Cardiolipin, Non-Bilayer Structures and Mitochondrial Bioenergetics: Relevance to Cardiovascular Disease
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, přehledy
Grantová podpora
19-04-00835
Russian Foundation for Basic Research
GA ČR 19-13637S
Grantová Agentura České Republiky
R01 GM129325
NIGMS NIH HHS - United States
PubMed
34359891
PubMed Central
PMC8304834
DOI
10.3390/cells10071721
PII: cells10071721
Knihovny.cz E-zdroje
- Klíčová slova
- ATP synthase, cardiolipin, cardiovascular disease, electron-transport chain, inner mitochondrial membrane, non-bilayer structures,
- MeSH
- energetický metabolismus * MeSH
- kardiolipiny chemie metabolismus MeSH
- kardiovaskulární nemoci metabolismus MeSH
- lidé MeSH
- lipidové dvojvrstvy metabolismus MeSH
- mitochondriální membrány metabolismus MeSH
- mitochondrie metabolismus patologie ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- kardiolipiny MeSH
- lipidové dvojvrstvy MeSH
The present review is an attempt to conceptualize a contemporary understanding about the roles that cardiolipin, a mitochondrial specific conical phospholipid, and non-bilayer structures, predominantly found in the inner mitochondrial membrane (IMM), play in mitochondrial bioenergetics. This review outlines the link between changes in mitochondrial cardiolipin concentration and changes in mitochondrial bioenergetics, including changes in the IMM curvature and surface area, cristae density and architecture, efficiency of electron transport chain (ETC), interaction of ETC proteins, oligomerization of respiratory complexes, and mitochondrial ATP production. A relationship between cardiolipin decline in IMM and mitochondrial dysfunction leading to various diseases, including cardiovascular diseases, is thoroughly presented. Particular attention is paid to the targeting of cardiolipin by Szeto-Schiller tetrapeptides, which leads to rejuvenation of important mitochondrial activities in dysfunctional and aging mitochondria. The role of cardiolipin in triggering non-bilayer structures and the functional roles of non-bilayer structures in energy-converting membranes are reviewed. The latest studies on non-bilayer structures induced by cobra venom peptides are examined in model and mitochondrial membranes, including studies on how non-bilayer structures modulate mitochondrial activities. A mechanism by which non-bilayer compartments are formed in the apex of cristae and by which non-bilayer compartments facilitate ATP synthase dimerization and ATP production is also presented.
Biological Research Center H 6726 Szeged Hungary
Department of Physics Faculty of Science University of Ostrava 71000 Ostrava Czech Republic
Institute of Cytochemistry and Molecular Pharmacology 115404 Moscow Russia
Moscow Institute of Physics and Technology 141701 Dolgoprudny Russia
STEM Program Science Department Chaoyang KaiWen Academy Beijing 100018 China
Zobrazit více v PubMed
Szeto H.H., Liu S. Cardiolipin-targeted peptides rejuvenate mitochondrial function, remodel mitochondria, and promote tissue regeneration during aging. Arch. Biochem. Biophys. 2018;660:137–148. doi: 10.1016/j.abb.2018.10.013. PubMed DOI
Gomez L.A., Hagen T.M. Age-related decline in mitochondrial bioenergetics: Does supercomplex destabilization determine lower oxidative capacity and higher superoxide production? Semin. Cell Dev. Biol. 2012;23:758–767. doi: 10.1016/j.semcdb.2012.04.002. PubMed DOI PMC
Linnane A.W., Kovalenko S., Gingold E.B. The universality of bioenergetic 1 disease. Age associated cellular bioenergetic degradation and amelioration therapy. Ann. N. Y. Acad. Sci. 1998;854:202–213. doi: 10.1111/j.1749-6632.1998.tb09903.x. PubMed DOI
Sachs H.G., Colgan J.A., Lazarus M.L. Ultrastructure of the aging myocardium: An orphometric approach. Am. J. Anat. 1977;150:63–71. doi: 10.1002/aja.1001500105. PubMed DOI
Sato T., Tauchi H. Age changes of mitochondria of rat kidney. Mech. Ageing Dev. 1982;20:111–126. doi: 10.1016/0047-6374(82)90063-X. PubMed DOI
Savitha S., Panneerselvam C. Mitochondrial membrane damage during aging process in rat heart: Potential efficacy of L-carnitine and DL alpha lipoic acid. Mech. Ageing Dev. 2006;127:349–355. doi: 10.1016/j.mad.2005.12.004. PubMed DOI
Feher J., Kovacs I., Artico M., Cavallotti C., Papale A., Gabrieli C.B. Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol. Aging. 2006;27:983–993. doi: 10.1016/j.neurobiolaging.2005.05.012. PubMed DOI
Lenaz G., Bovina C., Castelluccio C., Fato R., Formiggini G., Genova M.L., Marchetti M., Pich M.M., Pallotti F., Castelli G.P., et al. Mitochondrial complex I defects in aging. Mol. Cell. Biochem. 1997;174:329–333. doi: 10.1023/A:1006854619336. PubMed DOI
Petrosillo G., Matera M., Casanova G., Ruggiero F.M., Paradies G. Mitochondrial dysfunction in rat brain with aging: Involvement of complex I, reactive oxygen species and cardiolipin. Neurochem. Int. 2008;53:126–131. doi: 10.1016/j.neuint.2008.07.001. PubMed DOI
Boveris A., Navarro A. Brain mitochondrial disfunction in aging. IUBMB Life. 2008;60:308–314. doi: 10.1002/iub.46. PubMed DOI
Navarro A., Boveris A. The mitochondrial energy transduction system and the aging process. Am. J. Physiol. Cell Physiol. 2007;292:670–686. doi: 10.1152/ajpcell.00213.2006. PubMed DOI
Miyoshi N., Oubrahim H., Chock P.B., Stadtman E.R. Age-dependent cell death and the role of ATP in hydrogen peroxide-induced apoptosis and necrosis. Proc. Natl. Acad. Sci. USA. 2006;103:1727–1731. doi: 10.1073/pnas.0510346103. PubMed DOI PMC
Hatch G.M. Cell biology of cardiac mitochondrial phospholipids. Biochem. Cell Biol. 2004;82:99–112. doi: 10.1139/o03-074. PubMed DOI
Schlame M., Greenberg M.L. Biosynthesis, remodeling and turnover of mitochondrial cardiolipin. Biochim. Biophys. Acta. 2017;1862:3–7. doi: 10.1016/j.bbalip.2016.08.010. PubMed DOI PMC
Boyd K.J., Alder N.N., May E.R. Buckling Under Pressure: Curvature-Based Lipid Segregation and Stability Modulation in Cardiolipin-Containing Bilayers. Langmuir. 2017;33:6937–6946. doi: 10.1021/acs.langmuir.7b01185. PubMed DOI PMC
Miranda-Díaz A.G., Cardona-Muñoz E.G., Paul Pacheco-Moisés F.P. The role of cardiolipin and mitochondrial damage in kidney transplant. Oxidative Med. Cell. Longev. 2019 doi: 10.1155/2019/3836186. PubMed DOI PMC
Schlame M., Ren M. The role of cardiolipin in the structural organization of mitochondrial membranes. Biochim. Biophys. Acta. 2009;1788:2080–2083. doi: 10.1016/j.bbamem.2009.04.019. PubMed DOI PMC
Musatov A., Sedlak E. Role of cardiolipin in stability of integral membrane proteins. Biochimie. 2017;142:102–111. doi: 10.1016/j.biochi.2017.08.013. PubMed DOI
Paradies G., Paradies V., Ruggiero F.M., Petrosillo G. Cardiolipin and mitochondrial function in health and disease. Antioxid. Redox Signal. 2014;20:1925–1953. doi: 10.1089/ars.2013.5280. PubMed DOI
Duncan A.L., Robinson A.J., Walker J.E. Cardiolipin binds selectively but transiently to conserved lysine residues in the rotor of metazoan ATP synthases. Proc. Natl. Acad. Sci. USA. 2016;113:8687–8692. doi: 10.1073/pnas.1608396113. PubMed DOI PMC
Strauss M., Hofhaus G., Schroder R.R., Kuhlbrandt W. Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J. 2008;27:1154–1160. doi: 10.1038/emboj.2008.35. PubMed DOI PMC
Davies K.M., Anselmi C., Wittig I., Faraldo-Gomez J.D., Kuhlbrandt W. 1 Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae. Proc. Natl. Acad. Sci. USA. 2012;109:13602–13607. doi: 10.1073/pnas.1204593109. PubMed DOI PMC
Acehan D., Malhotra A., Xu Y., Ren M., Stokes D.L., Schlame M. Cardiolipin affects the supramolecular organization of ATP synthase in mitochondria. Biophys. J. 2011;100:2184–2192. doi: 10.1016/j.bpj.2011.03.031. PubMed DOI PMC
Hahn A., Parey K., Bublitz M., Mills D.J., Zickermann V., Vonck J., Kühlbrandt W., Meier T. Structure of a complete ATP synthase dimer reveals the molecular basis of inner mitochondrial membrane morphology. Mol. Cell. 2016;63:445–456. doi: 10.1016/j.molcel.2016.05.037. PubMed DOI PMC
Zhang M., Mileykovskaya E., Dowhan W. Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J. Biol. Chem. 2002;277:43553–43556. doi: 10.1074/jbc.C200551200. PubMed DOI
Wittig I., Schagger H. Supramolecular organization of ATP synthase and respiratory chain in mitochondrial membranes. Biochim. Biophys. Acta. 2009;1787:672–680. doi: 10.1016/j.bbabio.2008.12.016. PubMed DOI
Letts J.A., Fiedorczuk K., Sazanov L.A. The architecture of respiratory supercomplexes. Nature. 2016;537:644–648. doi: 10.1038/nature19774. PubMed DOI
Kuhlbrandt W. Structure and function of mitochondrial membrane protein complexes. BMC Biol. 2015;13:89. doi: 10.1186/s12915-015-0201-x. PubMed DOI PMC
Rytomaa M., Kinnunen P.K. Evidence for two distinct acidic phospholipid-1 binding sites in cytochrome c. J. Biol. Chem. 1994;269:1770–1774. doi: 10.1016/S0021-9258(17)42094-1. PubMed DOI
Haines T.H., Dencher N.A. Cardiolipin: A proton trap for oxidative phosphorylation. FEBS Lett. 2002;528:35–39. doi: 10.1016/S0014-5793(02)03292-1. PubMed DOI
Rampelt H., Zerbes R.M., van der Laan M., Pfanner N. Role of the mitochondrial contact site and cristae organizing system in membrane architecture and dynamics. Biochim. Biophys. Acta Mol. Cell Res. 2017;1864:737–746. doi: 10.1016/j.bbamcr.2016.05.020. PubMed DOI
Kocherginsky N. Acidic lipids, H+-ATPases, and mechanism of oxidative phosphorylation. Physico-chemical ideas 30 years after P. Mitchell’s Nobel prize award. Prog. Biophys. Mol. Biol. 2009;99:20–41. doi: 10.1016/j.pbiomolbio.2008.10.013. PubMed DOI
Haines T.H. Anionic lipid headgroups as a proton-conducting pathway along the surface of membranes: A hypothesis. Proc. Natl. Acad. Sci. USA. 1983;80:160–164. doi: 10.1073/pnas.80.1.160. PubMed DOI PMC
Gasanov S.E., Kim A.A., Dagda R.K. The possible role of nonbilayer structures in regulating ATP synthase activity in mitochondrial membranes. Biophysics. 2016;61:596–600. doi: 10.1134/S0006350916040084. PubMed DOI PMC
Gasanov S.E., Kim A.A., Yaguzhinsky L.S., Dagda R.K. Non-bilayer structures in mitochondrial membranes regulate ATP synthase activity. Biophys. Biochem. Acta Biomembr. 2018;1860:586–599. doi: 10.1016/j.bbamem.2017.11.014. PubMed DOI PMC
Gasanov S.E., Kim A.A., Dagda R.K. Possible role of nonbilayer structures in regulating the activity of ATP synthase in mitochondria. Biofizika. 2016;61:705–710. PubMed PMC
Li F., Shivastava I.H., Hanlon P., Dagda R.K., Gasanoff E.S. Molecular mechanism by which cobra venom cardiotoxin interact with the outer mitochondrial membrane. Toxins. 2020;12:425. doi: 10.3390/toxins12070425. PubMed DOI PMC
Azzone G.F., Colonna R., Ziche B. Preparation of bovine heart mitochondria in high yield. Methods Enzymol. 1979;55:46–50. PubMed
Maack C., O’Rourke B. Excitation-contraction coupling and mitochondrial energetics. Basic Res. Cardiol. 2007;102:369–392. doi: 10.1007/s00395-007-0666-z. PubMed DOI PMC
Shen Z., Ye C., McCain K., Greenberg M.I. The role of cardiolipin in cardiovascular health. BioMed Res. Int. 2015 doi: 10.1155/2015/891707. PubMed DOI PMC
Musatov A. Contribution of peroxidized cardiolipin to inactivation of bovine heart cytochrome c oxidase. Free Radic. Biol. Med. 2006;41:238–246. doi: 10.1016/j.freeradbiomed.2006.03.018. PubMed DOI
Zhang M., Mileykovskaya E., Dowhan W. Cardiolipin is essential for organization of complexes III and IV into a supercomplex in intact yeast mitochondria. J. Biol. Chem. 2005;280:29403–29408. doi: 10.1074/jbc.M504955200. PubMed DOI PMC
McKenzie M., Lazarou M., Thorburn D.R., Ryan M.T. Mitochondrial respiratory chain supercomplexes are destabilized in Barth syndrome patients. J. Mol. Biol. 2006;361:462–469. doi: 10.1016/j.jmb.2006.06.057. PubMed DOI
Kadenbach B., Mende P., Kolbe H.V.J., Stipani I., Palmieri F. Themitochondrial phosphate carrier has an essential requirement for cardiolipin. FEBS Lett. 1982;139:109–112. doi: 10.1016/0014-5793(82)80498-5. PubMed DOI
Paradies G., Ruggiero F.M. The effect of doxorubicin on the transport of pyruvate in rat-heart mitochondria. Biochem. Biophys. Res. Commun. 1988;156:1302–1307. doi: 10.1016/S0006-291X(88)80774-5. PubMed DOI
Beyer K., Klingenberg M. ADP/ATP carrier protein from beef heart mitochondria has high amounts of tightly bound cardiolipin, as revealed by 31P nuclear magnetic resonance. Biochemistry. 1985;24:3821–3826. doi: 10.1021/bi00336a001. PubMed DOI
Chen R., Tsuji T., Ichida F., Bowles K.R., Yu X., Watanabe S., Hirono K., Tsubata S., Hamamichi Y., Ohta J., et al. Mutation analysis of the G4.5 gene in patients with isolated left ventricular noncompaction. Mol. Genet. Metab. 2002;77:319–325. doi: 10.1016/S1096-7192(02)00195-6. PubMed DOI
D’Adamo P., Fassone L., Gedeon A., Janssen E.A., Bione S., Bolhuis P.A., Barth P.G., Wilson M., Haan E., Örstavik K.H., et al. The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies. Am. J. Hum. Genet. 1997;61:862–867. doi: 10.1086/514886. PubMed DOI PMC
Hijikata A., Yura K., Ohara O., Go M. Structural and functional analyses of Barth syndrome-causing mutations and alternative splicing in the tafazzin acyltransferase domain. Meta Gene. 2015;4:92–106. doi: 10.1016/j.mgene.2015.04.001. PubMed DOI PMC
Barth P.G., Scholte H.R., Berden J.A., Van der Klei-Van Moorsel J.M., Luyt-Houwen I.E.M., Veer-Korthof E.T.V.T., van der Harten J.J., Sobotka-Plojhar M.A. An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J. Neurol. Sci. 1983;62:327–355. doi: 10.1016/0022-510X(83)90209-5. PubMed DOI
Barth P.G., Wanders J.A.R., Vreken P. X-linked cardioskeletal myopathy and neutropenia (Barth syndrome)—MIM 302060. J. Pediatr. 1999;135:273–276. doi: 10.1016/S0022-3476(99)70118-6. PubMed DOI
Valianpour F., Wanders R.J.A., Overmars H., Vreken P., Van Gennip A.H., Baas F., Plecko B., Santer R., Becker K., Barth P.G. Cardiolipin deficiency in X-linked cardioskeletal myopathy and neutropenia (Barth syndrome, MIM 302060): A study in cultured skin fibroblasts. J. Pediatr. 2002;141:729–733. doi: 10.1067/mpd.2002.129174. PubMed DOI
Schlame M., Towbin J.A., Heerdt P.M., Jehle R., DiMauro S., Blanck T.J.J. Deficiency of tetralinoleoyl-cardiolipin in Barth syndrome. Ann. Neurol. 2002;51:634–637. doi: 10.1002/ana.10176. PubMed DOI
Schlame M., Kelley R.I., Feigenbaum A., Towbin J.A., Heerdt P.M., Schieble T., Wanders R.J.A., Di Mauro S., Blanck T.J.J. Phospholipid abnormalities in children with Barth syndrome. J. Am. Coll. Cardiol. 2003;42:1994–1999. doi: 10.1016/j.jacc.2003.06.015. PubMed DOI
Dudek J., Hartmann M., Rehling P. The role of mitochondrial cardiolipin in heart function and its implication in cardiac disease. Biochim. Biophys. Acta Mol. Basis Dis. 2019;1865:810–821. doi: 10.1016/j.bbadis.2018.08.025. PubMed DOI
Chistiakov D.A., Shkurat T.P., Melnichenko A.A., Grechko A.V., Orekhov A.N. The role of mitochondrial dysfunction in cardiovascular disease: A brief review. Ann. Med. 2018;50:121–127. doi: 10.1080/07853890.2017.1417631. PubMed DOI
Holthuis J.C., Menon A.K. Lipid landscapes and pipelines in membrane homeostasis. Nature. 2014;510:48–57. doi: 10.1038/nature13474. PubMed DOI
Horvath S.E., Daum G. Lipids of mitochondria. Prog. Lipid Res. 2013;52:590–614. doi: 10.1016/j.plipres.2013.07.002. PubMed DOI
Zinser E., Sperka-Gottlieb C.D., Fasch E.V., Kohlwein S.D., Paltauf F., Daum G. Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae. J. Bacteriol. 1991;173:2026–2034. doi: 10.1128/jb.173.6.2026-2034.1991. PubMed DOI PMC
Ball W.B., Neff J.K., Gohil V.M. The role of nonbilayer phospholipids in mitochondrial structure and function. FEBS Lett. 2017;592 doi: 10.1002/1873-3468.12887. PubMed DOI PMC
Nelson D.L., Cox M.M. Principles of Biochemistry. 6th ed. W. H. Freeman and Company; New York, NY, USA: 2013.
Böttinger L., Horvath S.E., Kleinschroth T., Hunte C., Daum G., Pfanner N., Becker T. Phosphatidylethanolamine and cardiolipin differentially dffect the stability of mitochondrial respiratory chain supercomplexes. J. Mol. Biol. 2012;423:677–686. doi: 10.1016/j.jmb.2012.09.001. PubMed DOI PMC
Cullis P.R., de Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta. 1979;559:399–420. doi: 10.1016/0304-4157(79)90012-1. PubMed DOI
de Kruijff B., Cullis P.R., Verkleij A.J., Hope M.J., Van Echteld C.J.A., Taraschi T.F., Van Hoogevest P., Killian J.A., Rietveld A., Van der Steen A.T.M. Modulation of Lipid Polymorphism by Lipid Protein Interactions. In: Watts A., De Pont J.J.H.H.M., editors. Progress in Protein-Lipid Interactions. Elsevier; Amsterdam, The Netherlands: 1985. pp. 89–142.
de Kruijff B. Lipids beyond the bilayer. Nature. 1997;386:129–130. doi: 10.1038/386129a0. PubMed DOI
Garab G., Lohner K., Laggner P., Farkas T. Self-regulation of the lipid content of membranes by non-bilayer lipids: A hypothesis. Trends Plant Sci. 2000;5:489–494. doi: 10.1016/S1360-1385(00)01767-2. PubMed DOI
Rietveld A., van Kemenade T.J.J.M., Hak T., Verkleij A.J., De Kruijff B. The effect of cytochrome c oxidase on lipid polymorphism of model membranes containing cardiolipin. Eur. J. Biochem. 1987;164:137–140. doi: 10.1111/j.1432-1033.1987.tb11004.x. PubMed DOI
Simidjiev I., Stoylova S., Amenitsch H., Javorfi T., Mustardy L., Langgner P., Holzenburg A., Garab G. Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro. Proc. Natl. Acad. Sci. USA. 2000;97:1473–1476. doi: 10.1073/pnas.97.4.1473. PubMed DOI PMC
Seddon J.M., Templer R.H. Polymorphism of Lipid-Water Systems. In: Lipowsky R., Sackmann E., editors. Structure and Dynamics of Membranes, I. From Cells to Vesicles. North Holland; Amsterdam, The Netherlands: 1995. pp. 97–160.
Van Eerden F.J., de Jong D.H., de Vries A.H., Wassenaar T.A., Marrink S.J. Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. Biophys. Biochem. Acta Biomembr. 2015;1848:1319–1330. doi: 10.1016/j.bbamem.2015.02.025. PubMed DOI
Garab G., Ughy B., Goss R. Role of MGDG and non-bilayer lipid phases in the structure and dynamics of chloroplast thylakoid membranes. In: Nakamura Y., Li-Beisson Y., editors. Lipids in Plant and Algae Development, Subcellular Biochemistry. Springer International Publishing; Basel, Switzerland: 2016. pp. 127–157. PubMed
Garab G., Ughy B., de Waard P., Akhtar P., Javornik U., Kotakis C., Šket P., Karlický V., Materová Z., Špunda V., et al. Lipid polymorphism in chloroplast thylakoid membranes–as revealed by 31P-NMR and time-resolved merocyanine fluorescence spectroscopy. Sci. Rep. 2017;7:13343–13354. doi: 10.1038/s41598-017-13574-y. PubMed DOI PMC
Kotakis C., Akhtar P., Zsiros O., Garab G., Lambrev P.H. Increased thermal stability of photosystem II and the macro-organization of thylakoid membranes, induced by co-solutes, associated with changes in the lipid-phase behaviour of thylakoid membranes. Photosynthetica. 2018;56:254–264. doi: 10.1007/s11099-018-0782-z. DOI
Wilhelm C., Goss R., Garab G. The fluid-mosaic membrane theory in the context of photosynthetic membranes: Is the thylakoid membrane more like a mixed crystal or like a fluid? J. Plant Physiol. 2020;252:153246–153263. doi: 10.1016/j.jplph.2020.153246. PubMed DOI
Dlouhý O., Kurasová I., Karlický V., Javornik U., Šket P., Petrova N.Z., Krumova S.B., Plavec J., Ughy B., Špunda V., et al. Modulation of non-bilayer lipid phases and the structure and functions of thylakoid membranes: Effects on the water-soluble enzyme violaxanthin de-epoxidase. Sci. Rep. 2020;10:11959–11972. doi: 10.1038/s41598-020-68854-x. PubMed DOI PMC
Ughy B., Karlický V., Dlouhý O., Javornik U., Materova Z., Zsiros O., Šket P., Plavec J., Špunda V., Garab G. Lipid-polymorphism of plant thylakoid membranes. Enhanced non-bilayer lipid phases associated with increased membrane permeability. Physiol. Plant. 2019;166:278–287. doi: 10.1111/ppl.12929. PubMed DOI
Szeto H.H. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br. J. Pharm. 2014;171:2029–2050. doi: 10.1111/bph.12461. PubMed DOI PMC
Szeto H.H., Birk A.V. Serendipity and the discovery of novel compounds that restore mitochondrial plasticity. Clin. Pharm. 2014;96:672–683. doi: 10.1038/clpt.2014.174. PubMed DOI PMC
Zhao K., Luo G., Zhao G.M., Schiller P.W., Szeto H.H. Transcellular transport of a highly polar 3+ net charge opioid tetrapeptide. J. Pharm. Exp. 2003;304:425–432. doi: 10.1124/jpet.102.040147. PubMed DOI
Reddy P.H., Manczak M., Kandimalla R. Mitochondria-targeted small molecule SS31: A potential candidate for the treatment of Alzheimer’s disease. Hum. Mol. Genet. 2017;26:1483–1496. doi: 10.1093/hmg/ddx052. PubMed DOI PMC
Birk A.V., Liu S., Soong Y., Mills W., Singh P., Warren J.D., Seshan S.V., Pardee J.D., Szeto H.H. The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J. Am. Soc. Nephrol. 2013;24:1250–1261. doi: 10.1681/ASN.2012121216. PubMed DOI PMC
Birk A.V., Chao W.M., Liu S., Soong Y., Szeto H.H. Disruption of cytochrome c heme coordination is responsible for mitochondrial injury during ischemia. Biochim. Biophys. Acta. 2015;1847:1075–1084. doi: 10.1016/j.bbabio.2015.06.006. PubMed DOI PMC
Birk A.V., Chao W.M., Bracken C., Warren J.D., Szeto H.H. Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis. Br. J. Pharm. 2014;171:2017–2028. doi: 10.1111/bph.12468. PubMed DOI PMC
Gasanov S.E., Salakhutdinov B.A., Aripov T.F. Formation of nonbilayer structures in phospholipid membrane induced by cationic polypeptides. Biol. Membr. 1990;7:1045–1055.
Gasanov S.E., Kamaev F.G., Salakhutdinov B.A., Aripov T.F. The fusogenic properties of the cytotoxins of cobra venom in a model membrane system. Nauchnye Dokl. Vyss. Shkoly. Biol. Nauk. 1990;2:42–50. PubMed
Gasanov S.E., Shrivastava I.H., Israilov F.S., Kim A.A., Rylova K.A., Zhang B., Dagda R.K. Naja naja oxiana cobra venom cytotoxins CTI and CTII disrupt mitochondrial membrane integrity: Implications for basic three-fingered cytotoxins. PLoS ONE. 2015;10:e0129248. doi: 10.1371/journal.pone.0129248. PubMed DOI PMC
Gasanov S.E., Vernon L.P., Aripov T.F. Modification of phospholipid membrane structure by the plant toxic peptide Pyrularia thionin. Arch. Biochem. Biophys. 1993;301:367–374. doi: 10.1006/abbi.1993.1157. PubMed DOI
Zhang B., Li F., Chen Z., Shrivastava I.H., Gasanoff E.S., Dagda R.K. Naja mossambica mossambica cobra cardiotoxin targets mitochondria to disrupt mitochondrial membrane structure and function. Toxins. 2019;11:152. doi: 10.3390/toxins11030152. PubMed DOI PMC
Aripov T.F., Gasanov S.E., Salakhutdinov B.A., Sadykov A.S. Studies on the interaction of cobra venom cytotoxin with oriented phospholipid multilayers. Dokl. Akad. Nauk SSSR. 1986;288:728–730. PubMed
Gasanov S.E., Alsarraj M.A., Gasanov N.E., Rael E.D. Cobra venom cytotoxin free of phospholipase A2 and its effect on model membranes and T leukemia cells. J. Membr. Biol. 1997;155:133–142. doi: 10.1007/s002329900165. PubMed DOI
Aripov T.F., Gasanov S.E., Salakhutdinov B.A., Rozenshtein I.A., Kamaev F.G. Central Asian cobra venom cytotoxins-induced aggregation, permeability and fusion of liposomes. Gen. Physiol. Biophys. 1989;8:459–473. PubMed
Fox C.A., Ellison P., Ikon N., Ryan R.O. Calcium-induced transformation of cardiolipin nanodisks. Biochim. Biophys. Acta Biomembr. 2019;1861:1030–1036. doi: 10.1016/j.bbamem.2019.03.005. PubMed DOI PMC
De Kruijff B., Verkleij A.J., Leunissen-Bijvelt J., van Echteld C.J.A., Hille J., Rijnbout H. Further aspects of the Ca2+-dependent polymorphism of bovine heart cardiolipin. Biochim. Biophys. Acta. 1982;693:1–12. doi: 10.1016/0005-2736(82)90464-3. PubMed DOI
Gasanov S.E., Salakhutdinov B.A., Aripov T.F. Possible applications of deactivation of triplet-excited state and sensitized delayed fluorescence for studying liposome fusion. Biofizika. 1990;35:879–880.
Gasanov S.E., Aripov T.F., Salakhutdinov B.A. Intermembrane exchange of lipids induced by cobra venom cytotoxins. Biofizika. 1990;35:958–962. PubMed
Gasanov S.E., Aripov T.F., Gasanov E.E. Study on Structure of Phospholipid Membranes Modified by Membrane-Active Polypeptides. Nuclear Physics Institute of UzSSR Academy of Sciences; Tashkent, Uzbekistan: 1988.
Kondadi A.K., Anand R., Reichert A.S. Cristae membrane dynamics—A paradigm change. Trends Cell Biol. 2020;30:923–936. doi: 10.1016/j.tcb.2020.08.008. PubMed DOI
Chan D.C. Mitochondrial dynamics and its involvement in disease. Annu. Rev. Pathol. Mech. Dis. 2020;15:235–259. doi: 10.1146/annurev-pathmechdis-012419-032711. PubMed DOI
Colina-Tenorio L., Horten P., Pfanner N., Rampelt H. Shaping the mitochondrial inner membrane in health and disease. J. Intern. Med. 2020;287:645–664. doi: 10.1111/joim.13031. PubMed DOI
Kondadi A.K., Anand R., Hänsch S., Urbach J., Zobel T., Wolf D.M., Segawa M., Liesa M., Shirihai O.S., Weidtkamp-Peters S., et al. Cristae undergo continuous cycles of membrane remodelling in a MICOS-dependent manner. EMBO Rep. 2020;21:e49776. doi: 10.15252/embr.201949776. PubMed DOI PMC
Frey T.G., Mannella C.A. The internal structure of mitochondria. Trends Biochem. Sci. 2000;25:319–324. doi: 10.1016/S0968-0004(00)01609-1. PubMed DOI
Frey T.G., Renken C.W., Perkins G.A. Insight into mitochondrial structure and function from electron tomography. Biochim. Biophys. Acta. 2002;1555:196–203. doi: 10.1016/S0005-2728(02)00278-5. PubMed DOI
Liesa M. Why does a mitochondrion need its individual cristae to be functionally autonomous? Mol. Cell. Oncol. 2020;7:1705119. doi: 10.1080/23723556.2019.1705119. PubMed DOI PMC
Eramo M.J., Lisnyak V., Formosa L.E., Ryan M.T. The ‘mitochondrial contact site and cristae organising system’ (MICOS) in health and human disease. J. Biochem. 2020;167:243–255. doi: 10.1093/jb/mvz111. PubMed DOI
Khosravi S., Harner M.E. The MICOS complex, a structural element of mitochondria with versatile functions. Biol. Chem. 2020;401:765–778. doi: 10.1515/hsz-2020-0103. PubMed DOI
Stephan T., Brüser C., Deckers M., Steyer A.M., Balzarotti F., Barbot M. MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation. EMBO J. 2020;39:e104105. doi: 10.15252/embj.2019104105. PubMed DOI PMC
Anand R., Kondadi A.K., Meisterknecht J., Golombek M., Nortmann O., Riedel J., Peifer-Weiß L., Brocke-Ahmadinejad N., Schlütermann D., Stork B., et al. MIC26 and MIC27 cooperate to regulate cardiolipin levels and the landscape of OXPHOS complexes. Life Sci. Alliance. 2020;3:e202000711. doi: 10.26508/lsa.202000711. PubMed DOI PMC
Itoh K., Nakamura K., Iijima M., Sesaki H. Mitochondrial dynamics in neurodegeneration. Trends Cell Biol. 2013;23:64–71. doi: 10.1016/j.tcb.2012.10.006. PubMed DOI PMC
Acehan D., Vaz F., Houtkooper R.H., James J., Moore V., Tokunaga C., Kulik W., Wansapura J., Toth M.J., Strauss A., et al. Cardiac and skeletal muscle defects in a mouse model of human Barth syndrome. J. Biol. Chem. 2011;286:899–908. doi: 10.1074/jbc.M110.171439. PubMed DOI PMC
Clarke S.L., Bowron A., Gonzalez I.L., Groves S.J., Newbury-Ecob R., Clayton N., Martin R.P., Tsai-Goodman B., Garratt V., Ashworth M., et al. Barth syndrome. Orphanet J. Rare Dis. 2013;8:23. doi: 10.1186/1750-1172-8-23. PubMed DOI PMC
Gao S., Hu J. Mitochondrial Fusion: The machineries in and out. Trends Cell Biol. 2021;31:62–74. doi: 10.1016/j.tcb.2020.09.008. PubMed DOI
Schuster R., Anton V., Simões T., Altin S., den Brave F., Hermanns T., Hospenthal M., Komander D., Dittmar P.G., Dohmen P.J., et al. Dual role of a GTPase conformational switch for membrane fusion by mitofusin ubiquitylation. Life Sci. Alliance. 2020;3:e201900476. doi: 10.26508/lsa.201900476. PubMed DOI PMC
Ge Y., Shi X., Boopathy S., McDonald J., Smith A.W., Chao L.H. Two forms of Opa1 cooperate to complete fusion of the mitochondrial inner-membrane. eLife. 2020;9:e50973. doi: 10.7554/eLife.50973. PubMed DOI PMC
Cullis P., De Kruijff B., Hope M., Nayar R., Rietveld A., Verkleij A. Structural properties of phospholipids in the rat liver inner mitochondrial membrane. A 31P-NMR study. Biochim. Biophys. Acta Biomembr. 1980;600:625–635. doi: 10.1016/0005-2736(80)90466-6. PubMed DOI
Segal N.K., Gasanov S.E., Palamarchuk L.A., Ius’kovich A.K., Kolesova G.M., Mansurova S.E., Yaguzhinsky L.S. Mitochondrial proteolipids. Biokhimiia. 1993;58:1812–1819. PubMed
Fillingame R.H. The proton-translocating pumps of oxidative phosphorylation. Annu. Rev. Biochem. 1980;49:1079–1113. doi: 10.1146/annurev.bi.49.070180.005243. PubMed DOI
Daum G. Lipids of mitochondria. Biochim. Biophys. Acta Biomembr. 1985;822:1–42. doi: 10.1016/0304-4157(85)90002-4. PubMed DOI
Stoldt S., Wenzel D., Kehrein K., Riedel D., Ott M., Jakobs S. Spatial orchestration of mitochondrial translation and OXPHOS complex assembly. Nat. Cell Biol. 2018;20:528–534. doi: 10.1038/s41556-018-0090-7. PubMed DOI
Krasinskaya I.P., Marshansky V.N., Dragunova S.F., Yaguzhinsky L.S. Relationships of respiratory chain and ATP-synthetase in energized mitochondria. FEBS Lett. 1984;167:176–180. doi: 10.1016/0014-5793(84)80856-X. PubMed DOI
Toth A., Meyrat A., Stoldt S., Santiago R., Wenzel D., Jakobs S., von Ballmoos C., Ott M. Kinetic coupling of the respiratory chain with ATP synthase, but not proton gradients, drives ATP production in cristae membranes. Proc. Natl. Acad. Sci. USA. 2020;117:2412–2421. doi: 10.1073/pnas.1917968117. PubMed DOI PMC
Weichselbaum E., Österbauer M., Knyazev D.G., Batishchev O.V., Akimov S.A., Nguyen T.H., Zhang C., Knör G., Agmon N., Carloni P., et al. Origin of proton affinity to membrane/water interfaces. Sci. Rep. 2017;7:4553. doi: 10.1038/s41598-017-04675-9. PubMed DOI PMC
Medvedev E.S., Stuchebrukhov A.A. Proton diffusion along biological membranes. J. Phys. Condens. Matter. 2011;23:234103. doi: 10.1088/0953-8984/23/23/234103. PubMed DOI
Yaguzhinsky L.S., Boguslavsky L.I., Volkov A.G., Rakhmaninova A.B. Synthesis of ATP coupled with action of membrane protonic pumps at the octane–water interface. Nature. 1976;259:494–496. doi: 10.1038/259494a0. PubMed DOI
Antonenko Y.N., Kovbasnjuk O.N., Yaguzhinsky L.S. Evidence in favor of the existence of a kinetic barrier for proton transfer from a surface of bilayer phospholipid membrane to bulk water. Biochim. Biophys. Acta Biomembr. 1993;1150:45–50. doi: 10.1016/0005-2736(93)90119-K. PubMed DOI
Evtodienko V.Y., Antonenko Y.N., Yaguzhinsky L.S. Increase of local hydrogen ion gradient near bilayer lipid membrane under the conditions of catalysis of proton transfer across the interface. FEBS Lett. 1998;425:222–224. doi: 10.1016/S0014-5793(98)00233-6. PubMed DOI
Nesterov S., Chesnokov Y., Kamyshinsky R., Panteleeva A., Lyamzaev K., Vasilov R., Yaguzhinsky L. Ordered clusters of the complete oxidative phosphorylation system in cardiac mitochondria. Int. J. Mol. Sci. 2021;22:1462. doi: 10.3390/ijms22031462. PubMed DOI PMC
Eroshenko L.V., Marakhovskaya A.S., Vangeli I.M., Semenyuk P.I., Orlov V.N., Yaguzhinsky L.S. Bronsted acids Bounded to the mitochondrial membranes as a substrate for ATP synthase. Dokl. Biochem. Biophys. 2012;444:158–161. doi: 10.1134/S160767291203009X. PubMed DOI
Moiseeva V.S., Motovilov K.A., Lobysheva N.V., Orlov V.N., Yaguzhinsky L.S. The formation of metastable bond between protons and mitoplast surface. Dokl. Biochem. Biophys. 2011;438:127–130. doi: 10.1134/S1607672911030069. PubMed DOI
Ban T., Heymann J.A.W., Song J., Hinshaw J.E., Chan D.C. OPA1 disease alleles causing dominant optic atrophy have defects in cardiolipin-stimulated GTP hydrolysis and membrane tubulation. Hum. Mol. Genet. 2010;19:2113–2122. doi: 10.1093/hmg/ddq088. PubMed DOI PMC
Liu R., Chan D.C. OPA1 and cardiolipin team up for mitochondrial fusion. Cell Biol. 2017;19:760–762. doi: 10.1038/ncb3565. PubMed DOI PMC
Kameoka S., Adachi Y., Okamoto K.M., Hiromi Sesaki H. Phosphatidic acid and cardiolipin coordinate mitochondrial dynamics. Trends Cell Biol. 2018;28:67–76. doi: 10.1016/j.tcb.2017.08.011. PubMed DOI PMC
Spikes T.E., Montgomery M.G., Walker J.E. Structure of the dimeric ATP synthase from bovine mitochondria. Proc. Natl. Acad. Sci. USA. 2020;117:23519–23526. doi: 10.1073/pnas.2013998117. PubMed DOI PMC
Guo H., Bueler S.A., Rubinstein J.L. Atomic model for the dimeric FO region of mitochondrial ATP synthase. Science. 2017;358:936–940. doi: 10.1126/science.aao4815. PubMed DOI PMC
Liu Y.P., Gasanoff E.S. Role of non-bilayer structures in mitochondrial membranes; Proceedings of the 7th European Joint Theoretical/Experimental Meeting on Membranes; Graz, Austria. 7–9 April 2021; p. 104.
Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., Morris J.H., Ferrin T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021;30:70–82. doi: 10.1002/pro.3943. PubMed DOI PMC
Goddard T.D., Huang C.C., Meng E.C., Pettersen E.F., Couch G.S., Morris J.H., Ferrin T.E. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 2018;27:14–25. doi: 10.1002/pro.3235. PubMed DOI PMC