Flammability, Tensile, and Morphological Properties of Oil Palm Empty Fruit Bunches Fiber/Pet Yarn-Reinforced Epoxy Fire Retardant Hybrid Polymer Composites

. 2021 Apr 14 ; 13 (8) : . [epub] 20210414

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33920055

Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007293 Ministry of Education, Youth and Sports of the Czech Republic and the European Union (Euro-pean Structural and Investment Funds - Operational Programme Research, Development and Education)

Oil palm empty fruit bunches (OPEFB) fiber is a natural fiber that possesses many advantages, such as biodegradability, eco-friendly, and renewable nature. The effect of the OPEFB fiber loading reinforced fire retardant epoxy composites on flammability and tensile properties of the polymer biocomposites were investigated. The tests were carried out with four parameters, which were specimen A (constant), specimen B (20% of fiber), specimen C (35% of fiber), and specimen D (50% of fiber). The PET yarn and magnesium hydroxide were used as the reinforcement material and fire retardant agent, respectively. The results were obtained from several tests, which were the horizontal burning test, tensile test, and scanning electron microscopy (SEM). The result for the burning test showed that specimen B exhibited better flammability properties, which had the lowest average burning rate (11.47 mm/min). From the tensile strength, specimen A revealed the highest value of 10.79 N/mm2. For the SEM morphological test, increasing defects on the surface ruptured were observed that resulted in decreased tensile properties of the composites. It can be summarized that the flammability and tensile properties of OPEFB fiber reinforced fire retardant epoxy composites were reduced when the fiber volume contents were increased at the optimal loading of 20%, with the values of 11.47 mm/min and 4.29 KPa, respectively.

Zobrazit více v PubMed

Zamri M.H., Akil H.M., MohdIshak Z.A. Pultruded Kenaf Fibre Reinforced Composites: Effect of Different Kenaf Fibre Yarn Tex. Procedia Chem. 2016;19:577–585. doi: 10.1016/j.proche.2016.03.056. DOI

Ilyas R.A., Sapuan S.M. The Preparation Methods and Processing of Natural Fibre Bio-polymer Composites. Curr. Org. Synth. 2020;16:1068–1070. doi: 10.2174/157017941608200120105616. PubMed DOI

Ilyas R.A., Sapuan S.M. Biopolymers and Biocomposites: Chemistry and Technology. Curr. Anal. Chem. 2020;16:500–503. doi: 10.2174/157341101605200603095311. DOI

Abral H., Atmajaya A., Mahardika M., Hafizulhaq F., Kadriadi, Handayani D., Sapuan S.M., Ilyas R.A. Effect of ultrasonication duration of polyvinyl alcohol (PVA) gel on characterizations of PVA film. J. Mater. Res. Technol. 2020;9:2477–2486. doi: 10.1016/j.jmrt.2019.12.078. DOI

Faruk O., Bledzki A.K., Fink H.-P., Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012;37:1552–1596. doi: 10.1016/j.progpolymsci.2012.04.003. DOI

Ilyas R.A., Sapuan S.M., Atikah M.S.N., Asyraf M.R.M., Rafiqah S.A., Aisyah H.A., Nurazzi N.M., Norrrahim M.N.F. Effect of hydrolysis time on the morphological, physical, chemical and thermal behavior of sugar palm nanocrystalline cellulose (Arenga pinnata (Wurmb.) Merr) Text. Res. J. 2021;91:152–167. doi: 10.1177/0040517520932393. DOI

Ilyas R.A., Sapuan S.M., Ibrahim R., Abral H., Ishak M.R., Zainudin E.S., Atikah M.S.N., Mohd Nurazzi N., Atiqah A., Ansari M.N.M., et al. Effect of sugar palm nanofibrillated celluloseconcentrations on morphological, mechanical andphysical properties of biodegradable films basedon agro-waste sugar palm (Arenga pinnata (Wurmb.) Merr) starch. J. Mater. Res. Technol. 2019;8:4819–4830. doi: 10.1016/j.jmrt.2019.08.028. DOI

Ahmad Ilyas R., Mohd Sapuan S., Ibrahim R., Abral H., Ishak M.R., Zainudin E.S., Asrofi M., Siti Nur Atikah M., Muhammad Huzaifah M.R., Radzi M.A., et al. Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: A comprehensiveapproach from macro to nano scale. J. Mater. Res. Technol. 2019;8:2753–2766. doi: 10.1016/j.jmrt.2019.04.011. DOI

Jumaidin R., Khiruddin M.A.A., Asyul Sutan Saidi Z., Salit M.S., Ilyas R.A. Effect of cogon grass fibre on the thermal, mechanical and biodegradation properties of thermoplastic cassava starch biocomposite. Int. J. Biol. Macromol. 2020;146:746–755. doi: 10.1016/j.ijbiomac.2019.11.011. PubMed DOI

Ilyas R.A., Sapuan S.M., Ishak M.R., Zainudin E.S. Sugar palm nanofibrillated cellulose (Arenga pinnata (Wurmb.) Merr): Effect of cycles on their yield, physic-chemical, morphological and thermal behavior. Int. J. Biol. Macromol. 2019;123:379–388. doi: 10.1016/j.ijbiomac.2018.11.124. PubMed DOI

Amir N., Abidin K.A.Z., Shiri F.B.M. Effects of Fibre Configuration on Mechanical Properties of Banana Fibre/PP/MAPP Natural Fibre Reinforced Polymer Composite. Procedia Eng. 2017;184:573–580. doi: 10.1016/j.proeng.2017.04.140. DOI

Sanjay M.R., Arpitha G.R., Naik L.L., Gopalakrishna K., Yogesha B. Applications of Natural Fibers and Its Composites: An Overview. Nat. Resour. 2016;7:108–114. doi: 10.4236/nr.2016.73011. DOI

Rozilah A., Jaafar C.N.A., Sapuan S.M., Zainol I., Ilyas R.A. The Effects of Silver Nanoparticles Compositions on the Mechanical, Physiochemical, Antibacterial and Morphology Properties of Sugar Palm Starch Biocomposites for Antibacterial Coating. Polymers. 2020;12:2605. doi: 10.3390/polym12112605. PubMed DOI PMC

Abral H., Pratama A.B., Handayani D., Mahardika M., Aminah I., Sandrawati N., Sugiarti E., Muslimin A.N., Sapuan S.M., Ilyas R.A. Antimicrobial Edible Film Prepared from Bacterial Cellulose Nanofibers/Starch/Chitosan for a Food Packaging Alternative. Int. J. Polym. Sci. 2021;2021:1–11. doi: 10.1155/2021/6641284. DOI

Mazani N., Sapuan S.M., Sanyang M.L., Atiqah A., Ilyas R.A. Design and Fabrication of a Shoe Shelf from Kenaf Fiber Reinforced Unsaturated Polyester Composites. In: Ariffin H., Sapuan S.M., Hassan M.A., editors. Lignocellulose for Future Bioeconomy. Elsevier; Amsterdam, The Netherlands: 2019. pp. 315–332.

Nurazzi N.M., Khalina A., Sapuan S.M., Ilyas R.A., Rafiqah S.A., Hanafee Z.M. Thermal properties of treated sugar palm yarn/glass fiber reinforced unsaturated polyester hybrid composites. J. Mater. Res. Technol. 2020;9:1606–1618. doi: 10.1016/j.jmrt.2019.11.086. DOI

Ku H., Wang H., Pattarachaiyakoop N., Trada M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos. Part B Eng. 2011;42:856–873. doi: 10.1016/j.compositesb.2011.01.010. DOI

Nazrin A., Sapuan S.M., Zuhri M.Y.M., Ilyas R.A., Syafiq R., Sherwani S.F.K. Nanocellulose Reinforced Thermoplastic Starch (TPS), Polylactic Acid (PLA), and Polybutylene Succinate (PBS) for Food Packaging Applications. Front. Chem. 2020;8:1–12. doi: 10.3389/fchem.2020.00213. PubMed DOI PMC

Asyraf M.R.M., Ishak M.R., Sapuan S.M., Yidris N., Ilyas R.A., Rafidah M., Razman M.R. Potential Application of Green Composites for Cross Arm Component in Transmission Tower: A Brief Review. Int. J. Polym. Sci. 2020;2020:1–15. doi: 10.1155/2020/8878300. DOI

Nurazzi N.M., Asyraf M.R.M., Khalina A., Abdullah N., Aisyah H.A., Rafiqah S.A., Sabaruddin F.A., Kamarudin S.H., Norrrahim M.N.F., Ilyas R.A., et al. A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers. 2021;13:646. doi: 10.3390/polym13040646. PubMed DOI PMC

Syafiq R., Sapuan S.M., Zuhri M.Y.M., Ilyas R.A., Nazrin A., Sherwani S.F.K., Khalina A. Antimicrobial activities of starch-based biopolymers and biocomposites incorporated with plant essential oils: A review. Polymers. 2020;12:2403. doi: 10.3390/polym12102403. PubMed DOI PMC

Kumar T.S.M., Chandrasekar M., Senthilkumar K., Ilyas R.A., Sapuan S.M., Hariram N., Rajulu A.V., Rajini N., Siengchin S. Characterization, Thermal and Antimicrobial Properties of Hybrid Cellulose Nanocomposite Films with In-Situ Generated Copper Nanoparticles in Tamarindus indica Nut Powder. J. Polym. Environ. 2020:1–10. doi: 10.1007/s10924-020-01939-w. PubMed DOI

Adekomaya O., Jamiru T., Sadiku R., Huan Z. A review on the sustainability of natural fiber in matrix reinforcement—A practical perspective. J. Reinf. Plast. Compos. 2016;35:3–7. doi: 10.1177/0731684415611974. DOI

Sikora A., Ga M., Hysek Š., Babiak M. The plasticity of composite material based on winter rapeseed as a function of selected factors. Compos. Struct. 2018;202:783–792. doi: 10.1016/j.compstruct.2018.04.019. DOI

Aisyah H.A., Paridah M.T., Sapuan S.M., Khalina A., Berkalp O.B., Lee S.H., Lee C.H., Nurazzi N.M., Ramli N., Wahab M.S., et al. Thermal Properties of Woven Kenaf/Carbon Fibre-Reinforced Epoxy Hybrid Composite Panels. Int. J. Polym. Sci. 2019;2019:1–8. doi: 10.1155/2019/5258621. PubMed DOI

Jumaidin R., Saidi Z.A.S., Ilyas R.A., Ahmad M.N., Wahid M.K., Yaakob M.Y., Maidin N.A., Rahman M.H.A., Osman M.H. Characteristics of Cogon Grass Fibre Reinforced Thermoplastic Cassava Starch Biocomposite: Water Absorption and Physical Properties. J. Adv. Res. Fluid Mech. Therm. Sci. 2019;62:43–52.

Alsubari S., Zuhri M.Y.M., Sapuan S.M., Ishak M.R., Ilyas R.A., Asyraf M.R.M. Potential of Natural Fiber Reinforced Polymer Composites in Sandwich Structures: A Review on Its Mechanical Properties. Polymers. 2021;13:423. doi: 10.3390/polym13030423. PubMed DOI PMC

Omran A.A.B., Mohammed A.A.B.A., Sapuan S.M., Ilyas R.A., Asyraf M.R.M., Koloor S.S.R., Petrů M. Micro- and Nanocellulose in Polymer Composite Materials: A Review. Polymers. 2021;13:231. doi: 10.3390/polym13020231. PubMed DOI PMC

Mohd Nurazzi N., Asyraf M.R.M., Khalina A., Abdullah N., Sabaruddin F.A., Kamarudin S.H., Ahmad S., Mahat A.M., Lee C.L., Aisyah H.A., et al. Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymers. 2021;13:1047. doi: 10.3390/polym13071047. PubMed DOI PMC

Aisyah H.A., Paridah M.T., Sapuan S.M., Ilyas R.A., Khalina A., Nurazzi N.M., Lee S.H., Lee C.H. A Comprehensive Review on Advanced Sustainable Woven Natural Fibre Polymer Composites. Polymers. 2021;13:471. doi: 10.3390/polym13030471. PubMed DOI PMC

Asyraf M.R.M., Ishak M.R., Sapuan S.M., Yidris N., Ilyas R.A. Woods and composites cantilever beam: A comprehensive review of experimental and numerical creep methodologies. J. Mater. Res. Technol. 2020;9:6759–6776. doi: 10.1016/j.jmrt.2020.01.013. DOI

Ayu R.S., Khalina A., Harmaen A.S., Zaman K., Isma T., Liu Q., Ilyas R.A., Lee C.H. Characterization Study of Empty Fruit Bunch (EFB) Fibers Reinforcement in Poly (Butylene) Succinate (PBS)/Starch/Glycerol Composite Sheet. Polymers. 2020;12:1571. doi: 10.3390/polym12071571. PubMed DOI PMC

Vijaya Ramnath B., Junaid Kokan S., Niranjan Raja R., Sathyanarayanan R., Elanchezhian C., Rajendra Prasad A., Manickavasagam V.M. Evaluation of mechanical properties of abaca-jute-glass fibre reinforced epoxy composite. Mater. Des. 2013;51:357–366. doi: 10.1016/j.matdes.2013.03.102. DOI

Szolnoki B., Bocz K., Sóti P.L., Bodzay B., Zimonyi E., Toldy A., Morlin B., Bujnowicz K., Wladyka-Przybylak M., Marosi G. Development of natural fibre reinforced flame retarded epoxy resin composites. Polym. Degrad. Stab. 2015;119:68–76. doi: 10.1016/j.polymdegradstab.2015.04.028. DOI

Pickering K.L., Le T.M. High performance aligned short natural fibre—Epoxy composites. Compos. Part B Eng. 2016;85:123–129. doi: 10.1016/j.compositesb.2015.09.046. DOI

Mittal V., Saini R., Sinha S. Natural fiber-mediated epoxy composites—A review. Compos. Part B. 2016;99:425–435. doi: 10.1016/j.compositesb.2016.06.051. DOI

Aiza Jaafar C.N., Zainol I., Ishak N.S., Ilyas R.A., Sapuan S.M. Effects of the Liquid Natural Rubber (LNR) on Mechanical Properties and Microstructure of Epoxy/Silica/Kenaf Hybrid Composite for Potential Automotive Applications. J. Mater. Res. Technol. 2021;12:1026–1038. doi: 10.1016/j.jmrt.2021.03.020. DOI

Rezaifard A.H., Hodd K.A., Tod D.A., Barton J.M. Toughening epoxy resins with poly (methyl methacrylate)-grafter-natural rubber and its use in adhesive formulations. Int. J. Adhes. Adhes. 1994;14:153–159. doi: 10.1016/0143-7496(94)90011-6. DOI

Abu Bakar M.A., Ahmad S., Kuntjoro W. Effect of epoxidized natural rubber on mechanical properties of epoxy reinforced kenaf fibre composites. Pertanika J. Sci. Technol. 2012;20:129–137.

Hassan F., Zulkifli R., Ghazali M.J., Azhari C.H. Kenaf Fiber Composite in Automotive Industry: An Overview. Int. J. Adv. Sci. Eng. Inf. Technol. 2017;7:315. doi: 10.18517/ijaseit.7.1.1180. DOI

Nurazzi N.M., Khalina A., Sapuan S.M., Ilyas R.A. Mechanical properties of sugar palm yarn/woven glass fiber reinforced unsaturated polyester composites: Effect of fiber loadings and alkaline treatment. Polimery. 2019;64:12–22. doi: 10.14314/polimery.2019.10.3. DOI

Baihaqi N.M.Z.N., Khalina A., Nurazzi N.M., Aisyah H.A., Sapuan S.M., Ilyas R.A. Effect of fiber content and their hybridization on bending and torsional strength of hybrid epoxy composites reinforced with carbon and sugar palm fibers. Polimery. 2021;66:36–43. doi: 10.14314/polimery.2021.1.5. DOI

Chapple S., Anandjiwala R. Flammability of natural fiber-reinforced composites and strategies for fire retardancy: A review. J. Thermoplast. Compos. Mater. 2010;23:871–893. doi: 10.1177/0892705709356338. DOI

Davoodi M.M., Sapuan S.M., Ahmad D., Aidy A., Khalina A., Jonoobi M. Concept selection of car bumper beam with developed hybrid bio-composite material. Mater. Des. 2011;32:4857–4865. doi: 10.1016/j.matdes.2011.06.011. DOI

Sabaruddin F.A., Paridah M.T., Sapuan S.M., Ilyas R.A., Lee S.H., Abdan K., Mazlan N., Roseley A.S.M., Abdul Khalil H.P.S. The effects of unbleached and bleached nanocellulose on the thermal and flammability of polypropylene-reinforced kenaf core hybrid polymer bionanocomposites. Polymers. 2020;13:116. doi: 10.3390/polym13010116. PubMed DOI PMC

Bar M., Alagirusamy R., Das A. Flame retardant polymer composites. Fibers Polym. 2015;16:705–717. doi: 10.1007/s12221-015-0705-6. DOI

Prabhakar M.N., Shah A.U.R., Song J.-I. A Review on the Flammability and Flame Retardant Properties of Natural Fibers and Polymer Matrix Based Composites. Compos. Res. 2015;28:29–39. doi: 10.7234/composres.2015.28.2.029. DOI

Norrrahim M.N.F., Ariffin H., Hassan M.A., Ibrahim N.A., Yunus W.M.Z.W., Nishida H. Utilisation of superheated steam in oil palm biomass pretreatment process for reduced chemical use and enhanced cellulose nanofibre production Mohd Nor Faiz Norrrahim Hidayah Ariffin * Mohd Ali Hassan Nor Azowa Ibrahim Wan Md Zin Wan Yunus Haruo Nishida. Int. J. Nanotechnol. 2019;16:668–679. doi: 10.1504/IJNT.2019.107360. DOI

Liyana N., Zailuddin I., Husseinsyah S. Tensile Properties and Morphology of Oil Palm Empty Fruit Bunch Regenerated Cellulose Biocomposite Films. Procedia Chem. 2016;19:366–372. doi: 10.1016/j.proche.2016.03.025. DOI

Hee K., Putra A., Zulkefli M. Oil palm empty fruit bunch fibres as sustainable acoustic absorber. Appl. Acoust. 2017;119:9–16. doi: 10.1016/j.apacoust.2016.12.002. DOI

Abdullah N.M., Ahmad I. Fire-retardant polyester composites from recycled polyethylene terephthalate (pet) wastes reinforced with coconut fibre. Sains Malays. 2013;42:811–818.

Ewulonu C.M., Igwe I.O. Properties of oil palm empty fruit bunch fibre filled high density polyethylene. Int. J. Eng. Technol. 2011;3:458–471.

Anuar N.I.S., Zakaria S., Gan S., Chia C.H., Wang C., Harun J. Comparison of the morphological and mechanical properties of oil Palm EFB fibres and kenaf fibres in nonwoven reinforced composites. Ind. Crops Prod. 2019;127:55–65. doi: 10.1016/j.indcrop.2018.09.056. DOI

Alvey F.B. Study of the reaction of polyester resins with magnesium oxide. J. Polym. Sci. Part A-1 Polym. Chem. 1971;9:2233–2245. doi: 10.1002/pol.1971.150090811. DOI

Lu Y., Wu C., Xu S. Mechanical, thermal and flame retardant properties of magnesium hydroxide filled poly (vinyl chloride) composites: The effect of filler shape. Compos. Part A Appl. Sci. Manuf. 2018;113:1–11. doi: 10.1016/j.compositesa.2018.07.012. DOI

Sivaganesan S., Chandrasekaran M. Impact of various compression ratio on the compression ignition engine with diesel and mahua biodiesel. Int. J. ChemTech Res. 2016;9:63–70. doi: 10.1088/1742-6596/755/1/011001. DOI

Mahjoub R., Bin Mohamad Yatim J., Mohd Sam A.R. A review of structural performance of oil palm empty fruit bunch fiber in polymer composites. Adv. Mater. Sci. Eng. 2013;2013 doi: 10.1155/2013/415359. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Natural Fiber Reinforced Composite Material for Product Design: A Short Review

. 2021 Jun 09 ; 13 (12) : . [epub] 20210609

Kenaf Fiber/Pet Yarn Reinforced Epoxy Hybrid Polymer Composites: Morphological, Tensile, and Flammability Properties

. 2021 May 10 ; 13 (9) : . [epub] 20210510

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...