Reducing thermal noise in high-resolution quantitative magnetic resonance imaging rotating frame relaxation mapping of the human brain at 3 T
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P41 EB027061
NIBIB NIH HHS - United States
R01 EB032830
NIBIB NIH HHS - United States
R01 EB032830
NIH HHS - United States
P41 EB027061
NIH HHS - United States
PubMed
39169274
PubMed Central
PMC11650668
DOI
10.1002/nbm.5228
Knihovny.cz E-zdroje
- Klíčová slova
- NORDIC, brain mapping, denoising, quantitative MRI, rotating frame relaxation,
- MeSH
- algoritmy MeSH
- analýza hlavních komponent MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mapování mozku MeSH
- mozek * diagnostické zobrazování MeSH
- poměr signál - šum * MeSH
- rotace MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Quantitative maps of rotating frame relaxation (RFR) time constants are sensitive and useful magnetic resonance imaging tools with which to evaluate tissue integrity in vivo. However, to date, only moderate image resolutions of 1.6 x 1.6 x 3.6 mm3 have been used for whole-brain coverage RFR mapping in humans at 3 T. For more precise morphometrical examinations, higher spatial resolutions are desirable. Towards achieving the long-term goal of increasing the spatial resolution of RFR mapping without increasing scan times, we explore the use of the recently introduced Transform domain NOise Reduction with DIstribution Corrected principal component analysis (T-NORDIC) algorithm for thermal noise reduction. RFR acquisitions at 3 T were obtained from eight healthy participants (seven males and one female) aged 52 ± 20 years, including adiabatic T1ρ, T2ρ, and nonadiabatic Relaxation Along a Fictitious Field (RAFF) in the rotating frame of rank n = 4 (RAFF4) with both 1.6 x 1.6 x 3.6 mm3 and 1.25 x 1.25 x 2 mm3 image resolutions. We compared RFR values and their confidence intervals (CIs) obtained from fitting the denoised versus nondenoised images, at both voxel and regional levels separately for each resolution and RFR metric. The comparison of metrics obtained from denoised versus nondenoised images was performed with a two-sample paired t-test and statistical significance was set at p less than 0.05 after Bonferroni correction for multiple comparisons. The use of T-NORDIC on the RFR images prior to the fitting procedure decreases the uncertainty of parameter estimation (lower CIs) at both spatial resolutions. The effect was particularly prominent at high-spatial resolution for RAFF4. Moreover, T-NORDIC did not degrade map quality, and it had minimal impact on the RFR values. Denoising RFR images with T-NORDIC improves parameter estimation while preserving the image quality and accuracy of all RFR maps, ultimately enabling high-resolution RFR mapping in scan times that are suitable for clinical settings.
Center for Magnetic Resonance Research University of Minnesota Minneapolis Minnesota USA
Division of Biostatistics School of Public Health University of Minnesota Minneapolis Minnesota USA
Electrical and Computer Engineering University of Minnesota Minneapolis Minnesota USA
Montreal Neurological Institute and Hospital the Neuro McGill University Montréal Quebec Canada
Zobrazit více v PubMed
Michaeli S, Sorce DJ, Garwood M. T2ρ and T1ρ Adiabatic Relaxations and Contrasts. Review. Current Analytical Chemistry. 2008;4(1):8–25. doi:10.2174/157341108783339115 DOI
Mangia S, Liimatainen T, Garwood M, Michaeli S. Rotating frame relaxation during adiabatic pulses vs. conventional spin lock: simulations and experimental results at 4 T. Magn Reson Imaging. Oct 2009;27(8):1074–87. doi:10.1016/j.mri.2009.05.023 PubMed DOI PMC
Michaeli S, Grohn H, Grohn O, et al. Exchange-influenced T2rho contrast in human brain images measured with adiabatic radio frequency pulses. Magn Reson Med. Apr 2005;53(4):823–9. doi:10.1002/mrm.20428 PubMed DOI
Michaeli S, Sorce DJ, Idiyatullin D, Ugurbil K, Garwood M. Transverse relaxation in the rotating frame induced by chemical exchange. J Magn Reson. Aug 2004;169(2):293–9. doi:10.1016/j.jmr.2004.05.010 PubMed DOI
Michaeli S, Sorce DJ, Springer CS Jr., , Ugurbil K, Garwood M. T1rho MRI contrast in the human brain: modulation of the longitudinal rotating frame relaxation shutter-speed during an adiabatic RF pulse. J Magn Reson. Jul 2006;181(1):135–47. doi:10.1016/j.jmr.2006.04.002 PubMed DOI
Liimatainen T, Sorce DJ, O’Connell R, Garwood M, Michaeli S. MRI contrast from relaxation along a fictitious field (RAFF). Magn Reson Med. Oct 2010;64(4):983–94. doi:10.1002/mrm.22372 PubMed DOI PMC
Liimatainen T, Hakkarainen H, Mangia S, et al. MRI contrasts in high rank rotating frames. Magn Reson Med. Jan 2015;73(1):254–62. doi:10.1002/mrm.25129 PubMed DOI PMC
Michaeli S, Oz G, Sorce DJ, et al. Assessment of brain iron and neuronal integrity in patients with Parkinson’s disease using novel MRI contrasts. Mov Disord. Feb 15 2007;22(3):334–40. doi:10.1002/mds.21227 PubMed DOI
Mitsumori F, Watanabe H, Takaya N. Estimation of brain iron concentration in vivo using a linear relationship between regional iron and apparent transverse relaxation rate of the tissue water at 4.7T. Magn Reson Med. Nov 2009;62(5):1326–30. doi:10.1002/mrm.22097 PubMed DOI
Hakkarainen H, Sierra A, Mangia S, et al. MRI relaxation in the presence of fictitious fields correlates with myelin content in normal rat brain. Magn Reson Med. Jan 2016;75(1):161–8. doi:10.1002/mrm.25590 PubMed DOI PMC
Satzer D, DiBartolomeo C, Ritchie MM, et al. Assessment of dysmyelination with RAFFn MRI: application to murine MPS I. PLoS One. 2015;10(2):e0116788. doi:10.1371/journal.pone.0116788 PubMed DOI PMC
Filip P, Svatkova A, Carpenter AF, et al. Rotating frame MRI relaxations as markers of diffuse white matter abnormalities in multiple sclerosis. Neuroimage Clin. 2020–01-01 2020;26:102234. doi:10.1016/j.nicl.2020.102234 PubMed DOI PMC
Mangia S, Svatkova A, Mascali D, et al. Multi-modal Brain MRI in Subjects with PD and iRBD. Front Neurosci. 2017 2017;11:709. doi:10.3389/fnins.2017.00709 PubMed DOI PMC
Andronesi OC, Nicholson K, Jafari-Khouzani K, et al. Imaging Neurochemistry and Brain Structure Tracks Clinical Decline and Mechanisms of ALS in Patients. Front Neurol. 2020;11:590573. doi:10.3389/fneur.2020.590573 PubMed DOI PMC
Jambor I, Steiner A, Pesola M, et al. Relaxation Along a Fictitious Field, continuous wave T1rho, adiabatic T1rho and adiabatic T2rho imaging of human gliomas at 3T: A feasibility study. PLoS One. 2024;19(4):e0296958. doi:10.1371/journal.pone.0296958 PubMed DOI PMC
Filip P, Vojtisek L, Balaz M, et al. Differential diagnosis of tremor syndromes using MRI relaxometry. Parkinsonism Relat Disord. Dec 2020;81:190–193. doi:10.1016/j.parkreldis.2020.10.048 PubMed DOI
Filip P, Dufek M, Mangia S, et al. Alterations in Sensorimotor and Mesiotemporal Cortices and Diffuse White Matter Changes in Primary Progressive Multiple Sclerosis Detected by Adiabatic Relaxometry. Front Neurosci. 2021;15:711067. doi:10.3389/fnins.2021.711067 PubMed DOI PMC
Filip P, Kokosova V, Valenta Z, et al. Utility of quantitative MRI metrics in brain ageing research. Front Aging Neurosci. 2023 2023;15:1099499. doi:10.3389/fnagi.2023.1099499 PubMed DOI PMC
Brown RW, Cheng YCN, Haacke EM, Thompson MR, Venkatesan R. Magnetic Resonance Imaging: Physical Principles and Sequence Design. Wiley; 2014.
Cashmore MT, McCann AJ, Wastling SJ, McGrath C, Thornton J, Hall MG. Clinical quantitative MRI and the need for metrology. Br J Radiol. Apr 1 2021;94(1120):20201215. doi:10.1259/bjr.20201215 PubMed DOI PMC
Vizioli L, Moeller S, Dowdle L, et al. Lowering the thermal noise barrier in functional brain mapping with magnetic resonance imaging. Nat Commun. Aug 30 2021;12(1):5181. doi:10.1038/s41467-021-25431-8 PubMed DOI PMC
Moeller S, Pisharady PK, Ramanna S, et al. NOise reduction with DIstribution Corrected (NORDIC) PCA in dMRI with complex-valued parameter-free locally low-rank processing. Neuroimage. Feb 1 2021;226:117539. doi:10.1016/j.neuroimage.2020.117539 PubMed DOI PMC
Manjon JV, Coupe P, Buades A. MRI noise estimation and denoising using non-local PCA. Med Image Anal. May 2015;22(1):35–47. doi:10.1016/j.media.2015.01.004 PubMed DOI
Moeller S, Buko EO, Parvaze SP, et al. Locally low-rank denoising in transform domains. bioRxiv. Nov 27 2023:2023.11.21.568193. doi:10.1101/2023.11.21.568193 DOI
Veraart J, Novikov DS, Christiaens D, Ades-Aron B, Sijbers J, Fieremans E. Denoising of diffusion MRI using random matrix theory. Neuroimage. Nov 15 2016;142:394–406. doi:10.1016/j.neuroimage.2016.08.016 PubMed DOI PMC
Grussu F, Battiston M, Veraart J, et al. Multi-parametric quantitative in vivo spinal cord MRI with unified signal readout and image denoising. Neuroimage. Aug 15 2020;217:116884. doi:10.1016/j.neuroimage.2020.116884 PubMed DOI PMC
Stern N, Radunsky D, Blumenfeld-Katzir T, Chechik Y, Solomon C, Ben-Eliezer N. Mapping of magnetic resonance imaging’s transverse relaxation time at low signal-to-noise ratio using Bloch simulations and principal component analysis image denoising. NMR Biomed. Dec 2022;35(12):e4807. doi:10.1002/nbm.4807 PubMed DOI PMC
Levitt MH, Freeman R, Frenkiel T. Broadband heteronuclear decoupling. Journal of Magnetic Resonance (1969). 1982/04/01/ 1982;47(2):328–330. doi:10.1016/0022-2364(82)90124-x DOI
Michaeli S, Garwood M, Zhu XH, et al. Proton T2 relaxation study of water, N-acetylaspartate, and creatine in human brain using Hahn and Carr-Purcell spin echoes at 4T and 7T. Magn Reson Med. Apr 2002;47(4):629–33. doi:10.1002/mrm.10135 PubMed DOI
Bartha R, Michaeli S, Merkle H, et al. In vivo 1H2O T2+ measurement in the human occipital lobe at 4T and 7T by Carr-Purcell MRI: detection of microscopic susceptibility contrast. Magn Reson Med. Apr 2002;47(4):742–50. doi:10.1002/mrm.10112 PubMed DOI
Tournier JD, Smith R, Raffelt D, et al. MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. Neuroimage. Nov 15 2019;202:116137. doi:10.1016/j.neuroimage.2019.116137 PubMed DOI
Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. Oct 2002;17(2):825–41. doi:10.1016/s1053-8119(02)91132-8 PubMed DOI
Fischl B, Salat DH, Busa E, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. Jan 31 2002;33(3):341–55. doi:10.1016/s0896-6273(02)00569-x PubMed DOI
Manjon JV, Carbonell-Caballero J, Lull JJ, Garcia-Marti G, Marti-Bonmati L, Robles M. MRI denoising using non-local means. Med Image Anal. Aug 2008;12(4):514–523. doi:10.1016/j.media.2008.02.004 PubMed DOI
Alkinani MH, El-Sakka MR. Patch-based models and algorithms for image denoising: a comparative review between patch-based images denoising methods for additive noise reduction. EURASIP J Image Video Process. 2017;2017(1):58. doi:10.1186/s13640-017-0203-4 PubMed DOI PMC