Sleep quality and the integrity of ascending reticular activating system - A multimodal MRI study
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39748972
PubMed Central
PMC11693918
DOI
10.1016/j.heliyon.2024.e40192
PII: S2405-8440(24)16223-8
Knihovny.cz E-zdroje
- Klíčová slova
- Brain ageing, Diffusion weighted imaging, Multimodal MRI, Relaxometry, Sleep quality,
- Publikační typ
- časopisecké články MeSH
Sleep is crucial for maintaining brain homeostasis and individuals with insufficient sleep are prone to more pronounced brain atrophy as compared to sufficiently sleeping peers. Moreover, sleep quality deteriorates with ageing and ageing is also associated with cerebral structural and functional changes, pointing to their mutual bidirectional interrelationship. This study aimed at determining whether sleep quality and age, separately, affect brain integrity and subsequently, whether sleep significantly modulates the effect of age on brain structural and functional integrity. 113 healthy volunteers underwent a multi-modal MRI imaging to extract information about the microstructure and function of major nodes of the ascending reticular activating system. Sleep quality was assessed by self-administered Pittsburgh's sleep quality index (PSQI) questionnaire. Subject were divided into good (global PSQI score <5) and poor (global PSQI score ≥5) sleep quality group. Whereas only borderline correlations were found between sleep quality and MRI metrics, age exhibited widespread correlations with both functional and microstructural MRI metrics. The latter effect was significantly modulated by sleep quality in ascending reticular activating system, hypothalamus, thalamus and also hippocampus in MRI metrics associated with iron load, cellularity and connectivity, mainly in the subgroup with poor sleep quality. Ergo, our results indicate sleep quality as a substantial contributor to both microstructural and functional brain changes in ageing and call for further research in this emerging topic.
Center for Magnetic Resonance Research University of Minnesota Minneapolis MN USA
Central European Institute of Technology Masaryk University Neuroscience Centre Brno Czech Republic
Department of Cybernetics Czech Technical University Prague Prague Czech Republic
Zobrazit více v PubMed
Herculano-Houzel S. Sleep it out. Science. 2013;342:316–317. doi: 10.1126/science.1245798. PubMed DOI
Xie L., Kang H., Xu Q., Chen M.J., Liao Y., Thiyagarajan M., O'Donnell J., Christensen D.J., Nicholson C., Iliff J.J., Takano T., Deane R., Nedergaard M. Sleep drives metabolite clearance from the adult brain. Science. 2013;342:373–377. doi: 10.1126/science.1241224. PubMed DOI PMC
Bellesi M., Pfister-Genskow M., Maret S., Keles S., Tononi G., Cirelli C. Effects of sleep and wake on oligodendrocytes and their precursors. J. Neurosci. 2013;33:14288–14300. doi: 10.1523/JNEUROSCI.5102-12.2013. PubMed DOI PMC
Lungato L., Marques M.S., Pereira V.G., Hix S., Gazarini M.L., Tufik S., D'Almeida V. Sleep deprivation alters gene expression and antioxidant enzyme activity in mice splenocytes. Scand. J. Immunol. 2013;77:195–199. doi: 10.1111/sji.12029. PubMed DOI
Cirelli C., Faraguna U., Tononi G. Changes in brain gene expression after long-term sleep deprivation. J. Neurochem. 2006;98:1632–1645. doi: 10.1111/j.1471-4159.2006.04058.x. PubMed DOI
Frank M.G. Sleep and synaptic plasticity in the developing and adult brain. Curr Top Behav Neurosci. 2015;25:123–149. doi: 10.1007/7854_2014_305. PubMed DOI PMC
Koutsoumparis A., Welp L.M., Wulf A., Urlaub H., Meierhofer D., Börno S., Timmermann B., Busack I., Bringmann H. Sleep neuron depolarization promotes protective gene expression changes and FOXO activation. Curr. Biol. 2022;32:2248–2262.e9. doi: 10.1016/j.cub.2022.04.012. PubMed DOI
Baldo B.A., Hanlon E.C., Obermeyer W., Bremer Q., Paletz E., Benca R.M. Upregulation of gene expression in reward-modulatory striatal opioid systems by sleep loss. Neuropsychopharmacology. 2013;38:2578–2587. doi: 10.1038/npp.2013.174. PubMed DOI PMC
Wyss-Coray T., Rogers J. Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med. 2012;2:a006346. doi: 10.1101/cshperspect.a006346. PubMed DOI PMC
Moreno-García A., Kun A., Calero O., Medina M., Calero M. An overview of the role of lipofuscin in age-related neurodegeneration. Front. Neurosci. 2018;12:464. doi: 10.3389/fnins.2018.00464. PubMed DOI PMC
Perry V.H., Teeling J. Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin. Immunopathol. 2013;35:601–612. doi: 10.1007/s00281-013-0382-8. PubMed DOI PMC
Sexton C.E., Storsve A.B., Walhovd K.B., Johansen-Berg H., Fjell A.M. Poor sleep quality is associated with increased cortical atrophy in community-dwelling adults. Neurology. 2014;83:967–973. doi: 10.1212/WNL.0000000000000774. PubMed DOI PMC
Sexton C.E., Zsoldos E., Filippini N., Griffanti L., Winkler A., Mahmood A., Allan C.L., Topiwala A., Kyle S.D., Spiegelhalder K., Singh-Manoux A., Kivimaki M., Mackay C.E., Johansen-Berg H., Ebmeier K.P. Associations between self-reported sleep quality and white matter in community-dwelling older adults: a prospective cohort study: sleep Quality and White Matter. Hum. Brain Mapp. 2017;38:5465–5473. doi: 10.1002/hbm.23739. PubMed DOI PMC
Spira A.P., Gamaldo A.A., An Y., Wu M.N., Simonsick E.M., Bilgel M., Zhou Y., Wong D.F., Ferrucci L., Resnick S.M. Self-reported sleep and β-amyloid deposition in community-dwelling older adults. JAMA Neurol. 2013;70:1537–1543. doi: 10.1001/jamaneurol.2013.4258. PubMed DOI PMC
Yaffe K., Nasrallah I., Hoang T.D., Lauderdale D.S., Knutson K.L., Carnethon M.R., Launer L.J., Lewis C.E., Sidney S. Sleep duration and white matter quality in middle-aged adults. Sleep. 2016;39:1743–1747. doi: 10.5665/sleep.6104. PubMed DOI PMC
Dube J., Lafortune M., Bedetti C., Bouchard M., Gagnon J.F., Doyon J., Evans A.C., Lina J.-M., Carrier J. Cortical thinning explains changes in sleep slow waves during adulthood. J. Neurosci. 2015;35:7795–7807. doi: 10.1523/JNEUROSCI.3956-14.2015. PubMed DOI PMC
Liu Y.-R., Fan D.-Q., Gui W.-J., Long Z.-L., Lei X., Yu J. Sleep-related brain atrophy and disrupted functional connectivity in older adults. Behav. Brain Res. 2018;347:292–299. doi: 10.1016/j.bbr.2018.03.032. PubMed DOI
Mander B.A., Rao V., Lu B., Saletin J.M., Lindquist J.R., Ancoli-Israel S., Jagust W., Walker M.P. Prefrontal atrophy, disrupted NREM slow waves and impaired hippocampal-dependent memory in aging. Nat. Neurosci. 2013;16:357–364. doi: 10.1038/nn.3324. PubMed DOI PMC
Saper C.B., Fuller P.M., Pedersen N.P., Lu J., Scammell T.E. Sleep state switching. Neuron. 2010;68:1023–1042. doi: 10.1016/j.neuron.2010.11.032. PubMed DOI PMC
Kokošová V., Filip P., Kec D., Baláž M. Bidirectional association between sleep and brain atrophy in aging. Front. Aging Neurosci. 2021;13 doi: 10.3389/fnagi.2021.726662. PubMed DOI PMC
Michaeli S., öz G., Sorce D.J., Garwood M., Ugurbil K., Majestic S., Tuite P. Assessment of brain iron and neuronal integrity in patients with Parkinson's disease using novel MRI contrasts. Mov. Disord. 2007;22:334–340. doi: 10.1002/mds.21227. PubMed DOI
Mitsumori F., Watanabe H., Takaya N. Estimation of brain iron concentration in vivo using a linear relationship between regional iron and apparent transverse relaxation rate of the tissue water at 4.7T: in Vivo Iron Meter for Human Brain. Magn. Reson. Med. 2009;62:1326–1330. doi: 10.1002/mrm.22097. PubMed DOI
Hakkarainen H., Sierra A., Mangia S., Garwood M., Michaeli S., Gröhn O., Liimatainen T. MRI relaxation in the presence of fictitious fields correlate with myelin content in normal rat brain. Magn. Reson. Med. 2016;75:161–168. doi: 10.1002/mrm.25590. PubMed DOI PMC
Liimatainen T., Sorce D.J., O'Connell R., Garwood M., Michaeli S. MRI contrast from relaxation along a fictitious field (RAFF) Magn. Reson. Med. 2010;64:983–994. doi: 10.1002/mrm.22372. PubMed DOI PMC
Kamiya K., Hori M., Aoki S. NODDI in clinical research. J. Neurosci. Methods. 2020;346 doi: 10.1016/j.jneumeth.2020.108908. PubMed DOI
Zhang H., Schneider T., Wheeler-Kingshott C.A., Alexander D.C. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 2012;61:1000–1016. doi: 10.1016/j.neuroimage.2012.03.072. PubMed DOI
Zuo X.-N., Ehmke R., Mennes M., Imperati D., Castellanos F.X., Sporns O., Milham M.P. Network centrality in the human functional connectome. Cereb Cortex. 2012;22:1862–1875. doi: 10.1093/cercor/bhr269. PubMed DOI
Zang Y.-F., He Y., Zhu C.-Z., Cao Q.-J., Sui M.-Q., Liang M., Tian L.-X., Jiang T.-Z., Wang Y.-F. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 2007;29:83–91. doi: 10.1016/j.braindev.2006.07.002. PubMed DOI
Buysse D.J., Reynolds C.F., Monk T.H., Berman S.R., Kupfer D.J. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatr. Res. 1989;28:193–213. doi: 10.1016/0165-1781(89)90047-4. PubMed DOI
Reisberg D. Oxford University Press; England: 2013. The Oxford Handbook of Cognitive Psychology. DOI
Filip P., Kokošová V., Valenta Z., Baláž M., Mangia S., Michaeli S., Vojtíšek L. Utility of quantitative MRI metrics in brain ageing research. Front. Aging Neurosci. 2023;15 doi: 10.3389/fnagi.2023.1099499. PubMed DOI PMC
Liimatainen T., Hakkarainen H., Mangia S., Huttunen J.M.J., Storino C., Idiyatullin D., Sorce D., Garwood M., Michaeli S. MRI contrasts in high rank rotating frames: MRI Contrasts in High Rank Rotating Frames. Magn. Reson. Med. 2015;73:254–262. doi: 10.1002/mrm.25129. PubMed DOI PMC
Glasser M.F., Sotiropoulos S.N., Wilson J.A., Coalson T.S., Fischl B., Andersson J.L., Xu J., Jbabdi S., Webster M., Polimeni J.R., Van Essen D.C., Jenkinson M., WU-Minn HCP Consortium The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage. 2013;80:105–124. doi: 10.1016/j.neuroimage.2013.04.127. PubMed DOI PMC
Smith S.M., Beckmann C.F., Andersson J., Auerbach E.J., Bijsterbosch J., Douaud G., Duff E., Feinberg D.A., Griffanti L., Harms M.P., Kelly M., Laumann T., Miller K.L., Moeller S., Petersen S., Power J., Salimi-Khorshidi G., Snyder A.Z., Vu A.T., Woolrich M.W., Xu J., Yacoub E., Uğurbil K., Van Essen D.C., Glasser M.F. Wu-minn HCP consortium, resting-state fMRI in the human connectome project. Neuroimage. 2013;80:144–168. doi: 10.1016/j.neuroimage.2013.05.039. PubMed DOI PMC
Cox R.W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 1996;29:162–173. doi: 10.1006/cbmr.1996.0014. PubMed DOI
Tariq M., Schneider T., Alexander D.C., Gandini Wheeler-Kingshott C.A., Zhang H. Bingham-NODDI: mapping anisotropic orientation dispersion of neurites using diffusion MRI. Neuroimage. 2016;133:207–223. doi: 10.1016/j.neuroimage.2016.01.046. PubMed DOI
Spindler M., Özyurt J., Thiel C.M. Automated diffusion-based parcellation of the hypothalamus reveals subunit-specific associations with obesity. Sci. Rep. 2020;10 doi: 10.1038/s41598-020-79289-9. PubMed DOI PMC
Winkler A.M., Ridgway G.R., Webster M.A., Smith S.M., Nichols T.E. Permutation inference for the general linear model. Neuroimage. 2014;92:381–397. doi: 10.1016/j.neuroimage.2014.01.060. PubMed DOI PMC
Nestrasil I., Michaeli S., Liimatainen T., Rydeen C.E., Kotz C.M., Nixon J.P., Hanson T., Tuite P.J. T1ρ and T2ρ MRI in the evaluation of Parkinson's disease. J. Neurol. 2010;257:964–968. doi: 10.1007/s00415-009-5446-2. PubMed DOI PMC
Filip P., Svatkova A., Carpenter A.F., Eberly L.E., Nestrasil I., Nissi M.J., Michaeli S., Mangia S. Rotating frame MRI relaxations as markers of diffuse white matter abnormalities in multiple sclerosis. Neuroimage: Clinical. 2020;26 doi: 10.1016/j.nicl.2020.102234. PubMed DOI PMC
Filip P., Burdová K., Valenta Z., Jech R., Kokošová V., Baláž M., Mangia S., Michaeli S., Bareš M., Vojtíšek L. Tremor associated with similar structural networks in Parkinson's disease and essential tremor. Parkinsonism Relat Disord. 2021;95:28–34. doi: 10.1016/j.parkreldis.2021.12.014. PubMed DOI
Ward R.J., Zucca F.A., Duyn J.H., Crichton R.R., Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13:1045–1060. doi: 10.1016/S1474-4422(14)70117-6. PubMed DOI PMC
Churchill N.W., Caverzasi E., Graham S.J., Hutchison M.G., Schweizer T.A. White matter microstructure in athletes with a history of concussion: comparing diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) Hum. Brain Mapp. 2017;38:4201–4211. doi: 10.1002/hbm.23658. PubMed DOI PMC
Colgan N., Siow B., O'Callaghan J.M., Harrison I.F., Wells J.A., Holmes H.E., Ismail O., Richardson S., Alexander D.C., Collins E.C., Fisher E.M., Johnson R., Schwarz A.J., Ahmed Z., O'Neill M.J., Murray T.K., Zhang H., Lythgoe M.F. Application of neurite orientation dispersion and density imaging (NODDI) to a tau pathology model of Alzheimer's disease. Neuroimage. 2016;125:739–744. doi: 10.1016/j.neuroimage.2015.10.043. PubMed DOI PMC
Dowell N.G., Bouyagoub S., Tibble J., Voon V., Cercignani M., Harrison N.A. Interferon-alpha-Induced changes in NODDI predispose to the development of fatigue. Neuroscience. 2019;403:111–117. doi: 10.1016/j.neuroscience.2017.12.040. PubMed DOI PMC
Buell S.J., Coleman P.D. Dendritic growth in the aged human brain and failure of growth in senile dementia. Science. 1979;206:854–856. doi: 10.1126/science.493989. PubMed DOI
Pyapali G.K., Turner D.A. Increased dendritic extent in hippocampal CA1 neurons from aged F344 rats. Neurobiol. Aging. 1996;17:601–611. doi: 10.1016/0197-4580(96)00034-6. PubMed DOI
Granberg T., Fan Q., Treaba C.A., Ouellette R., Herranz E., Mangeat G., Louapre C., Cohen-Adad J., Klawiter E.C., Sloane J.A., Mainero C. In vivo characterization of cortical and white matter neuroaxonal pathology in early multiple sclerosis. Brain. 2017;140:2912–2926. doi: 10.1093/brain/awx247. PubMed DOI PMC
Grussu F., Schneider T., Tur C., Yates R.L., Tachrount M., Ianuş A., Yiannakas M.C., Newcombe J., Zhang H., Alexander D.C., DeLuca G.C., Gandini Wheeler-Kingshott C.A.M. Neurite dispersion: a new marker of multiple sclerosis spinal cord pathology? Ann Clin Transl Neurol. 2017;4:663–679. doi: 10.1002/acn3.445. PubMed DOI PMC
Mitchell T., Archer D.B., Chu W.T., Coombes S.A., Lai S., Wilkes B.J., McFarland N.R., Okun M.S., Black M.L., Herschel E., Simuni T., Comella C., Xie T., Li H., Parrish T.B., Kurani A.S., Corcos D.M., Vaillancourt D.E. Neurite orientation dispersion and density imaging (NODDI) and free-water imaging in Parkinsonism. Hum. Brain Mapp. 2019;40:5094–5107. doi: 10.1002/hbm.24760. PubMed DOI PMC
Sierra A., Michaeli S., Niskanen J.-P., Valonen P.K., Gröhn H.I., Ylä-Herttuala S., Garwood M., Gröhn O.H. Water spin dynamics during apoptotic cell death in glioma gene therapy probed by T1ρ and T2ρ. Magn. Reson. Med. 2008;59:1311–1319. doi: 10.1002/mrm.21600. PubMed DOI PMC
Satzer D., DiBartolomeo C., Ritchie M.M., Storino C., Liimatainen T., Hakkarainen H., Idiyatullin D., Mangia S., Michaeli S., Parr A.M., Low W.C. Assessment of dysmyelination with RAFFn MRI: application to murine MPS I. PLoS One. 2015;10 doi: 10.1371/journal.pone.0116788. PubMed DOI PMC
Miyata S., Taniguchi M., Koyama Y., Shimizu S., Tanaka T., Yasuno F., Yamamoto A., Iida H., Kudo T., Katayama T., Tohyama M. Association between chronic stress-induced structural abnormalities in Ranvier nodes and reduced oligodendrocyte activity in major depression. Sci. Rep. 2016;6 doi: 10.1038/srep23084. PubMed DOI PMC
Lehto L.J., Albors A.A., Sierra A., Tolppanen L., Eberly L.E., Mangia S., Nurmi A., Michaeli S., Gröhn O. Lysophosphatidyl choline induced demyelination in rat probed by relaxation along a fictitious field in high rank rotating frame. Front. Neurosci. 2017;11:433. doi: 10.3389/fnins.2017.00433. PubMed DOI PMC
Li H., Li L., Shao Y., Gong H., Zhang W., Zeng X., Ye C., Nie S., Chen L., Peng D. Abnormal intrinsic functional hubs in severe male obstructive sleep apnea: evidence from a voxel-wise degree centrality analysis. PLoS One. 2016;11 doi: 10.1371/journal.pone.0164031. PubMed DOI PMC
Ponticorvo S., Canna A., Moeller S., Akcakaya M., Metzger G.J., Filip P., Eberly L.E., Michaeli S., Mangia S. Reducing thermal noise in high-resolution quantitative magnetic resonance imaging rotating frame relaxation mapping of the human brain at 3 T. NMR Biomed. 2024;e5228 doi: 10.1002/nbm.5228. PubMed DOI PMC