Kenaf Fiber/Pet Yarn Reinforced Epoxy Hybrid Polymer Composites: Morphological, Tensile, and Flammability Properties

. 2021 May 10 ; 13 (9) : . [epub] 20210510

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34068794

Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007293. Ministry of Education, Youth and Sports of the Czech Republic and the European Union (Euro-pean Structural and Investment Funds - Operational Programme Research, Development and Education)

The application of natural fibers is rapidly growing in many sectors, such as construction, automobile, and furniture. Kenaf fiber (KF) is a natural fiber that is in demand owing to its eco-friendly and renewable nature. Nowadays, there are various new applications for kenaf, such as in absorbents and building materials. It also has commercial applications, such as in the automotive industry. Magnesium hydroxide (Mg(OH)2) is used as a fire retardant as it is low in cost and has good flame retardancy, while polyester yarn (PET) has high tensile strength. The aim of this study was to determine the horizontal burning rate, tensile strength, and surface morphology of kenaf fiber/PET yarn reinforced epoxy fire retardant composites. The composites were prepared by hybridized epoxy and Mg(OH)2 PET with different amounts of KF content (0%, 20%, 35%, and 50%) using the cold press method. The specimen with 35% KF (epoxy/PET/KF-35) displayed better flammability properties and had the lowest average burning rate of 14.55 mm/min, while epoxy/PET/KF-50 with 50% KF had the highest tensile strength of all the samples. This was due to fewer defects being detected on the surface morphology of epoxy/PET/KF-35 compared to the other samples, which influenced the mechanical properties of the composites.

Zobrazit více v PubMed

Mohd Nurazzi N., Asyraf M.R.M., Khalina A., Abdullah N., Sabaruddin F.A., Kamarudin S.H., Ahmad S., Mahat A.M., Lee C.L., Aisyah H.A., et al. Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymers. 2021;13:1047. doi: 10.3390/polym13071047. PubMed DOI PMC

Suriani M.J., Rapi H.Z., Ilyas R.A., Petrů M., Sapuan S.M. Delamination and Manufacturing Defects in Natural Fiber-Reinforced Hybrid Composite: A Review. Polymers. 2021;13:1323. doi: 10.3390/polym13081323. PubMed DOI PMC

Nurazzi N.M., Asyraf M.R.M., Khalina A., Abdullah N., Aisyah H.A., Rafiqah S.A., Sabaruddin F.A., Kamarudin S.H., Norrrahim M.N.F., Ilyas R.A., et al. A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers. 2021;13:646. doi: 10.3390/polym13040646. PubMed DOI PMC

Asyraf M.R.M., Ishak M.R., Sapuan S.M., Yidris N., Ilyas R.A. Woods and composites cantilever beam: A comprehensive review of experimental and numerical creep methodologies. J. Mater. Res. Technol. 2020;9:6759–6776. doi: 10.1016/j.jmrt.2020.01.013. DOI

Ilyas R.A., Sapuan S.M. Biopolymers and Biocomposites: Chemistry and Technology. Curr. Anal. Chem. 2020;16:500–503. doi: 10.2174/157341101605200603095311. DOI

Ilyas R.A., Sapuan S.M. The Preparation Methods and Processing of Natural Fibre Bio-polymer Composites. Curr. Org. Synth. 2020;16:1068–1070. doi: 10.2174/157017941608200120105616. PubMed DOI

Diyana Z.N., Jumaidin R., Selamat M.Z., Ghazali I., Julmohammad N., Huda N., Ilyas R.A. Physical Properties of Thermoplastic Starch Derived from Natural Resources and Its Blends: A Review. Polymers. 2021;13:1396. doi: 10.3390/polym13091396. PubMed DOI PMC

Ilyas R.A., Sapuan S.M., Harussani M.M., Hakimi M.Y.A.Y., Haziq M.Z.M., Atikah M.S.N., Asyraf M.R.M., Ishak M.R., Razman M.R., Nurazzi N.M., et al. Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications. Polymers. 2021;13:1326. doi: 10.3390/polym13081326. PubMed DOI PMC

Ilyas R.A., Sapuan S.M., Atikah M.S.N., Asyraf M.R.M., Rafiqah S.A., Aisyah H.A., Nurazzi N.M., Norrrahim M.N.F. Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (Arenga pinnata (Wurmb.) Merr) Text. Res. J. 2021;91:152–167. doi: 10.1177/0040517520932393. DOI

Ilyas R.A., Sapuan S.M., Ibrahim R., Abral H., Ishak M.R., Zainudin E.S., Atiqah A., Atikah M.S.N., Syafri E., Asrofi M., et al. Thermal, Biodegradability and Water Barrier Properties of Bio-Nanocomposites Based on Plasticised Sugar Palm Starch and Nanofibrillated Celluloses from Sugar Palm Fibres. J. Biobased Mater. Bioenergy. 2020;14:234–248. doi: 10.1166/jbmb.2020.1951. DOI

Ilyas R.A., Sapuan S.M., Ishak M.R. Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga pinnata) Carbohydr. Polym. 2018;181:1038–1051. doi: 10.1016/j.carbpol.2017.11.045. PubMed DOI

Ilyas R.A., Sapuan S.M., Ibrahim R., Abral H., Ishak M.R., Zainudin E.S., Atikah M.S.N., Mohd Nurazzi N., Atiqah A., Ansari M.N.M., et al. Effect of sugar palm nanofibrillated celluloseconcentrations on morphological, mechanical andphysical properties of biodegradable films basedon agro-waste sugar palm (Arenga pinnata(Wurmb.) Merr) starch. J. Mater. Res. Technol. 2019;8:4819–4830. doi: 10.1016/j.jmrt.2019.08.028. DOI

Ilyas R.A., Sapuan S.M., Ishak M.R., Zainudin E.S. Sugar palm nanofibrillated cellulose (Arenga pinnata (Wurmb.) Merr): Effect of cycles on their yield, physic-chemical, morphological and thermal behavior. Int. J. Biol. Macromol. 2019;123:379–388. doi: 10.1016/j.ijbiomac.2018.11.124. PubMed DOI

Ilyas R.A., Sapuan S.M., Atiqah A., Ibrahim R., Abral H., Ishak M.R., Zainudin E.S., Nurazzi N.M., Atikah M.S.N., Ansari M.N.M., et al. Sugar palm (Arenga pinnata [Wurmb.] Merr) starch films containing sugar palm nanofibrillated cellulose as reinforcement: Water barrier properties. Polym. Compos. 2020;41:459–467. doi: 10.1002/pc.25379. DOI

Ilyas R.A., Sapuan S.M., Ibrahim R., Abral H., Ishak M.R., Zainudin E.S., Asrofi M., Atikah M.S.N., Huzaifah M.R.M., Radzi A.M., et al. Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: A comprehensive approach from macro to nano scale. J. Mater. Res. Technol. 2019;8:2753–2766. doi: 10.1016/j.jmrt.2019.04.011. DOI

Suriani M.J., Radzi F.S.M., Ilyas R.A., Petrů M., Sapuan S.M., Ruzaidi C.M. Flammability, Tensile, and Morphological Properties of Oil Palm Empty Fruit Bunches Fiber/Pet Yarn-Reinforced Epoxy Fire Retardant Hybrid Polymer Composites. Polymers. 2021;13:1282. doi: 10.3390/polym13081282. PubMed DOI PMC

Jumaidin R., Adam N.W., Ilyas R.A., Hussin M.S.F., Taha M.M., Mansor M.R., Azlan U.A.-A., Yob M.S. Water transport and physical properties of sugarcane bagasse fibre reinforced thermoplastic potato starch biocomposite. J. Adv. Res. Fluid Mech. Therm. Sci. 2019;61:273–281.

Asrofi M., Syafri S.E., Sapuan S.M., Ilyas R.A. Improvement of Biocomposite Properties Based Tapioca Starch and Sugarcane Bagasse Cellulose Nanofibers. Key Eng. Mater. 2020;849:96–101. doi: 10.4028/www.scientific.net/KEM.849.96. DOI

Asrofi M., Sapuan S.M., Ilyas R.A., Ramesh M. Characteristic of composite bioplastics from tapioca starch and sugarcane bagasse fiber: Effect of time duration of ultrasonication (Bath-Type) Mater. Today Proc. 2020 doi: 10.1016/j.matpr.2020.07.254. DOI

Syafri E., Sudirman, Mashadi, Yulianti E., Deswita, Asrofi M., Abral H., Sapuan S.M., Ilyas R.A., Fudholi A. Effect of sonication time on the thermal stability, moisture absorption, and biodegradation of water hyacinth (Eichhornia crassipes) nanocellulose-filled bengkuang (Pachyrhizus erosus) starch biocomposites. J. Mater. Res. Technol. 2019;8:6223–6231. doi: 10.1016/j.jmrt.2019.10.016. DOI

Sabaruddin F.A., Paridah M.T., Sapuan S.M., Ilyas R.A., Lee S.H., Abdan K., Mazlan N., Roseley A.S.M., Abdul Khalil H.P.S. The effects of unbleached and bleached nanocellulose on the thermal and flammability of polypropylene-reinforced kenaf core hybrid polymer bionanocomposites. Polymers. 2020;13:116. doi: 10.3390/polym13010116. PubMed DOI PMC

Aisyah H.A., Paridah M.T., Sapuan S.M., Khalina A., Berkalp O.B., Lee S.H., Lee C.H., Nurazzi N.M., Ramli N., Wahab M.S., et al. Thermal Properties of Woven Kenaf/Carbon Fibre-Reinforced Epoxy Hybrid Composite Panels. Int. J. Polym. Sci. 2019;2019:5258621. doi: 10.1155/2019/5258621. DOI

Aiza Jaafar C.N., Zainol I., Ishak N.S., Ilyas R.A., Sapuan S.M. Effects of the Liquid Natural Rubber (LNR) on Mechanical Properties and Microstructure of Epoxy/Silica/Kenaf Hybrid Composite for Potential Automotive Applications. J. Mater. Res. Technol. 2021;12:1026–1038. doi: 10.1016/j.jmrt.2021.03.020. DOI

Sari N.H., Pruncu C.I., Sapuan S.M., Ilyas R.A., Catur A.D., Suteja S., Sutaryono Y.A., Pullen G. The effect of water immersion and fibre content on properties of corn husk fibres reinforced thermoset polyester composite. Polym. Test. 2020;91:106751. doi: 10.1016/j.polymertesting.2020.106751. DOI

Aruchamy K., Pavayee Subramani S., Palaniappan S.K., Sethuraman B., Velu Kaliyannan G. Study on mechanical characteristics of woven cotton/bamboo hybrid reinforced composite laminates. J. Mater. Res. Technol. 2020;9:718–726. doi: 10.1016/j.jmrt.2019.11.013. DOI

Siakeng R., Jawaid M., Asim M., Saba N., Sanjay M.R., Siengchin S., Fouad H. Alkali treated coir/pineapple leaf fibres reinforced PLA hybrid composites: Evaluation of mechanical, morphological, thermal and physical properties. Express Polym. Lett. 2020;14:717–730. doi: 10.3144/expresspolymlett.2020.59. DOI

Kandola B.K., Mistik S.I., Pornwannachai W., Anand S.C. Natural fibre-reinforced thermoplastic composites from woven-nonwoven textile preforms: Mechanical and fire performance study. Compos. Part B Eng. 2018;153:456–464. doi: 10.1016/j.compositesb.2018.09.013. DOI

Jumaidin R., Khiruddin M.A.A., Asyul Sutan Saidi Z., Salit M.S., Ilyas R.A. Effect of cogon grass fibre on the thermal, mechanical and biodegradation properties of thermoplastic cassava starch biocomposite. Int. J. Biol. Macromol. 2020;146:746–755. doi: 10.1016/j.ijbiomac.2019.11.011. PubMed DOI

Hossain M., Mobarak M.B., Rony F.K., Sultana S., Mahmud M., Ahmed S. Fabrication and Characterization of Banana Fiber Reinforced Unsaturated Polyester Resin Based Composites. Nano Hybrids Compos. 2020;29:84–92. doi: 10.4028/www.scientific.net/NHC.29.84. DOI

Jumaidin R., Diah N.A., Ilyas R.A., Alamjuri R.H., Yusof F.A.M. Processing and Characterisation of Banana Leaf Fibre Reinforced Thermoplastic Cassava Starch Composites. Polymers. 2021;13:1420. doi: 10.3390/polym13091420. PubMed DOI PMC

Azammi A.M.N., Ilyas R.A., Sapuan S.M., Ibrahim R., Atikah M.S.N., Asrofi M., Atiqah A. Interfaces in Particle and Fibre Reinforced Composites. Elsevier; London, UK: 2020. Characterization studies of biopolymeric matrix and cellulose fibres based composites related to functionalized fibre-matrix interface; pp. 29–93.

Aisyah H.A., Paridah M.T., Sapuan S.M., Ilyas R.A., Khalina A., Nurazzi N.M., Lee S.H., Lee C.H. A Comprehensive Review on Advanced Sustainable Woven Natural Fibre Polymer Composites. Polymers. 2021;13:471. doi: 10.3390/polym13030471. PubMed DOI PMC

Alsubari S., Zuhri M.Y.M., Sapuan S.M., Ishak M.R., Ilyas R.A., Asyraf M.R.M. Potential of natural fiber reinforced polymer composites in sandwich structures: A review on its mechanical properties. Polymers. 2021;13:423. doi: 10.3390/polym13030423. PubMed DOI PMC

Nurazzi N.M., Khalina A., Sapuan S.M., Ilyas R.A., Rafiqah S.A., Hanafee Z.M. Thermal properties of treated sugar palm yarn/glass fiber reinforced unsaturated polyester hybrid composites. J. Mater. Res. Technol. 2020;9:1606–1618. doi: 10.1016/j.jmrt.2019.11.086. DOI

Atiqah A., Jawaid M., Sapuan S.M., Ishak M.R., Ansari M.N.M., Ilyas R.A. Physical and thermal properties of treated sugar palm/glass fibre reinforced thermoplastic polyurethane hybrid composites. J. Mater. Res. Technol. 2019;8:3726–3732. doi: 10.1016/j.jmrt.2019.06.032. DOI

Fu S.Y., Xu G., Mai Y.W. On the elastic modulus of hybrid particle/short-fiber/polymer composites. Compos. Part B Eng. 2002;33:291–299. doi: 10.1016/S1359-8368(02)00013-6. DOI

Mansor M.R., Sapuan S.M., Zainudin E.S., Nuraini A.A., Hambali A. Hybrid natural and glass fibers reinforced polymer composites material selection using Analytical Hierarchy Process for automotive brake lever design. Mater. Des. 2013;51:484–492. doi: 10.1016/j.matdes.2013.04.072. DOI

Rozilah A., Jaafar C.N.A., Sapuan S.M., Zainol I., Ilyas R.A. The Effects of Silver Nanoparticles Compositions on the Mechanical, Physiochemical, Antibacterial, and Morphology Properties of Sugar Palm Starch Biocomposites for Antibacterial Coating. Polymers. 2020;12:2605. doi: 10.3390/polym12112605. PubMed DOI PMC

Jacob M., Thomas S., Varughese K.T. Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Compos. Sci. Technol. 2004;64:955–965. doi: 10.1016/S0266-3538(03)00261-6. DOI

Banerjee S., Sankar B.V. Mechanical properties of hybrid composites using finite element method based micromechanics. Compos. Part B Eng. 2014;58:318–327. doi: 10.1016/j.compositesb.2013.10.065. DOI

Dan-mallam Y., Hong T.W., Abdul Majid M.S. Mechanical Characterization and Water Absorption Behaviour of Interwoven Kenaf/PET Fibre Reinforced Epoxy Hybrid Composite. Int. J. Polym. Sci. 2015;2015:1–13. doi: 10.1155/2015/371958. DOI

Ramesh M., Palanikumar K., Reddy K.H. Comparative Evaluation on Properties of Hybrid Glass Fiber- Sisal/Jute Reinforced Epoxy Composites. Procedia Eng. 2013;51:745–750. doi: 10.1016/j.proeng.2013.01.106. DOI

Jawaid M., Abdul Khalil H.P.S. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydr. Polym. 2011;86:1–18. doi: 10.1016/j.carbpol.2011.04.043. DOI

Vasumathi M., Murali V. Effect of Alternate Metals for use in Natural Fibre Reinforced Fibre Metal Laminates under Bending, Impact and Axial Loadings. Procedia Eng. 2013;64:562–570. doi: 10.1016/j.proeng.2013.09.131. DOI

Faruk O., Bledzki A.K., Fink H.-P., Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012;37:1552–1596. doi: 10.1016/j.progpolymsci.2012.04.003. DOI

Sanjay M.R., Siengchin S. Exploring the applicability of natural fibers for the development of biocomposites. Express Polym. Lett. 2021;15:193. doi: 10.3144/expresspolymlett.2021.17. DOI

Rangappa S.M., Siengchin S., Dhakal H.N. Green-composites: Ecofriendly and Sustainability. Appl. Sci. Eng. Prog. 2020;13:183–184. doi: 10.14416/j.asep.2020.06.001. DOI

Amir N., Abidin K.A.Z., Shiri F.B.M. Effects of Fibre Configuration on Mechanical Properties of Banana Fibre/PP/MAPP Natural Fibre Reinforced Polymer Composite. Procedia Eng. 2017;184:573–580. doi: 10.1016/j.proeng.2017.04.140. DOI

Sain M., Park S.H., Suhara F., Law S. Flame retardant and mechanical properties of natural fibre-PP composites containing magnesium hydroxide. Polym. Degrad. Stab. 2004;83:363–367. doi: 10.1016/S0141-3910(03)00280-5. DOI

Mazani N., Sapuan S.M., Sanyang M.L., Atiqah A., Ilyas R.A. Design and Fabrication of a Shoe Shelf From Kenaf Fiber Reinforced Unsaturated Polyester Composites. In: Ariffin H., Sapuan S.M., Hassan M.A., editors. Lignocellulose for Future Bioeconomy. Elsevier; Amsterdam, The Netherlands: 2019. pp. 315–332.

Sapiai N., Jumahat A., Jawaid M., Midani M., Khan A. Tensile and Flexural Properties of Silica Nanoparticles Modified Unidirectional Kenaf and Hybrid Glass/Kenaf Epoxy Composites. Polymers. 2020;12:2733. doi: 10.3390/polym12112733. PubMed DOI PMC

Hassan F., Zulkifli R., Ghazali M.J., Azhari C.H. Kenaf Fiber Composite in Automotive Industry: An Overview. Int. J. Adv. Sci. Eng. Inf. Technol. 2017;7:315. doi: 10.18517/ijaseit.7.1.1180. DOI

Nishino T., Hirao K., Kotera M., Nakamae K., Inagaki H. Kenaf reinforced biodegradable composite. Compos. Sci. Technol. 2003;63:1281–1286. doi: 10.1016/S0266-3538(03)00099-X. DOI

Kian L.K., Saba N., Jawaid M., Sultan M.T.H. A review on processing techniques of bast fibers nanocellulose and its polylactic acid (PLA) nanocomposites. Int. J. Biol. Macromol. 2019;121:1314–1328. doi: 10.1016/j.ijbiomac.2018.09.040. PubMed DOI

Shih Y.-F., Wang Y.-T., Jeng R.-J., Wei K.-M. Expandable graphite systems for phosphorus-containing unsaturated polyesters. I. Enhanced thermal properties and flame retardancy. Polym. Degrad. Stab. 2004;86:339–348. doi: 10.1016/j.polymdegradstab.2004.04.020. DOI

Costes L., Laoutid F., Brohez S., Dubois P. Bio-based flame retardants: When nature meets fire protection. Mater. Sci. Eng. R Rep. 2017;117:1–25. doi: 10.1016/j.mser.2017.04.001. DOI

Saba N., Safwan A., Sanyang M.L., Mohammad F., Pervaiz M., Jawaid M., Alothman O.Y., Sain M. Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. Int. J. Biol. Macromol. 2017;102:822–828. doi: 10.1016/j.ijbiomac.2017.04.074. PubMed DOI

Hao A., Zhao H., Chen J.Y. Kenaf/polypropylene nonwoven composites: The influence of manufacturing conditions on mechanical, thermal, and acoustical performance. Compos. Part B Eng. 2013;54:44–51. doi: 10.1016/j.compositesb.2013.04.065. DOI

Ratna Prasad A.V., Mohana Rao K. Mechanical properties of natural fibre reinforced polyester composites: Jowar, sisal and bamboo. Mater. Des. 2011;32:4658–4663. doi: 10.1016/j.matdes.2011.03.015. DOI

Bernard M., Khalina A., Ali A., Janius R., Faizal M., Hasnah K.S., Sanuddin A.B. The effect of processing parameters on the mechanical properties of kenaf fibre plastic composite. Mater. Des. 2011;32:1039–1043. doi: 10.1016/j.matdes.2010.07.014. DOI

Zhang H., Wang H., Wang H. Flame retardant mechanism and surface modification of magnesium hydroxide flame retardant. IOP Conf. Ser. Earth Environ. Sci. 2018;170:032028. doi: 10.1088/1755-1315/170/3/032028. DOI

Joseph K., Tolêdo Filho R.D., James B., Thomas S., de Carvalho L.H. A Review on Sisal Fiber Reinforced Polymer Composites. Rev. Bras. Eng. Agrícola Ambient. 1999;3:367–379. doi: 10.1590/1807-1929/agriambi.v3n3p367-379. DOI

Zampaloni M., Pourboghrat F., Yankovich S.A., Rodgers B.N., Moore J., Drzal L.T., Mohanty A.K., Misra M. Kenaf natural fiber reinforced polypropylene composites: A discussion on manufacturing problems and solutions. Compos. Part A Appl. Sci. Manuf. 2007;38:1569–1580. doi: 10.1016/j.compositesa.2007.01.001. DOI

Bar M., Alagirusamy R., Das A. Flame retardant polymer composites. Fibers Polym. 2015;16:705–717. doi: 10.1007/s12221-015-0705-6. DOI

Chapple S., Anandjiwala R. Flammability of natural fiber-reinforced composites and strategies for fire retardancy: A review. J. Thermoplast. Compos. Mater. 2010;23:871–893. doi: 10.1177/0892705709356338. DOI

Concrete F.R., Muda Z.C., Mohd N.L., Composites P., Ismail A.E. Flammability of self-extinguishing kenaf/ABS nanoclays composite for aircraft secondary structure. IOP Conf. Ser. Mater. Sci. Eng. 2016;152:012068. doi: 10.1088/1757-899X/152/1/012068. DOI

Prabhakar M.N., Shah AU R., Song J.I. A Review on the Flammability and Flame Retardant Properties of Natural Fibers and Polymer Matrix Based Composites. Compos. Res. 2015;28:28–39. doi: 10.7234/composres.2015.28.2.029. DOI

Martins L.A.L., Bastian F.L., Netto T.A. Reviewing some design issues for filament wound composite tubes. Mater. Des. 2014;55:242–249. doi: 10.1016/j.matdes.2013.09.059. DOI

El-Shekeil Y.A., Sapuan S.M., Jawaid M., Al-Shuja’a O.M. Influence of fiber content on mechanical, morphological and thermal properties of kenaf fibers reinforced poly(vinyl chloride)/thermoplastic polyurethane poly-blend composites. Mater. Des. 2014;58:130–135. doi: 10.1016/j.matdes.2014.01.047. DOI

Jagadeesh P., Thyavihalli Girijappa Y.G., Puttegowda M., Rangappa S.M., Siengchin S. Effect of natural filler materials on fiber reinforced hybrid polymer composites: An Overview. J. Nat. Fibers. 2020:1–16. doi: 10.1080/15440478.2020.1854145. DOI

Sanjay M.R., Siengchin S., Parameswaranpillai J., Jawaid M., Pruncu C.I., Khan A. A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydr. Polym. 2019;207:108–121. doi: 10.1016/j.carbpol.2018.11.083. PubMed DOI

Hanifawati I.N., Azmah Hanim M.A., Sapuan S.M., Zainuddin E.S. Tensile and Flexural Behavior of Hybrid Banana Pseudostem/Glass Fibre Reinforced Polyester Composites. Key Eng. Mater. 2011;471–472:686–691. doi: 10.4028/www.scientific.net/KEM.471-472.686. DOI

Mobedi H., Nekoomanesh M., Orafaei H., Mivechi H. Studying the Degradation of Poly(L-Lactide) in Presence of Magnesium Hydroxide. Iran. Polym. J. 2006;15:31–39.

Datta J., Kopczyńska P. Effect of kenaf fibre modification on morphology and mechanical properties of thermoplastic polyurethane materials. Ind. Crops Prod. 2015;74:566–576. doi: 10.1016/j.indcrop.2015.05.080. DOI

Heslehurst R.B., Scott M. Review of defects and damage pertaining to composite aircraft components. Compos. Polym. 1990;3:103–133.

El-Sabbagh A., Steuernagel L., Ziegmann G. Low combustible polypropylene/flax/magnesium hydroxide composites: Mechanical, flame retardation characterization and recycling effect. J. Reinf. Plast. Compos. 2013;32:1030–1043. doi: 10.1177/0731684413480993. DOI

Sanadi A.R., Hunt J.F., Caulfield D.F., Kovacsvolgyi G., Destree B. High fiber-low matrix composites: Kenaf fiber/polypropylene; Proceedings of the Sixth International Conference on Woodfiber-Plastic Composites; Madison, WI, USA. 15–16 May 2001; Madison, WI, USA: Forest Research Society; 2002. pp. 121–124.

Nurazzi N.M., Khalina A., Chandrasekar M., Aisyah H.A., Rafiqah S.A., Ilyas R.A., Hanafee Z.M. Effect of fiber orientation and fiber loading on the mechanical and thermal properties of sugar palm yarn fiber reinforced unsaturated polyester resin composites. Polimery. 2020;65:115–124. doi: 10.14314/polimery.2020.2.5. DOI

Baihaqi N.M.Z.N., Khalina A., Nurazzi N.M., Aisyah H.A., Sapuan S.M., Ilyas R.A. Effect of fiber content and their hybridization on bending and torsional strength of hybrid epoxy composites reinforced with carbon and sugar palm fibers. Polimery. 2021;66:36–43. doi: 10.14314/polimery.2021.1.5. DOI

Suriani M.J., Sapuan S.M., Ruzaidi C.M., Nair D.S., Ilyas R.A. Flammability, morphological and mechanical properties of sugar palm fiber/polyester yarn-reinforced epoxy hybrid biocomposites with magnesium hydroxide flame retardant filler. Text. Res. J. 2021:1–12. doi: 10.1177/00405175211008615. DOI

Sapuan S.M., Aulia H.S., Ilyas R.A., Atiqah A., Dele-Afolabi T.T., Nurazzi M.N., Supian A.B.M., Atikah M.S.N. Mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites. Polymers. 2020;12:2211. doi: 10.3390/polym12102211. PubMed DOI PMC

Ayu R.S., Khalina A., Harmaen A.S., Zaman K., Isma T., Liu Q., Ilyas R.A., Lee C.H. Characterization study of empty fruit bunch (EFB) fibers reinforcement in poly(butylene) succinate (PBS)/starch/glycerol composite sheet. Polymers. 2020;12:1571. doi: 10.3390/polym12071571. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...