Bee Venom Melittin Disintegrates the Respiration of Mitochondria in Healthy Cells and Lymphoblasts, and Induces the Formation of Non-Bilayer Structures in Model Inner Mitochondrial Membranes

. 2021 Oct 15 ; 22 (20) : . [epub] 20211015

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34681781

Grantová podpora
GM08012 National Institutes of Health
A start-up grant from the MSU Lomonosov Moscow State University

In this paper, we examined the effects of melittin, a bee venom membrane-active peptide, on mitochondrial respiration and cell viability of healthy human lymphocytes (HHL) and Jurkat cells, as well as on lymphoblasts from acute human T cell leukemia. The viability of melittin-treated cells was related to changes in O2 consumption and in the respiratory control index (RCI) of mitochondria isolated from melittin-pretreated cells as well as of mitochondria first isolated from cells and then directly treated with melittin. It was shown that melittin is three times more cytotoxic to Jurkat cells than to HHL, but O2 consumption and RCI values of mitochondria from both cell types were equally affected by melittin when melittin was directly added to mitochondria. To elucidate the molecular mechanism of melittin's cytotoxicity to healthy and cancer cells, the effects of melittin on lipid-packing and on the dynamics in model plasma membranes of healthy and cancer cells, as well as of the inner mitochondrial membrane, were studied by EPR spin probes. The affinity of melittin binding to phosphatidylcholine, phosphatidylserine, phosphatidic acid and cardiolipin, and binding sites of phospholipids on the surface of melittin were studied by 31P-NMR, native PAGE and AutoDock modeling. It is suggested that the melittin-induced decline of mitochondrial bioenergetics contributes primarily to cell death; the higher cytotoxicity of melittin to cancer cells is attributed to its increased permeability through the plasma membrane.

Zobrazit více v PubMed

Szeto H.H., Liu S. Cardiolipin-targeted peptides rejuvenate mitochondrial function, remodel mitochondria, and promote tissue regeneration during aging. Arch. Biochem. Biophys. 2018;660:137–148. doi: 10.1016/j.abb.2018.10.013. PubMed DOI

Gasanoff E.S., Yaguzhinsky L.S., Garab G. Cardiolipin, non-bilayer structures and mitochondrial bioenergetics: Relevance to cardiovascular disease. Cells. 2021;10:1721. doi: 10.3390/cells10071721. PubMed DOI PMC

Raghuraman H., Chattopadhyay A. Melittin: A membrane-active peptide with diverse functions. Biosci. Rep. 2007;27:189–223. doi: 10.1007/s10540-006-9030-z. PubMed DOI

Nam K.W., Je K.H., Lee J.H., Han H.J., Lee H.J., Kang S.K., Mar W. Inhibition of COX-2 activity and proinflammatory cytokines (TNF-alpha and IL-1beta) production by water-soluble sub-fractionated parts from bee (Apis mellifera) venom. Arch. Pharmacal Res. 2003;26:383–388. doi: 10.1007/BF02976695. PubMed DOI

Son D.J., Lee J.W., Lee Y.H., Song H.S., Lee C.K., Hong J.T. Therapeutic application of anti-arthritis, pain releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol. Ther. 2007;115:246–270. doi: 10.1016/j.pharmthera.2007.04.004. PubMed DOI

Leandro L.F., Mendes C.A., Casemiro L.A., Vinholis A.H., Cunha W.R., Almeida R.D., Martins C.H. Antimicrobial activity of apitoxin, melittin and phospholipase A2 of honeybee (Apis mellifera) venom against oral pathogens. An. Acad. Bras. Ciências. 2015;87:147–155. doi: 10.1590/0001-3765201520130511. PubMed DOI

Lim H., Baek S., Jung H. Bee venom and its peptide component melittin suppress growth and migration of melanoma cells via inhibition of PI3K/AKT/mTOR and MAPK pathways. Molecules. 2019;24:929. doi: 10.3390/molecules24050929. PubMed DOI PMC

Duffy C., Sorolla A., Wang E., Golden E., Woodward E., Davern K., Ho D., Johnstone E., Pfleger K., Redfern A., et al. Honeybee venom and melittin suppress growth factor receptor activation in HER2-enriched and triple-negative breast cancer. NPJ Precis. Oncol. 2020;4:24. doi: 10.1038/s41698-020-00129-0. PubMed DOI PMC

Sangboonruang S., Kitidee K., Chantawannakul P., Tragoolpua K., Tragoolpua Y. Melittin from Apis florea venom as a promising therapeutic agent for skin cancer treatment. Antibiotics. 2020;9:517. doi: 10.3390/antibiotics9080517. PubMed DOI PMC

Moghaddam F.D., Akbarzadeh I., Marzbankia E., Farid M., Reihani A.H., Javidfar M., Mortazavi P. Delivery of melittin-loaded niosomes for breast cancer treatment: An in vitro and in vivo evaluation of anti-cancer effect. Cancer Nanotechnol. 2021;12:14. doi: 10.1186/s12645-021-00085-9. DOI

Shaw P., Kumar N., Hammerschmid D., Privat-Maldonado A., Dewilde S., Bogaerts A. Synergistic effects of melittin and plasma treatment: A promising approach for cancer therapy. Cancers. 2019;11:1109. doi: 10.3390/cancers11081109. PubMed DOI PMC

Lv S., Sylvestre M., Song K., Pun S.H. Development of D-melittin polymeric nanoparticles for anti-cancer treatment. Biomaterials. 2021;277:121076. doi: 10.1016/j.biomaterials.2021.121076. PubMed DOI PMC

Fletcher J.E., Jiang M.S. Possible mechanisms of action of cobra snake venom cardiotoxins and bee venom melittin. Toxicon. 1993;31:669–695. doi: 10.1016/0041-0101(93)90375-S. PubMed DOI

Saini S.S., Chopra A.K., Peterson J.W. Melittin activates endogenous phospholipase D during cytolysis of human monocytic leukemia cells. Toxicon. 1999;37:1605–1619. doi: 10.1016/S0041-0101(99)00110-5. PubMed DOI

Ivkov V.G., Berestovskii G.N. The Lipid Bilayer of Biological Membranes. Nauka; Moscow, Russia: 1982.

Van Den Bogaart G., Guzmán J.V., Mika J.T., Poolman B. On the mechanism of pore formation by melittin. J. Biol. Chem. 2008;283:33854–33857. doi: 10.1074/jbc.M805171200. PubMed DOI PMC

Terwilliger T.C., Weissman L., Eisenberg D. The structure of melittin in the form of crystals and its implication for melittin’s lytic and surface activities. Biophys. J. 1982;37:353–361. doi: 10.1016/S0006-3495(82)84683-3. PubMed DOI PMC

Lee M.T., Sun T.L., Hung W.C., Huang H.W. Process of inducing pores in membranes by melittin. Proc. Natl. Acad. Sci. USA. 2013;110:14243–14248. doi: 10.1073/pnas.1307010110. PubMed DOI PMC

Xu Y., Hanlon P., Rael E.D., Gasanoff E.S. Bee venom melittin modulates phospholipase A2 activity by affecting substrate interface on the surface of phosphatidylcholine membrane. Ann. Toxicol. 2020;2:26–35.

Li J., Hanlon P., Gasanoff E.S. Interaction of bee venom melittin, a potential anti-cancer drug, with phosphatidylcholine membrane enriched with phosphatidylserine. EC Pharmacol. Toxicol. 2020;8:119–129.

Ran S., Downes A., Thorpe P.E. Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res. 2002;62:6132–6140. PubMed

Sharma B., Kanwar S.S. Phosphatidylserine: A cancer cell targeting biomarker. Semin. Cancer Biol. 2018;52:17–25. doi: 10.1016/j.semcancer.2017.08.012. PubMed DOI

Mirtalipov D. Biochemistry of Cells. Institute of Nuclear Physics of USSR Academy of Sciences; Tashkent, Uzbekistan: 1992. A cytolytic peptide from bee venom inhibits mitochondrial respiration of T cells derived from human leukemia; pp. 66–97.

Mirtalipov D. Biochemistry of Cells. Institute of Nuclear Physics of USSR Academy of Sciences; Tashkent, Uzbekistan: 1992. Hydrolytic activities of phospholipases A, C, and D, lipid metabolism and blood cell malignancy; pp. 36–65.

Aripov T.F., Gasanov S.E., Salakhutdinov B.A., Sadykov A.S. Interaction of cobra venom cytotoxin with oriented phospholipid multibilayers. Dokl. Akad. Nauk. SSSR. 1986;288:728–730. PubMed

Berliner L.J. Methods of Spin Labels. Mir; Moscow, Russia: 1979.

Gasanov S.E., Shrivastava I.H., Israilov F.S., Kim A.A., Rylova K.A., Zhang B., Dagda R.K. Naja naja oxiana cobra venom cytotoxins CTI and CTII disrupt mitochondrial membrane integrity: Implications for basic three-fingered cytotoxins. PLoS ONE. 2015;10:e0129248. doi: 10.1371/journal.pone.0129248. PubMed DOI PMC

Gasanov S.E., Kim A.A., Yaguzhinski L.S., Dagda R.K. Non-bilayer structures in mitochondrial membranes regulate ATP synthase activity. Biochim. Biophys. Acta. 2018;1860:586–599. doi: 10.1016/j.bbamem.2017.11.014. PubMed DOI PMC

Eble K.S., Coleman W.B., Hantgan R.R., Cunningham C.C. Tightly associated cardiolipin in the bovine heart mitochondrial ATP synthase as analyzed by 31P nuclear magnetic resonance spectroscopy. J. Biol. Chem. 1990;265:19434–19440. doi: 10.1016/S0021-9258(17)45391-9. PubMed DOI

Segal N.K., Gasanov S.E., Palamarchuk L.A., Ius’kovich A.K., Kolesova G.M., Mansurova S.E., Iaguzhinskii L.S. Mitochondrial proteolipids. Biokhimiia. 1993;58:1812–1819. PubMed

Li F., Shivastava I.H., Hanlon P., Dagda R.K., Gasanoff E.S. Molecular mechanism by which cobra venom cardiotoxin interact with the outer mitochondrial membrane. Toxins. 2020;12:425. doi: 10.3390/toxins12070425. PubMed DOI PMC

Petrosillo G., Matera M., Casanova G., Ruggiero F.M., Paradies G. Mitochondrial dysfunction in rat brain with aging: Involvement of complex I, reactive oxygen species and cardiolipin. Neurochem. Int. 2008;53:126–131. doi: 10.1016/j.neuint.2008.07.001. PubMed DOI

Boveris A., Navarro A. Brain mitochondrial disfunction in aging. IUBMB Life. 2008;60:308–314. doi: 10.1002/iub.46. PubMed DOI

Navarro A., Boveris A. The mitochondrial energy transduction system and the aging process. Am. J. Physiol. Cell Physiol. 2007;292:670–686. doi: 10.1152/ajpcell.00213.2006. PubMed DOI

Miyoshi N., Oubrahim H., Chock P.B., Stadtman E.R. Age-dependent cell death and the role of ATP in hydrogen peroxideinduced apoptosis and necrosis. Proc. Natl. Acad. Sci. USA. 2006;103:1727–1731. doi: 10.1073/pnas.0510346103. PubMed DOI PMC

Gomez L.A., Hagen T.M. Age-related decline in mitochondrial bioenergetics: Does supercomplex destabilization determine lower oxidative capacity and higher superoxide production? Semin. Cell Dev. Biol. 2012;23:758–767. doi: 10.1016/j.semcdb.2012.04.002. PubMed DOI PMC

Zhao K., Luo G., Zhao G.M., Schiller P.W., Szeto H.H. Transcellular transport of a highly polar 3+ net charge opioid tetrapeptide. J. Pharm. Exp. 2003;304:425–432. doi: 10.1124/jpet.102.040147. PubMed DOI

Szeto H.H., Birk A.V. Serendipity and the discovery of novel compounds that restore mitochondrial plasticity. Clin. Pharm. 2014;96:672–683. doi: 10.1038/clpt.2014.174. PubMed DOI PMC

Szeto H.H. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br. J. Pharm. 2014;171:2029–2050. doi: 10.1111/bph.12461. PubMed DOI PMC

Zhang B., Li F., Chen Z., Shrivastava I.H., Gasanoff E.S., Dagda R.K. Naja mossambica mossambica cobra cardiotoxin targets mitochondria to disrupt mitochondrial membrane structure and function. Toxins. 2019;11:152. doi: 10.3390/toxins11030152. PubMed DOI PMC

Gasanov S.E., Aripov T.F., Gasanov E.E. Study on Structure of Phospholipid Membranes Modified by Membrane-Active Polypeptides. Institute of Nuclear Physics of USSR Academy of Sciences; Tashkent, Uzbekistan: 1988.

Gasanov S.E., Alsarraj M.A., Gasanov N.E., Rael E.D. Cobra venom cytotoxin free of phospholipase A2 and its effect on model membranes and T leukemia cells. J. Membr. Biol. 1997;155:133–142. doi: 10.1007/s002329900165. PubMed DOI

Deamer D., Bangham A.D. Large volume liposomes by an ether vaporization method. Biochim. Biophys. Acta (BBA)-Nucleic Acids Protein Synth. 1976;443:629–634. PubMed

Gasanov S.E., Kamaev F.G., Salakhutdinov B.A., Aripov T.F. Nauchnye Doklady Vysshei Shkoly. Biologicheskie Nauki; Moscow, Russia: 1990. The fusogenic properties of the cytotoxins of cobra venom in a model membrane system; pp. 42–50. PubMed

Gasanov S.E., Gasanov N.E., Rael E.D. Phospholipase A2 and cobra venom cytotoxin V5 interactions and membrane structure. Gen. Physiol. Biophys. 1995;14:107–123. PubMed

Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012;4:17. doi: 10.1186/1758-2946-4-17. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace