Natural Fiber Reinforced Composite Material for Product Design: A Short Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007293
the Ministry of Education, Youth and Sports of the Czech Republic and the European Union
59624
Fundamental Research Scheme (FRGS)
PubMed
34207597
PubMed Central
PMC8228744
DOI
10.3390/polym13121917
PII: polym13121917
Knihovny.cz E-zdroje
- Klíčová slova
- design process, natural fiber composite, product design, sustainability design,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Natural fibers have attracted great attention from industrial players and researchers for the exploitation of polymer composites because of their "greener" nature and contribution to sustainable practice. Various industries have shifted toward sustainable technology in order to improve the balance between the environment and social and economic concerns. This manuscript aims to provide a brief review of the development of the foremost natural fiber-reinforced polymer composite (NFRPC) product designs and their applications. The first part of the manuscript presents a summary of the background of various natural fibers and their composites in the context of engineering applications. The behaviors of NFPCs vary with fiber type, source, and structure. Several drawbacks of NFPCs, e.g., higher water absorption rate, inferior fire resistance, and lower mechanical properties, have limited their applications. This has necessitated the development of good practice in systematic engineering design in order to attain optimized NRPC products. Product design and manufacturing engineering need to move in a mutually considerate manner in order to produce successful natural fiber-based composite material products. The design process involves concept design, material selection, and finally, the manufacturing of the design. Numerous products have been commercialized using natural fibers, e.g., sports equipment, musical instruments, and electronic products. In the end, this review provides a guideline for the product design process based on natural fibers, which subsequently leads to a sustainable design.
Zobrazit více v PubMed
Milton A., Rodgers P. Research Methods for Product Design. Laurence King Publishing; London, UK: 2013. Product Design Process and Methods.
Bocci E., Prosperi E., Mair V., Bocci M. Ageing and Cooling of Hot-Mix-Asphalt During Hauling and Paving—A Laboratory and Site Study. Sustainabilty. 2020;12:8612. doi: 10.3390/su12208612. DOI
Corrado A., Polini W. Measurement of high flexibility components in composite material by touch probe and force sensing resistors. J. Manuf. Process. 2019;45:520–531. doi: 10.1016/j.jmapro.2019.07.038. DOI
Hanan F., Jawaid M., Tahir P.M. Mechanical performance of oil palm/kenaf fiber-reinforced epoxy-based bilayer hybrid composites. J. Nat. Fibers. 2018;17:155–167. doi: 10.1080/15440478.2018.1477083. DOI
Asyraf M.R.M., Ishak M.R., Sapuan S.M., Yidris N., Ilyas R.A., Rafidah M., Razman M.R. Potential Application of Green Composites for Cross Arm Component in Transmission Tower: A Brief Review. Int. J. Polym. Sci. 2020;2020:1–15. doi: 10.1155/2020/8878300. DOI
Alsubari S., Zuhri M.Y.M., Sapuan S.M., Ishak M.R., Ilyas R.A., Asyraf M.R.M. Potential of Natural Fiber Reinforced Polymer Composites in Sandwich Structures: A Review on Its Mechanical Properties. Polymers. 2021;13:423. doi: 10.3390/polym13030423. PubMed DOI PMC
Sapuan S., Hemapriya G., Ilyas R., Atikah M., Asyraf M., Mansor M.R. Design for Sustainability. Elsevier; Amsterdam, The Netherlands: 2021. Implementation of design for sustainability in developing trophy plaque using green kenaf polymer composites; pp. 85–103.
Amir A., Ishak M., Yidris N., Zuhri M., Asyraf M. Potential of Honeycomb-Filled Composite Structure in Composite Cross-Arm Component: A Review on Recent Progress and Its Mechanical Properties. Polymers. 2021;13:1341. doi: 10.3390/polym13081341. PubMed DOI PMC
Elanchezhian C., Ramnath B., Ramakrishnan G., Rajendrakumar M., Naveenkumar V., Saravanakumar M. Review on mechanical properties of natural fiber composites. Mater. Today Proc. 2018;5:1785–1790. doi: 10.1016/j.matpr.2017.11.276. DOI
Bakar N.H., Hyie K.M., Ramlan A.S., Hassan M.K., Jumahat A. Mechanical Properties of Kevlar Reinforcement in Kenaf Composites. Appl. Mech. Mater. 2013;465-466:847–851. doi: 10.4028/www.scientific.net/AMM.465-466.847. DOI
Nordin N.A., Yussof F.M., Kasolang S., Salleh Z., Ahmad M.A. Wear Rate of Natural Fibre: Long Kenaf Composite. Procedia Eng. 2013;68:145–151. doi: 10.1016/j.proeng.2013.12.160. DOI
Asyraf M.R.M., Rafidah M., Azrina A., Razman M.R. Dynamic mechanical behaviour of kenaf cellulosic fibre biocomposites: A comprehensive review on chemical treatments. Cellulose. 2021;28:2675–2695. doi: 10.1007/s10570-021-03710-3. DOI
Johari A., Ishak M., Leman Z., Yusoff M., Asyraf M.R.M. Influence of CaCO3 in pultruded glass fiber/unsaturated polyester resin composite on flexural creep behavior using conventional and time-temperature superposition principle methods. Polimery. 2020;65:792–800. doi: 10.14314/polimery.2020.11.6. DOI
Asyraf M., Ishak M., Sapuan S., Yidris N. Utilization of Bracing Arms as Additional Reinforcement in Pultruded Glass Fiber-Reinforced Polymer Composite Cross-Arms: Creep Experimental and Numerical Analyses. Polymers. 2021;13:620. doi: 10.3390/polym13040620. PubMed DOI PMC
Nurazzi N.M., Asyraf M., Khalina A., Abdullah N., Sabaruddin F., Kamarudin S., Ahmad S., Mahat A., Lee C., Aisyah H., et al. Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymers. 2021;13:1047. doi: 10.3390/polym13071047. PubMed DOI PMC
Ilyas R., Sapuan S., Asyraf M., Dayana D., Amelia J., Rani M., Norrrahim M., Nurazzi N., Aisyah H., Sharma S., et al. Polymer Composites Filled with Metal Derivatives: A Review of Flame Retardants. Polymery. 2021;13:1701. doi: 10.3390/polym13111701. PubMed DOI PMC
Rognoli V., Karana E., Pedgley O. Natural fibre composites in product design: An investigation into material perception and acceptance; Proceedings of the 2011 Conference on Designing Pleasurable Products and Interfaces; Milan, Italy. 22–25 June 2011; pp. 1–4.
Ilyas R.A., Sapuan S.M., Asyraf M.R.M., Atikah M.S.N., Ibrahim R., Norrrahim M.N.F., Yasim-Anuar T.A.T., Megashah L.N. Mechanical and Dynamic Mechanical Analysis of Bio-based Composites. In: Krishnasamy S., Nagarajan R., Thiagamani S.M.K., Siengchin S., editors. Mechanical and Dynamic Properties of Biocomposites. WILEY-VCH GmbH; Weinheim, Germany: 2021.
Dicker M.P., Duckworth P.F., Baker A.B., Francois G., Hazzard M.K., Weaver P.M. Green composites: A review of material attributes and complementary applications. Compos. Part A Appl. Sci. Manuf. 2014;56:280–289. doi: 10.1016/j.compositesa.2013.10.014. DOI
Omran A.A.B., Mohammed A.A.B.A., Sapuan S.M., Ilyas R.A., Asyraf M.R.M., Koloor S.S.R., Petrů M. Micro- and Nanocellulose in Polymer Composite Materials: A Review. Polymers. 2021;13:231. doi: 10.3390/polym13020231. PubMed DOI PMC
Nurazzi N., Asyraf M., Khalina A., Abdullah N., Aisyah H., Rafiqah S., Sabaruddin F., Kamarudin S., Norrrahim M., Ilyas R., et al. A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers. 2021;13:646. doi: 10.3390/polym13040646. PubMed DOI PMC
Asyraf M., Ishak M., Sapuan S., Yidris N., Ilyas R. Woods and composites cantilever beam: A comprehensive review of experimental and numerical creep methodologies. J. Mater. Res. Technol. 2020;9:6759–6776. doi: 10.1016/j.jmrt.2020.01.013. DOI
Sapuan S.M., Nukman Y. Manufacturing of Coir Fiber Reinforced Polymer Composites Using Hot Compression Technique. Springer; Berlin/Heidelberg, Germany: 2014. The Relationship Between Manufacturing and Design for Manufacturing in Product Development of Natural Fibre Composites; p. 2.
Mansor M., Sapuan S., Zainudin E.S., Nuraini A., Hambali A. Conceptual design of kenaf fiber polymer composite automotive parking brake lever using integrated TRIZ–Morphological Chart–Analytic Hierarchy Process method. Mater. Des. 2014;54:473–482. doi: 10.1016/j.matdes.2013.08.064. DOI
Asyraf M.R.M., Ishak M.R., Sapuan S.M., Yidris N. Comparison of Static and Long-term Creep Behaviors between Balau Wood and Glass Fiber Reinforced Polymer Composite for Cross-arm Application. Fibers Polym. 2021;22:793–803. doi: 10.1007/s12221-021-0512-1. DOI
Asyraf M., Ishak M., Sapuan S., Yidris N. Influence of Additional Bracing Arms as Reinforcement Members in Wooden Timber Cross-Arms on Their Long-Term Creep Responses and Properties. Appl. Sci. 2021;11:2061. doi: 10.3390/app11052061. DOI
Marzuki I. Reka Bentuk Produk. Dewan Bahasa dan Pustaka; Kuala Lumpur, Malaysia: 2013. Jurureka Perindustrian; pp. 4–5.
Asyraf M.R.M., Ishak M.R., Sapuan S.M., Yidris N., Ilyas R.A., Rafidah M., Razman M.R. Evaluation of design and simulation of creep test rig for full-scale cross arm structure. Adv. Civ. Eng. 2020:6980918. doi: 10.1155/2019/6980918. DOI
Ilyas R., Sapuan S., Harussani M., Hakimi M., Haziq M., Atikah M., Asyraf M., Ishak M., Razman M., Nurazzi N., et al. Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications. Polymers. 2021;13:1326. doi: 10.3390/polym13081326. PubMed DOI PMC
Suriani M., Rapi H., Ilyas R., Petrů M., Sapuan S. Delamination and Manufacturing Defects in Natural Fiber-Reinforced Hybrid Composite: A Review. Polymers. 2021;13:1323. doi: 10.3390/polym13081323. PubMed DOI PMC
Peças P., Carvalho H., Salman H., Leite M. Natural Fibre Composites and Their Applications: A Review. J. Compos. Sci. 2018;2:66. doi: 10.3390/jcs2040066. DOI
Sanjay M., Arpitha G., Yogesha B. Study on Mechanical Properties of Natural—Glass Fibre Reinforced Polymer Hybrid Composites: A Review. Mater. Today Proc. 2015;2:2959–2967. doi: 10.1016/j.matpr.2015.07.264. DOI
Bharath K.N., Basavarajappa S. Applications of biocomposite materials based on natural fibers from renewable resources: A review. Sci. Eng. Compos. Mater. 2016;23:123–133. doi: 10.1515/secm-2014-0088. DOI
Aditya P.H., Kishore K.S., Prasad D.V.V.K. Characterization of Natural Fiber Reinforced Composites. Int. J. Eng. Appl. Sci. 2017;4:1–10.
Corona A., Madsen B., Hauschild M.Z., Birkved M. Natural fibre selection for composite eco-design. CIRP Ann. 2016;65:13–16. doi: 10.1016/j.cirp.2016.04.032. DOI
Padmavathi T., Naidu S.V., Rao R. Studies on Mechanical Behavior of Surface Modified Sisal Fibre–Epoxy Composites. J. Reinf. Plast. Compos. 2012;31:519–532. doi: 10.1177/0731684412438954. DOI
Amir N., Abidin K.A.Z., Shiri F.B.M. Effects of Fibre Configuration on Mechanical Properties of Banana Fibre/PP/MAPP Natural Fibre Reinforced Polymer Composite. Procedia Eng. 2017;184:573–580. doi: 10.1016/j.proeng.2017.04.140. DOI
Maleque M.A., Belal F.Y., Sapuan S.M. Mechanical properties study of pseudo-stem banana fiber reinforced epoxy composite. Arab. J. Sci. Eng. 2007;32:359–364.
Taekema J., Karana E. Creating awareness on natural fibre composites in design; Proceedings of the DS 70: Proceedings of DESIGN 2012, the 12th International Design Conference; Dubrovnik, Croatia. 21–24 May 2012; pp. 1141–1150.
Sapuan S., Maleque A. Design and fabrication of natural woven fabric reinforced epoxy composite for household telephone stand. Mater. Des. 2005;26:65–71. doi: 10.1016/j.matdes.2004.03.015. DOI
Shekar H.S., Ramachandra M. Green Composites: A Review. Mater. Today: Proc. 2018;5:2518–2526. doi: 10.1016/j.matpr.2017.11.034. DOI
Ilyas R.A., Sapuan S.M., Norizan M.N., Atikah M.S.N., Huzaifah M.R.M., Radzi A.M., Ishak M.R., Zainudin E.S., Izwan S., Azammi A.M.N., et al. Prosiding Seminar Enau Kebangsaan 2019. Institute of Tropical Forest and Forest Products (INTROP); Universiti Putra Malaysia; Bahau, Malaysia: 2019. Potential of natural fibre composites for transport industry: A review; pp. 2–11.
Ilyas R.A., Sapuan S.M., Atiqah A., Ibrahim R., Abral H., Ishak M.R., Zainudin E.S., Nurazzi N.M., Atikah M.S.N., Ansari M.N.M., et al. Sugar palm (Arenga pinnata [Wurmb.] Merr) starch films containing sugar palm nanofibrillated cellulose as reinforcement: Water barrier properties. Polym. Compos. 2019;41:459–467. doi: 10.1002/pc.25379. DOI
Ilyas R., Sapuan S., Atikah M., Asyraf M., Rafiqah S.A., Aisyah H., Nurazzi N.M., Norrrahim M. Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (Arenga pinnata (Wurmb.) Merr) Text. Res. J. 2021;91:152–167. doi: 10.1177/0040517520932393. DOI
Huda M.S., Drzal L.T., Ray D., Mohanty A.K., Mishra M. Properties and Performance of Natural-Fibre Composites. Elsevier; Amsterdam, The Netherlands: 2008. Natural-fiber composites in the automotive sector; pp. 221–268.
Girijappa Y.G.T., Rangappa S.M., Parameswaranpillai J., Siengchin S. Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review. Front. Mater. 2019;6:1–14. doi: 10.3389/fmats.2019.00226. DOI
Arpitha G., Sanjay M., Senthamaraikannan P., Barile C., Yogesha B. Hybridization Effect of Sisal/Glass/Epoxy/Filler Based Woven Fabric Reinforced Composites. Exp. Tech. 2017;41:577–584. doi: 10.1007/s40799-017-0203-4. DOI
Madhu P., Sanjay M.R., Senthamaraikannan P., Pradeep S., Saravanakumar S.S., Yogesha B. A review on synthesis and characterization of commercially available natural fibers: Part-I. J. Nat. Fibers. 2018;11:25–36.
Chandra C.S.J., George N., Narayanankutty S.K. Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr. Polym. 2016;142:158–166. PubMed
Tibolla H., Pelissari F.M., Menegalli F.C. Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT. 2014;59:1311–1318. doi: 10.1016/j.lwt.2014.04.011. DOI
Corrêa A.C., Teixeira E.D.M., Pessan L., Mattoso L.H.C. Cellulose nanofibers from curaua fibers. Cellulose. 2010;17:1183–1192. doi: 10.1007/s10570-010-9453-3. DOI
Chirayil C.J., Joy J., Mathew L., Mozetic M., Koetz J., Thomas S. Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Ind. Crop. Prod. 2014;59:27–34. doi: 10.1016/j.indcrop.2014.04.020. DOI
Jonoobi M., Harun J., Shakeri A., Misra M., Oksmand K. Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources. 2009;4:626–639. doi: 10.15376/biores.4.2.626-639. DOI
Chan H.C., Chia C.H., Zakaria S., Ahmad I., Dufresne A. Production and Characterisation of Cellulose and Nano-Crystalline Cellulose from Kenaf Core Wood. Bioresources. 2012;8:785–794. doi: 10.15376/biores.8.1.785-794. DOI
Sheltami R.M., Abdullah I., Ahmad I., Dufresne A., Kargarzadeh H. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius) Carbohydr. Polym. 2012;88:772–779. doi: 10.1016/j.carbpol.2012.01.062. DOI
Megashah L.N., Ariffin H., Zakaria M.R., Hassan M.A. Properties of Cellulose Extract from Different Types of Oil Palm Biomass. IOP Conf. Series: Mater. Sci. Eng. 2018;368:012049. doi: 10.1088/1757-899X/368/1/012049. DOI
Jonoobi M., Khazaeian A., Tahir P.M., Azry S.S., Oksman K. Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose. 2011;18:1085–1095. doi: 10.1007/s10570-011-9546-7. DOI
Bendahou A., Habibi Y., Kaddami H., Dufresne A. Physico-Chemical Characterization of Palm from Phoenix Dactylifera–L, Preparation of Cellulose Whiskers and Natural Rubber–Based Nanocomposites. J. Biobased Mater. Bioenergy. 2009;3:81–90. doi: 10.1166/jbmb.2009.1011. DOI
Cherian B.M., Leão A.L., de Souza S.F., Thomas S., Pothan L.A., Kottaisamy M. Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr. Polym. 2010;81:720–725. doi: 10.1016/j.carbpol.2010.03.046. DOI
Syafri E., Kasim A., Abral H., Asben A. Cellulose nanofibers isolation and characterization from ramie using a chemical-ultrasonic treatment. J. Nat. Fibers. 2018;16:1145–1155. doi: 10.1080/15440478.2018.1455073. DOI
Alemdar A., Sain M. Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Bioresour. Technol. 2008;99:1664–1671. doi: 10.1016/j.biortech.2007.04.029. PubMed DOI
Li M., Wang L.-J., Li D., Cheng Y.-L., Adhikari B. Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp. Carbohydr. Polym. 2014;102:136–143. doi: 10.1016/j.carbpol.2013.11.021. PubMed DOI
Ilyas R., Sapuan S., Ishak M. Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga pinnata) Carbohydr. Polym. 2018;181:1038–1051. doi: 10.1016/j.carbpol.2017.11.045. PubMed DOI
Teixeira E.D.M., Bondancia T., Teodoro K.B.R., Corrêa A.C., Marconcini J.M., Mattoso L.H.C. Sugarcane bagasse whiskers: Extraction and characterizations. Ind. Crop. Prod. 2011;33:63–66. doi: 10.1016/j.indcrop.2010.08.009. DOI
Abral H., Dalimunthe M.H., Hartono J., Efendi R.P., Asrofi M., Sugiarti E., Sapuan S.M., Park J.-W., Kim H.-J. Characterization of Tapioca Starch Biopolymer Composites Reinforced with Micro Scale Water Hyacinth Fibers. Starch Stärke. 2018;70:1–8. doi: 10.1002/star.201700287. DOI
Alemdar A., Sain M. Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Compos. Sci. Technol. 2008;68:557–565. doi: 10.1016/j.compscitech.2007.05.044. DOI
Wang F., Xie Z., Liang J., Fang B., Piao Y., Hao M., Wang Z. Tourmaline-Modified FeMnTiOx Catalysts for Improved Low-Temperature NH3-SCR Performance. Environ. Sci. Technol. 2019;53:6989–6996. doi: 10.1021/acs.est.9b02620. PubMed DOI
Piao Y., Jiang Q., Li H., Matsumoto H., Liang J., Liu W., Pham-Huu C., Liu Y., Wang F. Identify Zr Promotion Effects in Atomic Scale for Co-Based Catalysts in Fischer–Tropsch Synthesis. ACS Catal. 2020;10:7894–7906. doi: 10.1021/acscatal.0c01874. DOI
Syafiq R., Sapuan S.M., Zuhri M.Y.M., Ilyas R.A., Nazrin A., Sherwani S.F.K., Khalina A. Antimicrobial Activities of Starch-Based Biopolymers and Biocomposites Incorporated with Plant Essential Oils: A Review. Polymers. 2020;12:2403. doi: 10.3390/polym12102403. PubMed DOI PMC
Nazrin A., Sapuan S.M., Zuhri M.Y.M., Ilyas R.A., Syafiq R., Sherwani S.F.K. Nanocellulose Reinforced Thermoplastic Starch (TPS), Polylactic Acid (PLA), and Polybutylene Succinate (PBS) for Food Packaging Applications. Front. Chem. 2020;8:1–12. doi: 10.3389/fchem.2020.00213. PubMed DOI PMC
Diyana Z., Jumaidin R., Selamat M., Ghazali I., Julmohammad N., Huda N., Ilyas R. Physical Properties of Thermoplastic Starch Derived from Natural Resources and Its Blends: A Review. Polymers. 2021;13:1396. doi: 10.3390/polym13091396. PubMed DOI PMC
Sapuan S., Aulia H., Ilyas R., Atiqah A., Dele-Afolabi T., Nurazzi M., Supian A., Atikah M. Mechanical Properties of Longitudinal Basalt/Woven-Glass-Fiber-reinforced Unsaturated Polyester-Resin Hybrid Composites. Polymers. 2020;12:2211. doi: 10.3390/polym12102211. PubMed DOI PMC
Abdul R.A.H., Roslan A.F., Jaafar M., Roslan M.N., Ariffin S. Mechanical Properties Evaluation of Woven Coir and Kevlar Reinforced Epoxy Composites. Adv. Mater. Res. 2011;277:36–42. doi: 10.4028/www.scientific.net/AMR.277.36. DOI
Jawaid M., Khalil H.A., Bhat A., Abu Baker A. Impact Properties of Natural Fiber Hybrid Reinforced Epoxy Composites. Adv. Mater. Res. 2011;264-265:688–693. doi: 10.4028/www.scientific.net/AMR.264-265.688. DOI
Masoodi R., Pillai K.M. A study on moisture absorption and swelling in bio-based jute-epoxy composites. J. Reinf. Plast. Compos. 2012;31:285–294. doi: 10.1177/0731684411434654. DOI
What Is Industrial Design? [(accessed on 18 March 2021)]; Available online: https://www.idsa.org/what-industrial-design.
Abidin S.Z., Abdullah M.H., Yusoff Z. Seni reka perindustrian: Daripada Idea Kepada Lakaran Dewan Bahasa dan Pustaka. Seni Reka Perindustrian; Kuala Lumpur, Malaysia: 2013.
Ramani K., Ramanujan D., Bernstein W.Z., Zhao F., Sutherland J., Handwerker C., Choi J.-K., Kim H., Thurston D. Integrated sustainable life cycle design: A review. J. Mech. Des. 2010;132:1–15. doi: 10.1115/1.4002308. DOI
Yung W.K., Chan H.K., So J.H., Wong D.W., Choi A.C., Yue T.M. A life-cycle assessment for eco-redesign of a consumer electronic product. J. Eng. Des. 2011;22:69–85. doi: 10.1080/09544820902916597. DOI
Karana E. Materials selection in design: From research to education; Proceedings of the the 1st International Symposium for Design Education Researchers; Paris, France. 18–19 May 2011.
Marzuki I. Reka Bentuk Produk. Dewan Bahasa dan Pustaka; Kuala Lumpur, Malaysia: 2013. Proses Reka Bentuk Produk; p. 16.
Karana E., Hekkert P., Kandachar P. A tool for meaning driven materials selection. Mater. Des. 2010;31:2932–2941. doi: 10.1016/j.matdes.2009.12.021. DOI
Mahmud J., Khor S., Ismail M.M., Taib J.M., Ramlan N., Ling K. Design for paraplegia: Preparing product design specifications for a wheelchair. Technol. Disabil. 2015;27:79–89. doi: 10.3233/TAD-150430. DOI
Azman M.A., Yusof S.A.M., Abdullah I., Mohamad I., Mohammed J.S. Factors influencing face mask selection and design specifications: Results from pilot study amongst malaysian umrah pilgrims. J. Teknol. 2017;79:79. doi: 10.11113/jt.v79.9779. DOI
Spangenberg J.H., Fuad-Luke A., Blincoe K. Design for Sustainability (DfS): The interface of sustainable production and consumption. J. Clean. Prod. 2010;18:1485–1493. doi: 10.1016/j.jclepro.2010.06.002. DOI
Ali S., Razman M., Awang A., Asyraf M., Ishak M., Ilyas R., Lawrence R. Critical Determinants of Household Electricity Consumption in a Rapidly Growing City. Sustainabilty. 2021;13:4441. doi: 10.3390/su13084441. DOI
Spangenberg J.H. Sustainable development indicators: Towards integrated systems as a tool for managing and monitoring a complex transition. Int. J. Glob. Environ. Issues. 2009;9:318. doi: 10.1504/IJGENVI.2009.027261. DOI
Von Keyserlingk M.A.G., Martin N.P., Kebreab E., Knowlton K.F., Grant R.J., Stephenson M., Sniffen C.J., Harner J.R., III, Wright A.D., Smith S.I. Invited review: Sustainability of the US dairy industry. J. Dairy Sci. 2013;96:5405–5425. doi: 10.3168/jds.2012-6354. PubMed DOI
Jawahir I.S., Rouch K.E., Dillon O.W., Holloway L., Hall A., Knuf J. Design for sustainability (DFS): New challenges in developing and implementing a curriculum for next generation design and manufacturing engineers. Int. J. Eng. Educ. 2007;23:1053–1064.
Hambali A., Sapuan S.M., Ismail N., Nukman Y. Application of analytical hierarchy process in the design concept selection of automotive composite bumper beam during the conceptual design stage. Sci. Res. Essays. 2009;4:198–211.
Mazani N., Sapuan S., Sanyang M., Atiqah A., Ilyas R. Lignocellulose for Future Bioeconomy. Elsevier; Amsterdam, The Netherlands: 2019. Design and Fabrication of a Shoe Shelf from Kenaf Fiber Reinforced Unsaturated Polyester Composites; pp. 315–332.
Pahl G., Beitz W. Engineering design: A Systematic Approach. Springer; London, UK: 1996.
Asyraf M., Ishak M., Sapuan S., Yidris N. Conceptual design of multi-operation outdoor flexural creep test rig using hybrid concurrent engineering approach. J. Mater. Res. Technol. 2020;9:2357–2368. doi: 10.1016/j.jmrt.2019.12.067. DOI
Rosli M.U., Ariffin M.K.A., Sapuan S.M., Sulaiman S. Integrated AHP-TRIZ innovation method for automotive door panel design. Int. J. Eng. Technol. 2013;5:3158–3167.
Li M., Ming X., He L., Zheng M., Xu Z. A TRIZ-based Trimming method for Patent design around. Comput. Des. 2015;62:20–30. doi: 10.1016/j.cad.2014.10.005. DOI
Ahmad S.A., Ang M.C., Ng K.W., Abdul Wahab A.N. Reducing home energy usage based on TRIZ concept. Adv. Environ. Biol. 2015;9:6–11.
San Y.T., Jin Y.T., Li S.C. TRIZ: Systematic Innovation in Manufacturing. Firstfruit Sdn. Bhd.; Selangor, Malaysia: 2011.
Li T. Retracted article: Applying TRIZ and AHP to develop innovative design for automated assembly systems. Int. J. Adv. Manuf. Technol. 2009;46:301–313. doi: 10.1007/s00170-009-2061-4. DOI
Cascini G., Rissone P., Rotini F., Russo D. Systematic design through the integration of TRIZ and optimization tools. Procedia Eng. 2011;9:674–679. doi: 10.1016/j.proeng.2011.03.154. DOI
Asyraf M., Ishak M., Sapuan S., Yidris N. Conceptual design of creep testing rig for full-scale cross arm using TRIZ-Morphological chart-analytic network process technique. J. Mater. Res. Technol. 2019;8:5647–5658. doi: 10.1016/j.jmrt.2019.09.033. DOI
Yeh C.H., Huang J.C.Y., Yu C.K. Integration of four-phase QFD and TRIZ in product R&D: A notebook case study. Res. Eng. Des. 2010;22:125–141. doi: 10.1007/s00163-010-0099-9. DOI
Ullman D.G. The Mechanical Design Process. McGraw-Hill; Maidenhead, UK: 1992. DOI
Ulrich K., Eppinger S. Product Design and Development. McGraw Hill; New York, NY, USA: 1995.
Asyraf M.R.M., Rafidah M., Ishak M.R., Sapuan S.M., Yidris N., Ilyas R.A., Razman M.R. Integration of TRIZ, morphological chart and ANP method for development of FRP composite portable fire extinguisher. Polym. Compos. 2020;41:2917–2932. doi: 10.1002/pc.25587. DOI
Eder W. Engineering design methods. Des. Stud. 1990;11:54. doi: 10.1016/0142-694X(90)90015-5. DOI
McKoy F.L., Vargas-Hernández N., Summers J.D., Shah J.J. Influence of Design Representation on Effectiveness of Idea Generation; Proceedings of the Volume 4: 13th International Conference on Design Theory and Methodology; ASME International, 2001; Pittsburgh, PA, USA. 9–12 September 2001; pp. 39–48.
Pahl G., Beitz W. Engineering Design. Design Council; London, UK: 1984.
Sapuan S.M., Ilyas R.A., Asyraf M.R.M., Suhrisman A., Afiq T.M.N., Atikah M.S.N., Ibrahim R. Application of Design for Sustainability to Develop Smartphone Holder using Roselle Fiber-Reinforced Polymer Composites. In: Sapuan S.M., Razali N., Radzi A.M., Ilyas R.A., editors. Roselle: Production, Processing, Products and Biocomposites. Elsevier Academic Press; Cambridge, MA, USA: 2021. pp. 1–300.
Sapuan S. Concurrent Engineering in Natural Fibre Composite Product Development. Appl. Mech. Mater. 2015;761:59–62. doi: 10.4028/www.scientific.net/AMM.761.59. DOI
Sapuan S.M. A Conceptual Design of the Concurrent Engineering Design System for Polymeric-Based Composite Automotive Pedals. Am. J. Appl. Sci. 2005;2:514–525. doi: 10.3844/ajassp.2005.514.525. DOI
Ilyas R.A., Asyraf M.R.M., Sapuan S.M., Afiq T.M.N., Suhrisman A., Atikah M.S.N., Ibrahim R. Development of Roselle Fiber Reinforced Polymer Biocomposites Mug Pad using Hybrid Design for Sustainability and Pugh Method. In: Sapuan S.M., Razali N., Radzi A.M., Ilyas R.A., editors. Roselle: Production, Processing, Products and Biocomposites. Elsevier Academic Press; Cambridge, MA, USA: 2021. pp. 1–300.
Sari N.H., Pruncu C.I., Sapuan S.M., Ilyas R.A., Catur A.D., Suteja S., Sutaryono Y.A., Pullen G. The effect of water immersion and fibre content on properties of corn husk fibres reinforced thermoset polyester composite. Polym. Test. 2020;91:106751. doi: 10.1016/j.polymertesting.2020.106751. DOI
Syafri E., Sudirman, Mashadi, Yulianti E., Deswita, Asrofi M., Abral H., Sapuan S., Ilyas R., Fudholi A. Effect of sonication time on the thermal stability, moisture absorption, and biodegradation of water hyacinth (Eichhornia crassipes) nanocellulose-filled bengkuang (Pachyrhizus erosus) starch biocomposites. J. Mater. Res. Technol. 2019;8:6223–6231. doi: 10.1016/j.jmrt.2019.10.016. DOI
Siakeng R., Jawaid M., Asim M., Saba N., Sanjay M.R., Siengchin S., Fouad H. Alkali treated coir/pineapple leaf fibres reinforced PLA hybrid composites: Evaluation of mechanical, morphological, thermal and physical properties. Polym. Lett. 2020;14:717–730. doi: 10.3144/expresspolymlett.2020.59. DOI
Abral H., Ariksa J., Mahardika M., Handayani D., Aminah I., Sandrawati N., Sapuan S., Ilyas R. Highly transparent and antimicrobial PVA based bionanocomposites reinforced by ginger nanofiber. Polym. Test. 2020;81:106186. doi: 10.1016/j.polymertesting.2019.106186. DOI
Abral H., Ariksa J., Mahardika M., Handayani D., Aminah I., Sandrawati N., Pratama A.B., Fajri N., Sapuan S., Ilyas R. Transparent and antimicrobial cellulose film from ginger nanofiber. Food Hydrocoll. 2020;98:105266. doi: 10.1016/j.foodhyd.2019.105266. DOI
Prachayawarakorn J., Limsiriwong N., Kongjindamunee R., Surakit S. Effect of Agar and Cotton Fiber on Properties of Thermoplastic Waxy Rice Starch Composites. J. Polym. Environ. 2011;20:88–95. doi: 10.1007/s10924-011-0371-8. DOI
Kumar T.S.M., Chandrasekar M., Senthilkumar K., Ilyas R.A., Sapuan S.M., Hariram N., Rajulu A.V., Rajini N., Siengchin S. Characterization, Thermal and Antimicrobial Properties of Hybrid Cellulose Nanocomposite Films with in-Situ Generated Copper Nanoparticles in Tamarindus indica Nut Powder. J. Polym. Environ. 2021;29:1134–1142. doi: 10.1007/s10924-020-01939-w. DOI
Aisyah H.A., Paridah M.T., Sapuan S.M., Khalina A., Berkalp O.B., Lee S.H., Lee C.H., Nurazzi N.M., Ramli N., Wahab M.S., et al. Thermal Properties of Woven Kenaf/Carbon Fibre-Reinforced Epoxy Hybrid Composite Panels. Int. J. Polym. Sci. 2019;2019:1–8. doi: 10.1155/2019/5258621. DOI
Jaafar C.A., Zainol I., Ishak N., Ilyas R., Sapuan S. Effects of the liquid natural rubber (LNR) on mechanical properties and microstructure of epoxy/silica/kenaf hybrid composite for potential automotive applications. J. Mater. Res. Technol. 2021;12:1026–1038. doi: 10.1016/j.jmrt.2021.03.020. DOI
Sabaruddin F.A., Tahir P.M., Sapuan S.M., Ilyas R.A., Lee S.H., Abdan K., Mazlan N., Roseley A.S.M., Hps A.K. The Effects of Unbleached and Bleached Nanocellulose on the Thermal and Flammability of Polypropylene-Reinforced Kenaf Core Hybrid Polymer Bionanocomposites. Polymers. 2020;13:116. doi: 10.3390/polym13010116. PubMed DOI PMC
Suriani M., Zainudin H., Ilyas R., Petrů M., Sapuan S., Ruzaidi C., Mustapha R. Kenaf Fiber/Pet Yarn Reinforced Epoxy Hybrid Polymer Composites: Morphological, Tensile, and Flammability Properties. Polymers. 2021;13:1532. doi: 10.3390/polym13091532. PubMed DOI PMC
Jumaidin R., Ilyas R.A., Saiful M., Hussin F., Mastura M.T. Water Transport and Physical Properties of Sugarcane Bagasse Fibre Reinforced Thermoplastic Potato Starch Biocomposite. J. Adv. Res. Fluid Mech. Therm. Sci. 2019;61:273–281.
Asrofi M., Sujito S., Syafri E., Sapuan S., Ilyas R. Improvement of Biocomposite Properties Based Tapioca Starch and Sugarcane Bagasse Cellulose Nanofibers. Key Eng. Mater. 2020;849:96–101. doi: 10.4028/www.scientific.net/KEM.849.96. DOI
Asrofi M., Sapuan S., Ilyas R., Ramesh M. Characteristic of composite bioplastics from tapioca starch and sugarcane bagasse fiber: Effect of time duration of ultrasonication (Bath-Type) Mater. Today Proc. 2020 doi: 10.1016/j.matpr.2020.07.254. DOI
Nassiopoulos E., Njuguna J. Thermo-mechanical performance of poly(lactic acid)/flax fibre-reinforced biocomposites. Mater. Des. 2015;66:473–485. doi: 10.1016/j.matdes.2014.07.051. DOI
Battegazzore D., Noori A., Frache A. Hemp hurd and alfalfa as particle filler to improve the thermo-mechanical and fire retardant properties of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) Polym. Compos. 2019;40:3429–3437. doi: 10.1002/pc.25204. DOI
Prachayawarakorn J., Chaiwatyothin S., Mueangta S., Hanchana A. Effect of jute and kapok fibers on properties of thermoplastic cassava starch composites. Mater. Des. 2013;47:309–315. doi: 10.1016/j.matdes.2012.12.012. DOI
Gupta M., Singh R. PLA-coated sisal fibre-reinforced polyester composite: Water absorption, static and dynamic mechanical properties. J. Compos. Mater. 2019;53:65–72. doi: 10.1177/0021998318780227. DOI
Ayu R.S., Khalina A., Harmaen A.S., Zaman K., Isma T., Liu Q., Ilyas R.A., Lee C.H. Characterization Study of Empty Fruit Bunch (EFB) Fibers Reinforcement in Poly(Butylene) Succinate (PBS)/Starch/Glycerol Composite Sheet. Polymers. 2020;12:1571. doi: 10.3390/polym12071571. PubMed DOI PMC
Suriani M., Radzi F., Ilyas R., Petrů M., Sapuan S., Ruzaidi C. Flammability, Tensile, and Morphological Properties of Oil Palm Empty Fruit Bunches Fiber/Pet Yarn-Reinforced Epoxy Fire Retardant Hybrid Polymer Composites. Polymers. 2021;13:1282. doi: 10.3390/polym13081282. PubMed DOI PMC
Jumaidin R., Diah N., Ilyas R., Alamjuri R., Yusof F. Processing and Characterisation of Banana Leaf Fibre Reinforced Thermoplastic Cassava Starch Composites. Polymers. 2021;13:1420. doi: 10.3390/polym13091420. PubMed DOI PMC
Rozilah A., Jaafar C.N.A., Sapuan S.M., Zainol I., Ilyas R.A. The Effects of Silver Nanoparticles Compositions on the Mechanical, Physiochemical, Antibacterial, and Morphology Properties of Sugar Palm Starch Biocomposites for Antibacterial Coating. Polymers. 2020;12:2605. doi: 10.3390/polym12112605. PubMed DOI PMC
Atiqah A., Jawaid M., Sapuan S., Ishak M., Ansari M., Ilyas R. Physical and thermal properties of treated sugar palm/glass fibre reinforced thermoplastic polyurethane hybrid composites. J. Mater. Res. Technol. 2019;8:3726–3732. doi: 10.1016/j.jmrt.2019.06.032. DOI
Atikah M., Ilyas R., Sapuan S., Ishak M., Zainudin E., Ibrahim R., Atiqah A., Ansari M., Jumaidin R. Degradation and physical properties of sugar palm starch/sugar palm nanofibrillated cellulose bionanocomposite. Polimery. 2019;64:680–689. doi: 10.14314/polimery.2019.10.5. DOI
Ilyas R., Sapuan S., Ibrahim R., Abral H., Ishak M., Zainudin E., Atikah M., Nurazzi N.M., Atiqah A., Ansari M., et al. Effect of sugar palm nanofibrillated cellulose concentrations on morphological, mechanical and physical properties of biodegradable films based on agro-waste sugar palm (Arenga pinnata (Wurmb.) Merr) starch. J. Mater. Res. Technol. 2019;8:4819–4830. doi: 10.1016/j.jmrt.2019.08.028. DOI
Kedzierski M., Wiejak A., Janiszewska J., Wiśniewska A., Grzywa-Niksinska I., Kurzepa K. Efficiency of selected biocide compounds in the protection of building coatings against colonization by mold fungi, cyanobacteria and algae. Polimery. 2020;65:371–379. doi: 10.14314/polimery.2020.5.5. DOI
Suriani M., Sapuan S., Ruzaidi C., Nair D., Ilyas R. Flammability, morphological and mechanical properties of sugar palm fiber/polyester yarn-reinforced epoxy hybrid biocomposites with magnesium hydroxide flame retardant filler. Text. Res. J. 2021:1–12. doi: 10.1177/00405175211008615. DOI
Ilyas R., Sapuan S., Ishak M., Zainudin E.S. Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydr. Polym. 2018;202:186–202. doi: 10.1016/j.carbpol.2018.09.002. PubMed DOI
Sanyang M.L., Sapuan S.M., Jawaid M., Ishak M.R., Sahari J. Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: A review. Renew. Sustain. Energy Rev. 2016;54:533–549. doi: 10.1016/j.rser.2015.10.037. DOI
Ilyas R.A., Sapuan S.M., Ibrahim R., Abral H., Ishak M.R., Zainudin E.S., Atiqah A., Atikah M.S.N., Syafri E., Asrofi M., et al. Thermal, Biodegradability and Water Barrier Properties of Bio-Nanocomposites Based on Plasticised Sugar Palm Starch and Nanofibrillated Celluloses from Sugar Palm Fibres. J. Biobased Mater. Bioenergy. 2020;14:234–248. doi: 10.1166/jbmb.2020.1951. DOI
Ilyas R.A., Sapuan S.M., Sanyang M.L., Ishak M.R., Zainudin E.S. Nanocrystalline Cellulose as Reinforcement for Polymeric Matrix Nanocomposites and its Potential Applications: A Review. Curr. Anal. Chem. 2018;14:203–225. doi: 10.2174/1573411013666171003155624. DOI
Mohammed L., Ansari M.N.M., Pua G., Jawaid M., Islam M.S. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. Int. J. Polym. Sci. 2015;2015:1–15. doi: 10.1155/2015/243947. DOI
Majeed K., Jawaid M., Hassan A., Abu Bakar A., Khalil H.A., Salema A., Inuwa I. Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater. Des. 2013;46:391–410. doi: 10.1016/j.matdes.2012.10.044. DOI
Ngo T.-D. Natural Fibers for Sustainable Bio-Composites. In: Günay E., editor. Natural and Artificial Fiber-Reinforced Composites as Renewable Sources. InTech; London, UK: 2018. pp. 107–126.
Zhang L. Proceedings of the 2015 International Conference on Education, Management, Information and Medicine. Atlantis Press; Washington, DC, USA: 2015. The Application of Composite Fiber Materials in Sports Equipment; pp. 450–453.
Yusup E., Mahzan S., Kamaruddin M. Proceedings of the IOP Conference Series: Materials Science and Engineering. Volume 494. IOP Publishing; Bristol, UK: 2019. Natural Fiber Reinforced Polymer for the Application of Sports Equipment using Mold Casting Method; p. 012040.
Floating on Flax—CAPiTA Snowboards with ampliTexTM Fusion Tape. [(accessed on 18 March 2021)]; Available online: https://www.bcomp.ch/news/capita-snowboards-with-amplitex-fusion-tape/