Bidirectional Association Between Sleep and Brain Atrophy in Aging
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
34955805
PubMed Central
PMC8693777
DOI
10.3389/fnagi.2021.726662
Knihovny.cz E-zdroje
- Klíčová slova
- brain aging, functional brain integrity, neuroimaging, sleep, structural brain integrity,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Human brain aging is characterized by the gradual deterioration of its function and structure, affected by the interplay of a multitude of causal factors. The sleep, a periodically repeating state of reversible unconsciousness characterized by distinct electrical brain activity, is crucial for maintaining brain homeostasis. Indeed, insufficient sleep was associated with accelerated brain atrophy and impaired brain functional connectivity. Concurrently, alteration of sleep-related transient electrical events in senescence was correlated with structural and functional deterioration of brain regions responsible for their generation, implying the interconnectedness of sleep and brain structure. This review discusses currently available data on the link between human brain aging and sleep derived from various neuroimaging and neurophysiological methods. We advocate the notion of a mutual relationship between the sleep structure and age-related alterations of functional and structural brain integrity, pointing out the position of high-quality sleep as a potent preventive factor of early brain aging and neurodegeneration. However, further studies are needed to reveal the causality of the relationship between sleep and brain aging.
Zobrazit více v PubMed
Akiyama H., Barger S., Barnum S., Bradt B., Bauer J., Cole G. M., et al. (2000). Inflammation and Alzheimer’s disease. Neurobiol. Aging 21 383–421. 10.1016/s0197-4580(00)00124-x PubMed DOI PMC
Allen J. S., Bruss J., Brown C. K., Damasio H. (2005). Normal neuroanatomical variation due to age: the major lobes and a parcellation of the temporal region. Neurobiol. Aging 26 1245–1260; discussion 1279-1282. 10.1016/j.neurobiolaging.2005.05.023 PubMed DOI
Aribisala B. S., Riha R. L., Valdes Hernandez M., Muñoz Maniega S., Cox S., Radakovic R., et al. (2020). Sleep and brain morphological changes in the eighth decade of life. Sleep Med. 65 152–158. 10.1016/j.sleep.2019.07.015 PubMed DOI
Babazadeh A., Mohammadi Vahed F., Jafari S. M. (2020). Nanocarrier-mediated brain delivery of bioactives for treatment/prevention of neurodegenerative diseases. J. Control Release 321 211–221. 10.1016/j.jconrel.2020.02.015 PubMed DOI
Backhaus J., Born J., Hoeckesfeld R., Fokuhl S., Hohagen F., Junghanns K. (2007). Midlife decline in declarative memory consolidation is correlated with a decline in slow wave sleep. Learn. Mem. 14 336–341. 10.1101/lm.470507 PubMed DOI PMC
Bah T. M., Goodman J., Iliff J. J. (2019). Sleep as a therapeutic target in the aging brain. Neurotherapeutics 16 554–568. 10.1007/s13311-019-00769-6 PubMed DOI PMC
Baillet M., Dilharreguy B., Pérès K., Dartigues J.-F., Mayo W., Catheline G. (2017). Activity/rest cycle and disturbances of structural backbone of cerebral networks in aging. Neuroimage 146 814–820. 10.1016/j.neuroimage.2016.09.051 PubMed DOI
Bellesi M., Pfister-Genskow M., Maret S., Keles S., Tononi G., Cirelli C. (2013). Effects of sleep and wake on oligodendrocytes and their precursors. J. Neurosci. 33 14288–14300. 10.1523/JNEUROSCI.5102-12.2013 PubMed DOI PMC
Bero A. W., Bauer A. Q., Stewart F. R., White B. R., Cirrito J. R., Raichle M. E., et al. (2012). Bidirectional relationship between functional connectivity and amyloid-β deposition in mouse brain. J. Neurosci. 32 4334–4340. 10.1523/JNEUROSCI.5845-11.2012 PubMed DOI PMC
Berry R. B., Brooks R., Gamaldo C., Susan M. H., Robin M. L., Stuart F. Q., et al. (2017). The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and technical specifications. Darien, IL: American Academy of Sleep Medicine.
Bishir M., Bhat A., Essa M. M., Ekpo O., Ihunwo A. O., Veeraraghavan V. P., et al. (2020). Sleep deprivation and neurological disorders. Biomed. Res. Int. 2020:5764017. 10.1155/2020/5764017 PubMed DOI PMC
Buchmann A., Ringli M., Kurth S., Schaerer M., Geiger A., Jenni O. G., et al. (2011). EEG sleep slow-wave activity as a mirror of cortical maturation. Cereb. Cortex 21 607–615. 10.1093/cercor/bhq129 PubMed DOI
Budde M. D., Kim J. H., Liang H.-F., Schmidt R. E., Russell J. H., Cross A. H., et al. (2007). Toward accurate diagnosis of white matter pathology using diffusion tensor imaging. Magn. Reson. Med. 57 688–695. 10.1002/mrm.21200 PubMed DOI
Carvalho D. Z., St Louis E. K., Boeve B. F., Mielke M. M., Przybelski S. A., Knopman D. S., et al. (2017). Excessive daytime sleepiness and fatigue may indicate accelerated brain aging in cognitively normal late middle-aged and older adults. Sleep Med. 32 236–243. 10.1016/j.sleep.2016.08.023 PubMed DOI PMC
Chen H.-L., Lu C.-H., Lin H.-C., Chen P.-C., Chou K.-H., Lin W.-M., et al. (2015). White matter damage and systemic inflammation in obstructive sleep apnea. Sleep 38 361–370. 10.5665/sleep.4490 PubMed DOI PMC
Cheng C.-Y., Tsai C.-F., Wang S.-J., Hsu C.-Y., Fuh J.-L. (2013). Sleep disturbance correlates with white matter hyperintensity in patients with subcortical ischemic vascular dementia. J. Geriatr. Psychiatry Neurol. 26 158–164. 10.1177/0891988713493503 PubMed DOI
Cherry J. D., Olschowka J. A., O’Banion M. K. (2014). Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J. Neuroinflammation 11:98. 10.1186/1742-2094-11-98 PubMed DOI PMC
Cirelli C., Faraguna U., Tononi G. (2006). Changes in brain gene expression after long-term sleep deprivation. J. Neurochem. 98 1632–1645. 10.1111/j.1471-4159.2006.04058.x PubMed DOI
Dai H., Sinclair D. A., Ellis J. L., Steegborn C. (2018). Sirtuin activators and inhibitors: promises, achievements, and challenges. Pharmacol. Ther. 188 140–154. 10.1016/j.pharmthera.2018.03.004 PubMed DOI PMC
De Gennaro L., Ferrara M., Vecchio F., Curcio G., Bertini M. (2005). An electroencephalographic fingerprint of human sleep. Neuroimage 26 114–122. 10.1016/j.neuroimage.2005.01.020 PubMed DOI
Demiral şB., Tomasi D., Sarlls J., Lee H., Wiers C. E., Zehra A., et al. (2019). Apparent diffusion coefficient changes in human brain during sleep - Does it inform on the existence of a glymphatic system? Neuroimage 185 263–273. 10.1016/j.neuroimage.2018.10.043 PubMed DOI PMC
Dennis E. L., Thompson P. M. (2014). Functional brain connectivity using fMRI in aging and Alzheimer’s disease. Neuropsychol. Rev. 24 49–62. 10.1007/s11065-014-9249-6 PubMed DOI PMC
Domenico S. D., Giudetti A. M. (2017). Nutraceutical intervention in ageing brain. J. Gerontol. Geriatr. 65 79–92.
Du A. T., Schuff N., Kramer J. H., Ganzer S., Zhu X. P., Jagust W. J., et al. (2004). Higher atrophy rate of entorhinal cortex than hippocampus in AD. Neurology 62 422–427. 10.1212/01.wnl.0000106462.72282.90 PubMed DOI PMC
Dubé J., Lafortune M., Bedetti C., Bouchard M., Gagnon J. F., Doyon J., et al. (2015). Cortical thinning explains changes in sleep slow waves during adulthood. J. Neurosci. 35 7795–7807. 10.1523/JNEUROSCI.3956-14.2015 PubMed DOI PMC
Eavani H., Habes M., Satterthwaite T. D., An Y., Hsieh M.-K., Honnorat N., et al. (2018). Heterogeneity of structural and functional imaging patterns of advanced brain aging revealed via machine learning methods. Neurobiol. Aging 71 41–50. 10.1016/j.neurobiolaging.2018.06.013 PubMed DOI PMC
Emir U. E., Raatz S., McPherson S., Hodges J. S., Torkelson C., Tawfik P., et al. (2011). Noninvasive quantification of ascorbate and glutathione concentration in the elderly human brain. NMR Biomed. 24 888–894. 10.1002/nbm.1646 PubMed DOI PMC
Fernandez L. M. J., Lüthi A. (2020). Sleep spindles: mechanisms and functions. Physiol. Rev. 100 805–868. 10.1152/physrev.00042.2018 PubMed DOI
Fjell A. M., Westlye L. T., Amlien I., Espeseth T., Reinvang I., Raz N., et al. (2009). High consistency of regional cortical thinning in aging across multiple samples. Cereb. Cortex 19 2001–2012. 10.1093/cercor/bhn232 PubMed DOI PMC
Fogel S., Vien C., Karni A., Benali H., Carrier J., Doyon J. (2017). Sleep spindles: a physiological marker of age-related changes in gray matter in brain regions supporting motor skill memory consolidation. Neurobiol. Aging 49 154–164. 10.1016/j.neurobiolaging.2016.10.009 PubMed DOI
Gaudreault P.-O., Gosselin N., Lafortune M., Deslauriers-Gauthier S., Martin N., Bouchard M., et al. (2018). The association between white matter and sleep spindles differs in young and older individuals. Sleep 41:zsy113. 10.1093/sleep/zsy113 PubMed DOI PMC
Gomez-Nicola D., Boche D. (2015). Post-mortem analysis of neuroinflammatory changes in human Alzheimer’s disease. Alzheimers Res. Ther. 7:42. 10.1186/s13195-015-0126-1 PubMed DOI PMC
Goyal M. S., Vlassenko A. G., Blazey T. M., Su Y., Couture L. E., Durbin T. J., et al. (2017). Loss of brain aerobic glycolysis in normal human aging. Cell. Metab. 26 353–360.e3. 10.1016/j.cmet.2017.07.010 PubMed DOI PMC
Hirshkowitz M., Whiton K., Albert S. M., Alessi C., Bruni O., DonCarlos L., et al. (2015). National sleep foundation’s sleep time duration recommendations: methodology and results summary. Sleep Health 1 40–43. 10.1016/j.sleh.2014.12.010 PubMed DOI
Horovitz S. G., Braun A. R., Carr W. S., Picchioni D., Balkin T. J., Fukunaga M., et al. (2009). Decoupling of the brain’s default mode network during deep sleep. Proc. Natl. Acad. Sci. U.S.A. 106 11376–11381. 10.1073/pnas.0901435106 PubMed DOI PMC
Ju Y.-E. S., Lucey B. P., Holtzman D. M. (2014). Sleep and Alzheimer disease pathology–a bidirectional relationship. Nat. Rev. Neurol. 10 115–119. 10.1038/nrneurol.2013.269 PubMed DOI PMC
Kelsey N. A., Wilkins H. M., Linseman D. A. (2010). Nutraceutical antioxidants as novel neuroprotective agents. Molecules 15 7792–7814. 10.3390/molecules15117792 PubMed DOI PMC
Kumar R., Chavez A. S., Macey P. M., Woo M. A., Yan-Go F. L., Harper R. M. (2012). Altered global and regional brain mean diffusivity in patients with obstructive sleep apnea. J. Neurosci. Res. 90 2043–2052. 10.1002/jnr.23083 PubMed DOI PMC
Li S., Tian J., Bauer A., Huang R., Wen H., Li M., et al. (2016). Reduced integrity of right lateralized white matter in patients with primary insomnia: a diffusion-tensor imaging study. Radiology 280 520–528. 10.1148/radiol.2016152038 PubMed DOI
Liu H., Yang Y., Xia Y., Zhu W., Leak R. K., Wei Z., et al. (2017). Aging of cerebral white matter. Ageing Res. Rev. 34 64–76. 10.1016/j.arr.2016.11.006 PubMed DOI PMC
Liu Y.-R., Fan D.-Q., Gui W.-J., Long Z.-L., Lei X., Yu J. (2018). Sleep-related brain atrophy and disrupted functional connectivity in older adults. Behav. Brain Res. 347 292–299. 10.1016/j.bbr.2018.03.032 PubMed DOI
Lo J. C., Loh K. K., Zheng H., Sim S. K. Y., Chee M. W. L. (2014). Sleep duration and age-related changes in brain structure and cognitive performance. Sleep 37 1171–1178. 10.5665/sleep.3832 PubMed DOI PMC
López-Otín C., Blasco M. A., Partridge L., Serrano M., Kroemer G. (2013). The hallmarks of aging. Cell 153 1194–1217. 10.1016/j.cell.2013.05.039 PubMed DOI PMC
Lungato L., Marques M. S., Pereira V. G., Hix S., Gazarini M. L., Tufik S., et al. (2013). Sleep deprivation alters gene expression and antioxidant enzyme activity in mice splenocytes. Scand. J. Immunol. 77 195–199. 10.1111/sji.12029 PubMed DOI
Mander B. A., Rao V., Lu B., Saletin J. M., Lindquist J. R., Ancoli-Israel S., et al. (2013). Prefrontal atrophy, disrupted NREM slow waves and impaired hippocampal-dependent memory in aging. Nat. Neurosci. 16 357–364. 10.1038/nn.3324 PubMed DOI PMC
Mander B. A., Zhu A. H., Lindquist J. R., Villeneuve S., Rao V., Lu B., et al. (2017). White matter structure in older adults moderates the benefit of sleep spindles on motor memory consolidation. J. Neurosci. 37 11675–11687. 10.1523/JNEUROSCI.3033-16.2017 PubMed DOI PMC
Marshall L., Helgadóttir H., Mölle M., Born J. (2006). Boosting slow oscillations during sleep potentiates memory. Nature 444 610–613. 10.1038/nature05278 PubMed DOI
Martin N., Lafortune M., Godbout J., Barakat M., Robillard R., Poirier G., et al. (2013). Topography of age-related changes in sleep spindles. Neurobiol. Aging 34 468–476. 10.1016/j.neurobiolaging.2012.05.020 PubMed DOI
Massimini M., Huber R., Ferrarelli F., Hill S., Tononi G. (2004). The sleep slow oscillation as a traveling wave. J. Neurosci. 24 6862–6870. 10.1523/JNEUROSCI.1318-04.2004 PubMed DOI PMC
Mintun M. A., Larossa G. N., Sheline Y. I., Dence C. S., Lee S. Y., Mach R. H., et al. (2006). [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 67 446–452. 10.1212/01.wnl.0000228230.26044.a4 PubMed DOI
Moreno-García A., Kun A., Calero O., Medina M., Calero M. (2018). An overview of the role of lipofuscin in age-related neurodegeneration. Front. Neurosci. 12:464. 10.3389/fnins.2018.00464 PubMed DOI PMC
Mueller S. G., Weiner M. W. (2009). Selective effect of age, Apo e4, and Alzheimer’s disease on hippocampal subfields. Hippocampus 19 558–564. 10.1002/hipo.20614 PubMed DOI PMC
Murphy M., Riedner B. A., Huber R., Massimini M., Ferrarelli F., Tononi G. (2009). Source modeling sleep slow waves. Proc. Natl. Acad. Sci. U.S.A. 106 1608–1613. 10.1073/pnas.0807933106 PubMed DOI PMC
Ohayon M. M., Carskadon M. A., Guilleminault C., Vitiello M. V. (2004). Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep 27 1255–1273. 10.1093/sleep/27.7.1255 PubMed DOI
Perry V. H., Teeling J. (2013). Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin. Immunopathol. 35 601–612. 10.1007/s00281-013-0382-8 PubMed DOI PMC
Piantoni G., Poil S.-S., Linkenkaer-Hansen K., Verweij I. M., Ramautar J. R., Van Someren E. J. W., et al. (2013). Individual differences in white matter diffusion affect sleep oscillations. J. Neurosci. 33 227–233. 10.1523/JNEUROSCI.2030-12.2013 PubMed DOI PMC
Power M. C., Su D., Wu A., Reid R. I., Jack C. R., Knopman D. S., et al. (2019). Association of white matter microstructural integrity with cognition and dementia. Neurobiol. Aging 83 63–72. 10.1016/j.neurobiolaging.2019.08.021 PubMed DOI PMC
Raz N., Rodrigue K. M., Head D., Kennedy K. M., Acker J. D. (2004). Differential aging of the medial temporal lobe: a study of a five-year change. Neurology 62 433–438. 10.1212/01.wnl.0000106466.09835.46 PubMed DOI
Regen W., Kyle S. D., Nissen C., Feige B., Baglioni C., Hennig J., et al. (2016). Objective sleep disturbances are associated with greater waking resting-state connectivity between the retrosplenial cortex/ hippocampus and various nodes of the default mode network. J. Psychiatry Neurosci. 41 295–303. 10.1503/jpn.140290 PubMed DOI PMC
Resnick S. M., Pham D. L., Kraut M. A., Zonderman A. B., Davatzikos C. (2003). Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J. Neurosci. 23 3295–3301. PubMed PMC
Rupprecht S., Walther B., Gudziol H., Steenbeck J., Freesmeyer M., Witte O. W., et al. (2013). Clinical markers of early nigrostriatal neurodegeneration in idiopathic rapid eye movement sleep behavior disorder. Sleep Med. 14 1064–1070. 10.1016/j.sleep.2013.06.008 PubMed DOI
Rusterholz T., Achermann P. (2011). Topographical aspects in the dynamics of sleep homeostasis in young men: individual patterns. BMC Neurosci. 12:84. 10.1186/1471-2202-12-84 PubMed DOI PMC
Salat D. H., Greve D. N., Pacheco J. L., Quinn B. T., Helmer K. G., Buckner R. L., et al. (2009). Regional white matter volume differences in nondemented aging and Alzheimer’s disease. Neuroimage 44 1247–1258. 10.1016/j.neuroimage.2008.10.030 PubMed DOI PMC
Salat D. H., Tuch D. S., Greve D. N., van der Kouwe A. J. W., Hevelone N. D., Zaleta A. K., et al. (2005). Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol. Aging 26 1215–1227. 10.1016/j.neurobiolaging.2004.09.017 PubMed DOI
Saletin J. M., van der Helm E., Walker M. P. (2013). Structural brain correlates of human sleep oscillations. Neuroimage 83 658–668. 10.1016/j.neuroimage.2013.06.021 PubMed DOI PMC
Sämann P. G., Tully C., Spoormaker V. I., Wetter T. C., Holsboer F., Wehrle R., et al. (2010). Increased sleep pressure reduces resting state functional connectivity. MAGMA 23 375–389. 10.1007/s10334-010-0213-z PubMed DOI
Scullin M. K., Bliwise D. L. (2015). Sleep, cognition, and normal aging: integrating a half century of multidisciplinary research. Perspect. Psychol. Sci. 10 97–137. 10.1177/1745691614556680 PubMed DOI PMC
Sexton C. E., Storsve A. B., Walhovd K. B., Johansen-Berg H., Fjell A. M. (2014a). Poor sleep quality is associated with increased cortical atrophy in community-dwelling adults. Neurology 83 967–973. 10.1212/WNL.0000000000000774 PubMed DOI PMC
Sexton C. E., Walhovd K. B., Storsve A. B., Tamnes C. K., Westlye L. T., Johansen-Berg H., et al. (2014b). Accelerated changes in white matter microstructure during aging: a longitudinal diffusion tensor imaging study. J. Neurosci. 34 15425–15436. 10.1523/JNEUROSCI.0203-14.2014 PubMed DOI PMC
Sexton C. E., Zsoldos E., Filippini N., Griffanti L., Winkler A., Mahmood A., et al. (2017). Associations between self-reported sleep quality and white matter in community-dwelling older adults: a prospective cohort study. Hum. Brain Mapp. 38 5465–5473. 10.1002/hbm.23739 PubMed DOI PMC
Sheline Y. I., Raichle M. E. (2013). Resting state functional connectivity in preclinical Alzheimer’s disease. Biol. Psychiatry 74 340–347. 10.1016/j.biopsych.2012.11.028 PubMed DOI PMC
Shokri-Kojori E., Wang G.-J., Wiers C. E., Demiral S. B., Guo M., Kim S. W., et al. (2018). β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc. Natl. Acad. Sci. U.S.A. 115 4483–4488. 10.1073/pnas.1721694115 PubMed DOI PMC
Shu Y., Hasenstaub A., McCormick D. A. (2003). Turning on and off recurrent balanced cortical activity. Nature 423 288–293. 10.1038/nature01616 PubMed DOI
Song S.-K., Sun S.-W., Ju W.-K., Lin S.-J., Cross A. H., Neufeld A. H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20 1714–1722. 10.1016/j.neuroimage.2003.07.005 PubMed DOI
Song S.-K., Yoshino J., Le T. Q., Lin S.-J., Sun S.-W., Cross A. H., et al. (2005). Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage 26 132–140. 10.1016/j.neuroimage.2005.01.028 PubMed DOI
Soo S. K., Rudich P. D., Traa A., Harris-Gauthier N., Shields H. J., Van Raamsdonk J. M. (2020). Compounds that extend longevity are protective in neurodegenerative diseases and provide a novel treatment strategy for these devastating disorders. Mech. Ageing Dev. 190:111297. 10.1016/j.mad.2020.111297 PubMed DOI PMC
Sowell E. R., Peterson B. S., Thompson P. M., Welcome S. E., Henkenius A. L., Toga A. W. (2003). Mapping cortical change across the human life span. Nat. Neurosci. 6 309–315. 10.1038/nn1008 PubMed DOI
Spira A. P., Gamaldo A. A., An Y., Wu M. N., Simonsick E. M., Bilgel M., et al. (2013). Self-reported sleep and β-amyloid deposition in community-dwelling older adults. JAMA Neurol. 70 1537–1543. 10.1001/jamaneurol.2013.4258 PubMed DOI PMC
Spira A. P., Gonzalez C. E., Venkatraman V. K., Wu M. N., Pacheco J., Simonsick E. M., et al. (2016). Sleep duration and subsequent cortical thinning in cognitively normal older adults. Sleep 39 1121–1128. 10.5665/sleep.5768 PubMed DOI PMC
Steffener J., Habeck C., O’Shea D., Razlighi Q., Bherer L., Stern Y. (2016). Differences between chronological and brain age are related to education and self-reported physical activity. Neurobiol. Aging 40 138–144. 10.1016/j.neurobiolaging.2016.01.014 PubMed DOI PMC
Steriade M., Contreras D., Curró Dossi R., Nuñez A. (1993). The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J. Neurosci. 13 3284–3299. PubMed PMC
Suzuki H., Venkataraman A. V., Bai W., Guitton F., Guo Y., Dehghan A., et al. (2019). Associations of regional brain structural differences with aging, modifiable risk factors for dementia, and cognitive performance. JAMA Netw. Open 2:e1917257. 10.1001/jamanetworkopen.2019.17257 PubMed DOI PMC
Tahmasian M., Samea F., Khazaie H., Zarei M., Kharabian Masouleh S., Hoffstaedter F., et al. (2020). The interrelation of sleep and mental and physical health is anchored in grey-matter neuroanatomy and under genetic control. Commun. Biol. 3:171. 10.1038/s42003-020-0892-6 PubMed DOI PMC
Timofeev I., Grenier F., Bazhenov M., Sejnowski T. J., Steriade M. (2000). Origin of slow cortical oscillations in deafferented cortical slabs. Cereb. Cortex 10 1185–1199. 10.1093/cercor/10.12.1185 PubMed DOI
Van Cauter E., Leproult R., Plat L. (2000). Age-related changes in slow wave sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men. JAMA 284 861–868. 10.1001/jama.284.7.861 PubMed DOI
Varga A. W., Ducca E. L., Kishi A., Fischer E., Parekh A., Koushyk V., et al. (2016). Effects of aging on slow-wave sleep dynamics and human spatial navigational memory consolidation. Neurobiol. Aging 42 142–149. 10.1016/j.neurobiolaging.2016.03.008 PubMed DOI PMC
Vyazovskiy V. V., Delogu A. (2014). NREM and REM sleep: complementary roles in recovery after wakefulness. Neuroscientist 20 203–219. 10.1177/1073858413518152 PubMed DOI
Walhovd K. B., Fjell A. M., Reinvang I., Lundervold A., Dale A. M., Eilertsen D. E., et al. (2005). Effects of age on volumes of cortex, white matter and subcortical structures. Neurobiol. Aging 26 1261–1270; discussion 1275-1278. 10.1016/j.neurobiolaging.2005.05.020 PubMed DOI
Walter S., Letiembre M., Liu Y., Heine H., Penke B., Hao W., et al. (2007). Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol. Biochem. 20 947–956. 10.1159/000110455 PubMed DOI
Wang C., Holtzman D. M. (2020). Bidirectional relationship between sleep and Alzheimer’s disease: role of amyloid, tau, and other factors. Neuropsychopharmacology 45 104–120. 10.1038/s41386-019-0478-5 PubMed DOI PMC
Weihs A., Frenzel S., Wittfeld K., Obst A., Stubbe B., Habes M., et al. (2021). Associations between sleep apnea and advanced brain aging in a large-scale population study. Sleep 44:zsaa204. 10.1093/sleep/zsaa204 PubMed DOI PMC
Westlye L. T., Walhovd K. B., Dale A. M., Bjørnerud A., Due-Tønnessen P., Engvig A., et al. (2010). Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry. Cereb. Cortex 20 2055–2068. 10.1093/cercor/bhp280 PubMed DOI
Wu H., Dunnett S., Ho Y.-S., Chang R. C.-C. (2019). The role of sleep deprivation and circadian rhythm disruption as risk factors of Alzheimer’s disease. Front. Neuroendocrinol. 54:100764. 10.1016/j.yfrne.2019.100764 PubMed DOI
Wyss-Coray T., Rogers J. (2012). Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb. Perspect. Med. 2:a006346. 10.1101/cshperspect.a006346 PubMed DOI PMC
Xie L., Kang H., Xu Q., Chen M. J., Liao Y., Thiyagarajan M., et al. (2013). Sleep drives metabolite clearance from the adult brain. Science 342 373–377. 10.1126/science.1241224 PubMed DOI PMC
Yaffe K., Nasrallah I., Hoang T. D., Lauderdale D. S., Knutson K. L., Carnethon M. R., et al. (2016). Sleep duration and white matter quality in middle-aged adults. Sleep 39 1743–1747. 10.5665/sleep.6104 PubMed DOI PMC