplastics from tapioca starch and sugarcane bagasse fiber: Effect of time duration of ultrasonication (Bath-Type) Mater. Today Proc. 2020 doi: 10.1016/j.matpr.2020.07.254. DOI
Syafri E., Sudirman, Mashadi, Yulianti E., Deswita, Asrofi M., Abral H., Sapuan S.M., Ilyas R.A., Fudholi A. Effect of sonication time on the thermal stability, moisture absorption, and biodegradation of water hyacinth (Eichhornia crassipes) nanocellulose-filled bengkuang (Pachyrhizus erosus) starch biocomposites. J. Mater. Res. Technol. 2019;8:6223–6231. doi: 10.1016/j.jmrt.2019.10.016. DOI
Sabaruddin F.A., Paridah M.T., Sapuan S.M., Ilyas R.A., Lee S.H., Abdan K., Mazlan N., Roseley A.S.M., Abdul Khalil H.P.S. The effects of unbleached and bleached nanocellulose on the thermal and flammability of polypropylene-reinforced kenaf core hybrid polymer bionanocomposites. Polymers. 2020;13:116. doi: 10.3390/polym13010116. PubMed DOI PMC
Aisyah H.A., Paridah M.T., Sapuan S.M., Khalina A., Berkalp O.B., Lee S.H., Lee C.H., Nurazzi N.M., Ramli N., Wahab M.S., et al. Thermal Properties of Woven Kenaf/Carbon Fibre-Reinforced Epoxy Hybrid Composite Panels. Int. J. Polym. Sci. 2019;2019:5258621. doi: 10.1155/2019/5258621. DOI
Aiza Jaafar C.N., Zainol I., Ishak N.S., Ilyas R.A., Sapuan S.M. Effects of the Liquid Natural Rubber (LNR) on Mechanical Properties and Microstructure of Epoxy/Silica/Kenaf Hybrid Composite for Potential Automotive Applications. J. Mater. Res. Technol. 2021;12:1026–1038. doi: 10.1016/j.jmrt.2021.03.020. DOI
Sari N.H., Pruncu C.I., Sapuan S.M., Ilyas R.A., Catur A.D., Suteja S., Sutaryono Y.A., Pullen G. The effect of water immersion and fibre content on properties of corn husk fibres reinforced thermoset polyester composite. Polym. Test. 2020;91:106751. doi: 10.1016/j.polymertesting.2020.106751. DOI
Aruchamy K., Pavayee Subramani S., Palaniappan S.K., Sethuraman B., Velu Kaliyannan G. Study on mechanical characteristics of woven cotton/bamboo hybrid reinforced composite laminates. J. Mater. Res. Technol. 2020;9:718–726. doi: 10.1016/j.jmrt.2019.11.013. DOI
Siakeng R., Jawaid M., Asim M., Saba N., Sanjay M.R., Siengchin S., Fouad H. Alkali treated coir/pineapple leaf fibres reinforced PLA hybrid composites: Evaluation of mechanical, morphological, thermal and physical properties. Express Polym. Lett. 2020;14:717–730. doi: 10.3144/expresspolymlett.2020.59. DOI
Kandola B.K., Mistik S.I., Pornwannachai W., Anand S.C. Natural fibre-reinforced thermoplastic composites from woven-nonwoven textile preforms: Mechanical and fire performance study. Compos. Part B Eng. 2018;153:456–464. doi: 10.1016/j.compositesb.2018.09.013. DOI
Jumaidin R., Khiruddin M.A.A., Asyul Sutan Saidi Z., Salit M.S., Ilyas R.A. Effect of cogon grass fibre on the thermal, mechanical and biodegradation properties of thermoplastic cassava starch biocomposite. Int. J. Biol. Macromol. 2020;146:746–755. doi: 10.1016/j.ijbiomac.2019.11.011. PubMed DOI
Hossain M., Mobarak M.B., Rony F.K., Sultana S., Mahmud M., Ahmed S. Fabrication and Characterization of Banana Fiber Reinforced Unsaturated Polyester Resin Based Composites. Nano Hybrids Compos. 2020;29:84–92. doi: 10.4028/www.scientific.net/NHC.29.84. DOI
Jumaidin R., Diah N.A., Ilyas R.A., Alamjuri R.H., Yusof F.A.M. Processing and Characterisation of Banana Leaf Fibre Reinforced Thermoplastic Cassava Starch Composites. Polymers. 2021;13:1420. doi: 10.3390/polym13091420. PubMed DOI PMC
Azammi A.M.N., Ilyas R.A., Sapuan S.M., Ibrahim R., Atikah M.S.N., Asrofi M., Atiqah A. Interfaces in Particle and Fibre Reinforced Composites. Elsevier; London, UK: 2020. Characterization studies of biopolymeric matrix and cellulose fibres based composites related to functionalized fibre-matrix interface; pp. 29–93.
Aisyah H.A., Paridah M.T., Sapuan S.M., Ilyas R.A., Khalina A., Nurazzi N.M., Lee S.H., Lee C.H. A Comprehensive Review on Advanced Sustainable Woven Natural Fibre Polymer Composites. Polymers. 2021;13:471. doi: 10.3390/polym13030471. PubMed DOI PMC
Alsubari S., Zuhri M.Y.M., Sapuan S.M., Ishak M.R., Ilyas R.A., Asyraf M.R.M. Potential of natural fiber reinforced polymer composites in sandwich structures: A review on its mechanical properties. Polymers. 2021;13:423. doi: 10.3390/polym13030423. PubMed DOI PMC
Nurazzi N.M., Khalina A., Sapuan S.M., Ilyas R.A., Rafiqah S.A., Hanafee Z.M. Thermal properties of treated sugar palm yarn/glass fiber reinforced unsaturated polyester hybrid composites. J. Mater. Res. Technol. 2020;9:1606–1618. doi: 10.1016/j.jmrt.2019.11.086. DOI
Atiqah A., Jawaid M., Sapuan S.M., Ishak M.R., Ansari M.N.M., Ilyas R.A. Physical and thermal properties of treated sugar palm/glass fibre reinforced thermoplastic polyurethane hybrid composites. J. Mater. Res. Technol. 2019;8:3726–3732. doi: 10.1016/j.jmrt.2019.06.032. DOI
Fu S.Y., Xu G., Mai Y.W. On the elastic modulus of hybrid particle/short-fiber/polymer composites. Compos. Part B Eng. 2002;33:291–299. doi: 10.1016/S1359-8368(02)00013-6. DOI
Mansor M.R., Sapuan S.M., Zainudin E.S., Nuraini A.A., Hambali A. Hybrid natural and glass fibers reinforced polymer composites material selection using Analytical Hierarchy Process for automotive brake lever design. Mater. Des. 2013;51:484–492. doi: 10.1016/j.matdes.2013.04.072. DOI
Rozilah A., Jaafar C.N.A., Sapuan S.M., Zainol I., Ilyas R.A. The Effects of Silver Nanoparticles Compositions on the Mechanical, Physiochemical, Antibacterial, and Morphology Properties of Sugar Palm Starch Biocomposites for Antibacterial Coating. Polymers. 2020;12:2605. doi: 10.3390/polym12112605. PubMed DOI PMC
Jacob M., Thomas S., Varughese K.T. Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Compos. Sci. Technol. 2004;64:955–965. doi: 10.1016/S0266-3538(03)00261-6. DOI
Banerjee S., Sankar B.V. Mechanical properties of hybrid composites using finite element method based micromechanics. Compos. Part B Eng. 2014;58:318–327. doi: 10.1016/j.compositesb.2013.10.065. DOI
Dan-mallam Y., Hong T.W., Abdul Majid M.S. Mechanical Characterization and Water Absorption Behaviour of Interwoven Kenaf/PET Fibre Reinforced Epoxy Hybrid Composite. Int. J. Polym. Sci. 2015;2015:1–13. doi: 10.1155/2015/371958. DOI
Ramesh M., Palanikumar K., Reddy K.H. Comparative Evaluation on Properties of Hybrid Glass Fiber- Sisal/Jute Reinforced Epoxy Composites. Procedia Eng. 2013;51:745–750. doi: 10.1016/j.proeng.2013.01.106. DOI
Jawaid M., Abdul Khalil H.P.S. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydr. Polym. 2011;86:1–18. doi: 10.1016/j.carbpol.2011.04.043. DOI
Vasumathi M., Murali V. Effect of Alternate Metals for use in Natural Fibre Reinforced Fibre Metal Laminates under Bending, Impact and Axial Loadings. Procedia Eng. 2013;64:562–570. doi: 10.1016/j.proeng.2013.09.131. DOI
Faruk O., Bledzki A.K., Fink H.-P., Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012;37:1552–1596. doi: 10.1016/j.progpolymsci.2012.04.003. DOI
Sanjay M.R., Siengchin S. Exploring the applicability of natural fibers for the development of biocomposites. Express Polym. Lett. 2021;15:193. doi: 10.3144/expresspolymlett.2021.17. DOI
Rangappa S.M., Siengchin S., Dhakal H.N. Green-composites: Ecofriendly and Sustainability. Appl. Sci. Eng. Prog. 2020;13:183–184. doi: 10.14416/j.asep.2020.06.001. DOI
Amir N., Abidin K.A.Z., Shiri F.B.M. Effects of Fibre Configuration on Mechanical Properties of Banana Fibre/PP/MAPP Natural Fibre Reinforced Polymer Composite. Procedia Eng. 2017;184:573–580. doi: 10.1016/j.proeng.2017.04.140. DOI
Sain M., Park S.H., Suhara F., Law S. Flame retardant and mechanical properties of natural fibre-PP composites containing magnesium hydroxide. Polym. Degrad. Stab. 2004;83:363–367. doi: 10.1016/S0141-3910(03)00280-5. DOI
Mazani N., Sapuan S.M., Sanyang M.L., Atiqah A., Ilyas R.A. Design and Fabrication of a Shoe Shelf From Kenaf Fiber Reinforced Unsaturated Polyester Composites. In: Ariffin H., Sapuan S.M., Hassan M.A., editors. Lignocellulose for Future Bioeconomy. Elsevier; Amsterdam, The Netherlands: 2019. pp. 315–332.
Sapiai N., Jumahat A., Jawaid M., Midani M., Khan A. Tensile and Flexural Properties of Silica Nanoparticles Modified Unidirectional Kenaf and Hybrid Glass/Kenaf Epoxy Composites. Polymers. 2020;12:2733. doi: 10.3390/polym12112733. PubMed DOI PMC
Hassan F., Zulkifli R., Ghazali M.J., Azhari C.H. Kenaf Fiber Composite in Automotive Industry: An Overview. Int. J. Adv. Sci. Eng. Inf. Technol. 2017;7:315. doi: 10.18517/ijaseit.7.1.1180. DOI
Nishino T., Hirao K., Kotera M., Nakamae K., Inagaki H. Kenaf reinforced biodegradable composite. Compos. Sci. Technol. 2003;63:1281–1286. doi: 10.1016/S0266-3538(03)00099-X. DOI
Kian L.K., Saba N., Jawaid M., Sultan M.T.H. A review on processing techniques of bast fibers nanocellulose and its polylactic acid (PLA) nanocomposites. Int. J. Biol. Macromol. 2019;121:1314–1328. doi: 10.1016/j.ijbiomac.2018.09.040. PubMed DOI
Shih Y.-F., Wang Y.-T., Jeng R.-J., Wei K.-M. Expandable graphite systems for phosphorus-containing unsaturated polyesters. I. Enhanced thermal properties and flame retardancy. Polym. Degrad. Stab. 2004;86:339–348. doi: 10.1016/j.polymdegradstab.2004.04.020. DOI
Costes L., Laoutid F., Brohez S., Dubois P. Bio-based flame retardants: When nature meets fire protection. Mater. Sci. Eng. R Rep. 2017;117:1–25. doi: 10.1016/j.mser.2017.04.001. DOI
Saba N., Safwan A., Sanyang M.L., Mohammad F., Pervaiz M., Jawaid M., Alothman O.Y., Sain M. Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. Int. J. Biol. Macromol. 2017;102:822–828. doi: 10.1016/j.ijbiomac.2017.04.074. PubMed DOI
Hao A., Zhao H., Chen J.Y. Kenaf/polypropylene nonwoven composites: The influence of manufacturing conditions on mechanical, thermal, and acoustical performance. Compos. Part B Eng. 2013;54:44–51. doi: 10.1016/j.compositesb.2013.04.065. DOI
Ratna Prasad A.V., Mohana Rao K. Mechanical properties of natural fibre reinforced polyester composites: Jowar, sisal and bamboo. Mater. Des. 2011;32:4658–4663. doi: 10.1016/j.matdes.2011.03.015. DOI
Bernard M., Khalina A., Ali A., Janius R., Faizal M., Hasnah K.S., Sanuddin A.B. The effect of processing parameters on the mechanical properties of kenaf fibre plastic composite. Mater. Des. 2011;32:1039–1043. doi: 10.1016/j.matdes.2010.07.014. DOI
Zhang H., Wang H., Wang H. Flame retardant mechanism and surface modification of magnesium hydroxide flame retardant. IOP Conf. Ser. Earth Environ. Sci. 2018;170:032028. doi: 10.1088/1755-1315/170/3/032028. DOI
Joseph K., Tolêdo Filho R.D., James B., Thomas S., de Carvalho L.H. A Review on Sisal Fiber Reinforced Polymer Composites. Rev. Bras. Eng. Agrícola Ambient. 1999;3:367–379. doi: 10.1590/1807-1929/agriambi.v3n3p367-379. DOI
Zampaloni M., Pourboghrat F., Yankovich S.A., Rodgers B.N., Moore J., Drzal L.T., Mohanty A.K., Misra M. Kenaf natural fiber reinforced polypropylene composites: A discussion on manufacturing problems and solutions. Compos. Part A Appl. Sci. Manuf. 2007;38:1569–1580. doi: 10.1016/j.compositesa.2007.01.001. DOI
Bar M., Alagirusamy R., Das A. Flame retardant polymer composites. Fibers Polym. 2015;16:705–717. doi: 10.1007/s12221-015-0705-6. DOI
Chapple S., Anandjiwala R. Flammability of natural fiber-reinforced composites and strategies for fire retardancy: A review. J. Thermoplast. Compos. Mater. 2010;23:871–893. doi: 10.1177/0892705709356338. DOI
Concrete F.R., Muda Z.C., Mohd N.L., Composites P., Ismail A.E. Flammability of self-extinguishing kenaf/ABS nanoclays composite for aircraft secondary structure. IOP Conf. Ser. Mater. Sci. Eng. 2016;152:012068. doi: 10.1088/1757-899X/152/1/012068. DOI
Prabhakar M.N., Shah AU R., Song J.I. A Review on the Flammability and Flame Retardant Properties of Natural Fibers and Polymer Matrix Based Composites. Compos. Res. 2015;28:28–39. doi: 10.7234/composres.2015.28.2.029. DOI
Martins L.A.L., Bastian F.L., Netto T.A. Reviewing some design issues for filament wound composite tubes. Mater. Des. 2014;55:242–249. doi: 10.1016/j.matdes.2013.09.059. DOI
El-Shekeil Y.A., Sapuan S.M., Jawaid M., Al-Shuja’a O.M. Influence of fiber content on mechanical, morphological and thermal properties of kenaf fibers reinforced poly(vinyl chloride)/thermoplastic polyurethane poly-blend composites. Mater. Des. 2014;58:130–135. doi: 10.1016/j.matdes.2014.01.047. DOI
Jagadeesh P., Thyavihalli Girijappa Y.G., Puttegowda M., Rangappa S.M., Siengchin S. Effect of natural filler materials on fiber reinforced hybrid polymer composites: An Overview. J. Nat. Fibers. 2020:1–16. doi: 10.1080/15440478.2020.1854145. DOI
Sanjay M.R., Siengchin S., Parameswaranpillai J., Jawaid M., Pruncu C.I., Khan A. A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydr. Polym. 2019;207:108–121. doi: 10.1016/j.carbpol.2018.11.083. PubMed DOI
Hanifawati I.N., Azmah Hanim M.A., Sapuan S.M., Zainuddin E.S. Tensile and Flexural Behavior of Hybrid Banana Pseudostem/Glass Fibre Reinforced Polyester Composites. Key Eng. Mater. 2011;471–472:686–691. doi: 10.4028/www.scientific.net/KEM.471-472.686. DOI
Mobedi H., Nekoomanesh M., Orafaei H., Mivechi H. Studying the Degradation of Poly(L-Lactide) in Presence of Magnesium Hydroxide. Iran. Polym. J. 2006;15:31–39.
Datta J., Kopczyńska P. Effect of kenaf fibre modification on morphology and mechanical properties of thermoplastic polyurethane materials. Ind. Crops Prod. 2015;74:566–576. doi: 10.1016/j.indcrop.2015.05.080. DOI
Heslehurst R.B., Scott M. Review of defects and damage pertaining to composite aircraft components. Compos. Polym. 1990;3:103–133.
El-Sabbagh A., Steuernagel L., Ziegmann G. Low combustible polypropylene/flax/magnesium hydroxide composites: Mechanical, flame retardation characterization and recycling effect. J. Reinf. Plast. Compos. 2013;32:1030–1043. doi: 10.1177/0731684413480993. DOI
Sanadi A.R., Hunt J.F., Caulfield D.F., Kovacsvolgyi G., Destree B. High fiber-low matrix composites: Kenaf fiber/polypropylene; Proceedings of the Sixth International Conference on Woodfiber-Plastic Composites; Madison, WI, USA. 15–16 May 2001; Madison, WI, USA: Forest Research Society; 2002. pp. 121–124.
Nurazzi N.M., Khalina A., Chandrasekar M., Aisyah H.A., Rafiqah S.A., Ilyas R.A., Hanafee Z.M. Effect of fiber orientation and fiber loading on the mechanical and thermal properties of sugar palm yarn fiber reinforced unsaturated polyester resin composites. Polimery. 2020;65:115–124. doi: 10.14314/polimery.2020.2.5. DOI
Baihaqi N.M.Z.N., Khalina A., Nurazzi N.M., Aisyah H.A., Sapuan S.M., Ilyas R.A. Effect of fiber content and their hybridization on bending and torsional strength of hybrid epoxy composites reinforced with carbon and sugar palm fibers. Polimery. 2021;66:36–43. doi: 10.14314/polimery.2021.1.5. DOI
Suriani M.J., Sapuan S.M., Ruzaidi C.M., Nair D.S., Ilyas R.A. Flammability, morphological and mechanical properties of sugar palm fiber/polyester yarn-reinforced epoxy hybrid biocomposites with magnesium hydroxide flame retardant filler. Text. Res. J. 2021:1–12. doi: 10.1177/00405175211008615. DOI
Sapuan S.M., Aulia H.S., Ilyas R.A., Atiqah A., Dele-Afolabi T.T., Nurazzi M.N., Supian A.B.M., Atikah M.S.N. Mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites. Polymers. 2020;12:2211. doi: 10.3390/polym12102211. PubMed DOI PMC
Ayu R.S., Khalina A., Harmaen A.S., Zaman K., Isma T., Liu Q., Ilyas R.A., Lee C.H. Characterization study of empty fruit bunch (EFB) fibers reinforcement in poly(butylene) succinate (PBS)/starch/glycerol composite sheet. Polymers. 2020;12:1571. doi: 10.3390/polym12071571. PubMed DOI PMC