Flammability, Tensile, and Morphological Properties of Oil Palm Empty Fruit Bunches Fiber/Pet Yarn-Reinforced Epoxy Fire Retardant Hybrid Polymer Composites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007293
Ministry of Education, Youth and Sports of the Czech Republic and the European Union (Euro-pean Structural and Investment Funds - Operational Programme Research, Development and Education)
PubMed
33920055
PubMed Central
PMC8070999
DOI
10.3390/polym13081282
PII: polym13081282
Knihovny.cz E-zdroje
- Klíčová slova
- OPEFB composite, epoxy, fire retardant, flammability, hybrid composite, morphology, pet yarn, tensile,
- Publikační typ
- časopisecké články MeSH
Oil palm empty fruit bunches (OPEFB) fiber is a natural fiber that possesses many advantages, such as biodegradability, eco-friendly, and renewable nature. The effect of the OPEFB fiber loading reinforced fire retardant epoxy composites on flammability and tensile properties of the polymer biocomposites were investigated. The tests were carried out with four parameters, which were specimen A (constant), specimen B (20% of fiber), specimen C (35% of fiber), and specimen D (50% of fiber). The PET yarn and magnesium hydroxide were used as the reinforcement material and fire retardant agent, respectively. The results were obtained from several tests, which were the horizontal burning test, tensile test, and scanning electron microscopy (SEM). The result for the burning test showed that specimen B exhibited better flammability properties, which had the lowest average burning rate (11.47 mm/min). From the tensile strength, specimen A revealed the highest value of 10.79 N/mm2. For the SEM morphological test, increasing defects on the surface ruptured were observed that resulted in decreased tensile properties of the composites. It can be summarized that the flammability and tensile properties of OPEFB fiber reinforced fire retardant epoxy composites were reduced when the fiber volume contents were increased at the optimal loading of 20%, with the values of 11.47 mm/min and 4.29 KPa, respectively.
Zobrazit více v PubMed
Zamri M.H., Akil H.M., MohdIshak Z.A. Pultruded Kenaf Fibre Reinforced Composites: Effect of Different Kenaf Fibre Yarn Tex. Procedia Chem. 2016;19:577–585. doi: 10.1016/j.proche.2016.03.056. DOI
Ilyas R.A., Sapuan S.M. The Preparation Methods and Processing of Natural Fibre Bio-polymer Composites. Curr. Org. Synth. 2020;16:1068–1070. doi: 10.2174/157017941608200120105616. PubMed DOI
Ilyas R.A., Sapuan S.M. Biopolymers and Biocomposites: Chemistry and Technology. Curr. Anal. Chem. 2020;16:500–503. doi: 10.2174/157341101605200603095311. DOI
Abral H., Atmajaya A., Mahardika M., Hafizulhaq F., Kadriadi, Handayani D., Sapuan S.M., Ilyas R.A. Effect of ultrasonication duration of polyvinyl alcohol (PVA) gel on characterizations of PVA film. J. Mater. Res. Technol. 2020;9:2477–2486. doi: 10.1016/j.jmrt.2019.12.078. DOI
Faruk O., Bledzki A.K., Fink H.-P., Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012;37:1552–1596. doi: 10.1016/j.progpolymsci.2012.04.003. DOI
Ilyas R.A., Sapuan S.M., Atikah M.S.N., Asyraf M.R.M., Rafiqah S.A., Aisyah H.A., Nurazzi N.M., Norrrahim M.N.F. Effect of hydrolysis time on the morphological, physical, chemical and thermal behavior of sugar palm nanocrystalline cellulose (Arenga pinnata (Wurmb.) Merr) Text. Res. J. 2021;91:152–167. doi: 10.1177/0040517520932393. DOI
Ilyas R.A., Sapuan S.M., Ibrahim R., Abral H., Ishak M.R., Zainudin E.S., Atikah M.S.N., Mohd Nurazzi N., Atiqah A., Ansari M.N.M., et al. Effect of sugar palm nanofibrillated celluloseconcentrations on morphological, mechanical andphysical properties of biodegradable films basedon agro-waste sugar palm (Arenga pinnata (Wurmb.) Merr) starch. J. Mater. Res. Technol. 2019;8:4819–4830. doi: 10.1016/j.jmrt.2019.08.028. DOI
Ahmad Ilyas R., Mohd Sapuan S., Ibrahim R., Abral H., Ishak M.R., Zainudin E.S., Asrofi M., Siti Nur Atikah M., Muhammad Huzaifah M.R., Radzi M.A., et al. Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: A comprehensiveapproach from macro to nano scale. J. Mater. Res. Technol. 2019;8:2753–2766. doi: 10.1016/j.jmrt.2019.04.011. DOI
Jumaidin R., Khiruddin M.A.A., Asyul Sutan Saidi Z., Salit M.S., Ilyas R.A. Effect of cogon grass fibre on the thermal, mechanical and biodegradation properties of thermoplastic cassava starch biocomposite. Int. J. Biol. Macromol. 2020;146:746–755. doi: 10.1016/j.ijbiomac.2019.11.011. PubMed DOI
Ilyas R.A., Sapuan S.M., Ishak M.R., Zainudin E.S. Sugar palm nanofibrillated cellulose (Arenga pinnata (Wurmb.) Merr): Effect of cycles on their yield, physic-chemical, morphological and thermal behavior. Int. J. Biol. Macromol. 2019;123:379–388. doi: 10.1016/j.ijbiomac.2018.11.124. PubMed DOI
Amir N., Abidin K.A.Z., Shiri F.B.M. Effects of Fibre Configuration on Mechanical Properties of Banana Fibre/PP/MAPP Natural Fibre Reinforced Polymer Composite. Procedia Eng. 2017;184:573–580. doi: 10.1016/j.proeng.2017.04.140. DOI
Sanjay M.R., Arpitha G.R., Naik L.L., Gopalakrishna K., Yogesha B. Applications of Natural Fibers and Its Composites: An Overview. Nat. Resour. 2016;7:108–114. doi: 10.4236/nr.2016.73011. DOI
Rozilah A., Jaafar C.N.A., Sapuan S.M., Zainol I., Ilyas R.A. The Effects of Silver Nanoparticles Compositions on the Mechanical, Physiochemical, Antibacterial and Morphology Properties of Sugar Palm Starch Biocomposites for Antibacterial Coating. Polymers. 2020;12:2605. doi: 10.3390/polym12112605. PubMed DOI PMC
Abral H., Pratama A.B., Handayani D., Mahardika M., Aminah I., Sandrawati N., Sugiarti E., Muslimin A.N., Sapuan S.M., Ilyas R.A. Antimicrobial Edible Film Prepared from Bacterial Cellulose Nanofibers/Starch/Chitosan for a Food Packaging Alternative. Int. J. Polym. Sci. 2021;2021:1–11. doi: 10.1155/2021/6641284. DOI
Mazani N., Sapuan S.M., Sanyang M.L., Atiqah A., Ilyas R.A. Design and Fabrication of a Shoe Shelf from Kenaf Fiber Reinforced Unsaturated Polyester Composites. In: Ariffin H., Sapuan S.M., Hassan M.A., editors. Lignocellulose for Future Bioeconomy. Elsevier; Amsterdam, The Netherlands: 2019. pp. 315–332.
Nurazzi N.M., Khalina A., Sapuan S.M., Ilyas R.A., Rafiqah S.A., Hanafee Z.M. Thermal properties of treated sugar palm yarn/glass fiber reinforced unsaturated polyester hybrid composites. J. Mater. Res. Technol. 2020;9:1606–1618. doi: 10.1016/j.jmrt.2019.11.086. DOI
Ku H., Wang H., Pattarachaiyakoop N., Trada M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos. Part B Eng. 2011;42:856–873. doi: 10.1016/j.compositesb.2011.01.010. DOI
Nazrin A., Sapuan S.M., Zuhri M.Y.M., Ilyas R.A., Syafiq R., Sherwani S.F.K. Nanocellulose Reinforced Thermoplastic Starch (TPS), Polylactic Acid (PLA), and Polybutylene Succinate (PBS) for Food Packaging Applications. Front. Chem. 2020;8:1–12. doi: 10.3389/fchem.2020.00213. PubMed DOI PMC
Asyraf M.R.M., Ishak M.R., Sapuan S.M., Yidris N., Ilyas R.A., Rafidah M., Razman M.R. Potential Application of Green Composites for Cross Arm Component in Transmission Tower: A Brief Review. Int. J. Polym. Sci. 2020;2020:1–15. doi: 10.1155/2020/8878300. DOI
Nurazzi N.M., Asyraf M.R.M., Khalina A., Abdullah N., Aisyah H.A., Rafiqah S.A., Sabaruddin F.A., Kamarudin S.H., Norrrahim M.N.F., Ilyas R.A., et al. A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers. 2021;13:646. doi: 10.3390/polym13040646. PubMed DOI PMC
Syafiq R., Sapuan S.M., Zuhri M.Y.M., Ilyas R.A., Nazrin A., Sherwani S.F.K., Khalina A. Antimicrobial activities of starch-based biopolymers and biocomposites incorporated with plant essential oils: A review. Polymers. 2020;12:2403. doi: 10.3390/polym12102403. PubMed DOI PMC
Kumar T.S.M., Chandrasekar M., Senthilkumar K., Ilyas R.A., Sapuan S.M., Hariram N., Rajulu A.V., Rajini N., Siengchin S. Characterization, Thermal and Antimicrobial Properties of Hybrid Cellulose Nanocomposite Films with In-Situ Generated Copper Nanoparticles in Tamarindus indica Nut Powder. J. Polym. Environ. 2020:1–10. doi: 10.1007/s10924-020-01939-w. PubMed DOI
Adekomaya O., Jamiru T., Sadiku R., Huan Z. A review on the sustainability of natural fiber in matrix reinforcement—A practical perspective. J. Reinf. Plast. Compos. 2016;35:3–7. doi: 10.1177/0731684415611974. DOI
Sikora A., Ga M., Hysek Š., Babiak M. The plasticity of composite material based on winter rapeseed as a function of selected factors. Compos. Struct. 2018;202:783–792. doi: 10.1016/j.compstruct.2018.04.019. DOI
Aisyah H.A., Paridah M.T., Sapuan S.M., Khalina A., Berkalp O.B., Lee S.H., Lee C.H., Nurazzi N.M., Ramli N., Wahab M.S., et al. Thermal Properties of Woven Kenaf/Carbon Fibre-Reinforced Epoxy Hybrid Composite Panels. Int. J. Polym. Sci. 2019;2019:1–8. doi: 10.1155/2019/5258621. PubMed DOI
Jumaidin R., Saidi Z.A.S., Ilyas R.A., Ahmad M.N., Wahid M.K., Yaakob M.Y., Maidin N.A., Rahman M.H.A., Osman M.H. Characteristics of Cogon Grass Fibre Reinforced Thermoplastic Cassava Starch Biocomposite: Water Absorption and Physical Properties. J. Adv. Res. Fluid Mech. Therm. Sci. 2019;62:43–52.
Alsubari S., Zuhri M.Y.M., Sapuan S.M., Ishak M.R., Ilyas R.A., Asyraf M.R.M. Potential of Natural Fiber Reinforced Polymer Composites in Sandwich Structures: A Review on Its Mechanical Properties. Polymers. 2021;13:423. doi: 10.3390/polym13030423. PubMed DOI PMC
Omran A.A.B., Mohammed A.A.B.A., Sapuan S.M., Ilyas R.A., Asyraf M.R.M., Koloor S.S.R., Petrů M. Micro- and Nanocellulose in Polymer Composite Materials: A Review. Polymers. 2021;13:231. doi: 10.3390/polym13020231. PubMed DOI PMC
Mohd Nurazzi N., Asyraf M.R.M., Khalina A., Abdullah N., Sabaruddin F.A., Kamarudin S.H., Ahmad S., Mahat A.M., Lee C.L., Aisyah H.A., et al. Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymers. 2021;13:1047. doi: 10.3390/polym13071047. PubMed DOI PMC
Aisyah H.A., Paridah M.T., Sapuan S.M., Ilyas R.A., Khalina A., Nurazzi N.M., Lee S.H., Lee C.H. A Comprehensive Review on Advanced Sustainable Woven Natural Fibre Polymer Composites. Polymers. 2021;13:471. doi: 10.3390/polym13030471. PubMed DOI PMC
Asyraf M.R.M., Ishak M.R., Sapuan S.M., Yidris N., Ilyas R.A. Woods and composites cantilever beam: A comprehensive review of experimental and numerical creep methodologies. J. Mater. Res. Technol. 2020;9:6759–6776. doi: 10.1016/j.jmrt.2020.01.013. DOI
Ayu R.S., Khalina A., Harmaen A.S., Zaman K., Isma T., Liu Q., Ilyas R.A., Lee C.H. Characterization Study of Empty Fruit Bunch (EFB) Fibers Reinforcement in Poly (Butylene) Succinate (PBS)/Starch/Glycerol Composite Sheet. Polymers. 2020;12:1571. doi: 10.3390/polym12071571. PubMed DOI PMC
Vijaya Ramnath B., Junaid Kokan S., Niranjan Raja R., Sathyanarayanan R., Elanchezhian C., Rajendra Prasad A., Manickavasagam V.M. Evaluation of mechanical properties of abaca-jute-glass fibre reinforced epoxy composite. Mater. Des. 2013;51:357–366. doi: 10.1016/j.matdes.2013.03.102. DOI
Szolnoki B., Bocz K., Sóti P.L., Bodzay B., Zimonyi E., Toldy A., Morlin B., Bujnowicz K., Wladyka-Przybylak M., Marosi G. Development of natural fibre reinforced flame retarded epoxy resin composites. Polym. Degrad. Stab. 2015;119:68–76. doi: 10.1016/j.polymdegradstab.2015.04.028. DOI
Pickering K.L., Le T.M. High performance aligned short natural fibre—Epoxy composites. Compos. Part B Eng. 2016;85:123–129. doi: 10.1016/j.compositesb.2015.09.046. DOI
Mittal V., Saini R., Sinha S. Natural fiber-mediated epoxy composites—A review. Compos. Part B. 2016;99:425–435. doi: 10.1016/j.compositesb.2016.06.051. DOI
Aiza Jaafar C.N., Zainol I., Ishak N.S., Ilyas R.A., Sapuan S.M. Effects of the Liquid Natural Rubber (LNR) on Mechanical Properties and Microstructure of Epoxy/Silica/Kenaf Hybrid Composite for Potential Automotive Applications. J. Mater. Res. Technol. 2021;12:1026–1038. doi: 10.1016/j.jmrt.2021.03.020. DOI
Rezaifard A.H., Hodd K.A., Tod D.A., Barton J.M. Toughening epoxy resins with poly (methyl methacrylate)-grafter-natural rubber and its use in adhesive formulations. Int. J. Adhes. Adhes. 1994;14:153–159. doi: 10.1016/0143-7496(94)90011-6. DOI
Abu Bakar M.A., Ahmad S., Kuntjoro W. Effect of epoxidized natural rubber on mechanical properties of epoxy reinforced kenaf fibre composites. Pertanika J. Sci. Technol. 2012;20:129–137.
Hassan F., Zulkifli R., Ghazali M.J., Azhari C.H. Kenaf Fiber Composite in Automotive Industry: An Overview. Int. J. Adv. Sci. Eng. Inf. Technol. 2017;7:315. doi: 10.18517/ijaseit.7.1.1180. DOI
Nurazzi N.M., Khalina A., Sapuan S.M., Ilyas R.A. Mechanical properties of sugar palm yarn/woven glass fiber reinforced unsaturated polyester composites: Effect of fiber loadings and alkaline treatment. Polimery. 2019;64:12–22. doi: 10.14314/polimery.2019.10.3. DOI
Baihaqi N.M.Z.N., Khalina A., Nurazzi N.M., Aisyah H.A., Sapuan S.M., Ilyas R.A. Effect of fiber content and their hybridization on bending and torsional strength of hybrid epoxy composites reinforced with carbon and sugar palm fibers. Polimery. 2021;66:36–43. doi: 10.14314/polimery.2021.1.5. DOI
Chapple S., Anandjiwala R. Flammability of natural fiber-reinforced composites and strategies for fire retardancy: A review. J. Thermoplast. Compos. Mater. 2010;23:871–893. doi: 10.1177/0892705709356338. DOI
Davoodi M.M., Sapuan S.M., Ahmad D., Aidy A., Khalina A., Jonoobi M. Concept selection of car bumper beam with developed hybrid bio-composite material. Mater. Des. 2011;32:4857–4865. doi: 10.1016/j.matdes.2011.06.011. DOI
Sabaruddin F.A., Paridah M.T., Sapuan S.M., Ilyas R.A., Lee S.H., Abdan K., Mazlan N., Roseley A.S.M., Abdul Khalil H.P.S. The effects of unbleached and bleached nanocellulose on the thermal and flammability of polypropylene-reinforced kenaf core hybrid polymer bionanocomposites. Polymers. 2020;13:116. doi: 10.3390/polym13010116. PubMed DOI PMC
Bar M., Alagirusamy R., Das A. Flame retardant polymer composites. Fibers Polym. 2015;16:705–717. doi: 10.1007/s12221-015-0705-6. DOI
Prabhakar M.N., Shah A.U.R., Song J.-I. A Review on the Flammability and Flame Retardant Properties of Natural Fibers and Polymer Matrix Based Composites. Compos. Res. 2015;28:29–39. doi: 10.7234/composres.2015.28.2.029. DOI
Norrrahim M.N.F., Ariffin H., Hassan M.A., Ibrahim N.A., Yunus W.M.Z.W., Nishida H. Utilisation of superheated steam in oil palm biomass pretreatment process for reduced chemical use and enhanced cellulose nanofibre production Mohd Nor Faiz Norrrahim Hidayah Ariffin * Mohd Ali Hassan Nor Azowa Ibrahim Wan Md Zin Wan Yunus Haruo Nishida. Int. J. Nanotechnol. 2019;16:668–679. doi: 10.1504/IJNT.2019.107360. DOI
Liyana N., Zailuddin I., Husseinsyah S. Tensile Properties and Morphology of Oil Palm Empty Fruit Bunch Regenerated Cellulose Biocomposite Films. Procedia Chem. 2016;19:366–372. doi: 10.1016/j.proche.2016.03.025. DOI
Hee K., Putra A., Zulkefli M. Oil palm empty fruit bunch fibres as sustainable acoustic absorber. Appl. Acoust. 2017;119:9–16. doi: 10.1016/j.apacoust.2016.12.002. DOI
Abdullah N.M., Ahmad I. Fire-retardant polyester composites from recycled polyethylene terephthalate (pet) wastes reinforced with coconut fibre. Sains Malays. 2013;42:811–818.
Ewulonu C.M., Igwe I.O. Properties of oil palm empty fruit bunch fibre filled high density polyethylene. Int. J. Eng. Technol. 2011;3:458–471.
Anuar N.I.S., Zakaria S., Gan S., Chia C.H., Wang C., Harun J. Comparison of the morphological and mechanical properties of oil Palm EFB fibres and kenaf fibres in nonwoven reinforced composites. Ind. Crops Prod. 2019;127:55–65. doi: 10.1016/j.indcrop.2018.09.056. DOI
Alvey F.B. Study of the reaction of polyester resins with magnesium oxide. J. Polym. Sci. Part A-1 Polym. Chem. 1971;9:2233–2245. doi: 10.1002/pol.1971.150090811. DOI
Lu Y., Wu C., Xu S. Mechanical, thermal and flame retardant properties of magnesium hydroxide filled poly (vinyl chloride) composites: The effect of filler shape. Compos. Part A Appl. Sci. Manuf. 2018;113:1–11. doi: 10.1016/j.compositesa.2018.07.012. DOI
Sivaganesan S., Chandrasekaran M. Impact of various compression ratio on the compression ignition engine with diesel and mahua biodiesel. Int. J. ChemTech Res. 2016;9:63–70. doi: 10.1088/1742-6596/755/1/011001. DOI
Mahjoub R., Bin Mohamad Yatim J., Mohd Sam A.R. A review of structural performance of oil palm empty fruit bunch fiber in polymer composites. Adv. Mater. Sci. Eng. 2013;2013 doi: 10.1155/2013/415359. DOI