Bee Venom Melittin Disintegrates the Respiration of Mitochondria in Healthy Cells and Lymphoblasts, and Induces the Formation of Non-Bilayer Structures in Model Inner Mitochondrial Membranes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GM08012
National Institutes of Health
A start-up grant from the MSU
Lomonosov Moscow State University
PubMed
34681781
PubMed Central
PMC8538590
DOI
10.3390/ijms222011122
PII: ijms222011122
Knihovny.cz E-zdroje
- Klíčová slova
- 31P-NMR, AutoDock modeling, EPR, T cell leukemia, cytotoxicity, inner mitochondrial membranes, melittin, mitochondrial bioenergetics, native PAGE, respiratory control index,
- MeSH
- biologické modely MeSH
- buněčné dýchání účinky léků MeSH
- Jurkat buňky MeSH
- krevní buňky účinky léků metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- lipidové dvojvrstvy chemie MeSH
- lymfocyty účinky léků metabolismus MeSH
- melitten izolace a purifikace farmakologie MeSH
- mitochondriální membrány účinky léků metabolismus ultrastruktura MeSH
- mitochondrie účinky léků fyziologie MeSH
- permeabilita účinky léků MeSH
- včelí jedy chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- lipidové dvojvrstvy MeSH
- melitten MeSH
- včelí jedy MeSH
In this paper, we examined the effects of melittin, a bee venom membrane-active peptide, on mitochondrial respiration and cell viability of healthy human lymphocytes (HHL) and Jurkat cells, as well as on lymphoblasts from acute human T cell leukemia. The viability of melittin-treated cells was related to changes in O2 consumption and in the respiratory control index (RCI) of mitochondria isolated from melittin-pretreated cells as well as of mitochondria first isolated from cells and then directly treated with melittin. It was shown that melittin is three times more cytotoxic to Jurkat cells than to HHL, but O2 consumption and RCI values of mitochondria from both cell types were equally affected by melittin when melittin was directly added to mitochondria. To elucidate the molecular mechanism of melittin's cytotoxicity to healthy and cancer cells, the effects of melittin on lipid-packing and on the dynamics in model plasma membranes of healthy and cancer cells, as well as of the inner mitochondrial membrane, were studied by EPR spin probes. The affinity of melittin binding to phosphatidylcholine, phosphatidylserine, phosphatidic acid and cardiolipin, and binding sites of phospholipids on the surface of melittin were studied by 31P-NMR, native PAGE and AutoDock modeling. It is suggested that the melittin-induced decline of mitochondrial bioenergetics contributes primarily to cell death; the higher cytotoxicity of melittin to cancer cells is attributed to its increased permeability through the plasma membrane.
Department of Physics Faculty of Science University of Ostrava 710 00 Ostrava Czech Republic
STEM Program Science Department Chaoyang KaiWen Academy Beijing 100020 China
Zobrazit více v PubMed
Szeto H.H., Liu S. Cardiolipin-targeted peptides rejuvenate mitochondrial function, remodel mitochondria, and promote tissue regeneration during aging. Arch. Biochem. Biophys. 2018;660:137–148. doi: 10.1016/j.abb.2018.10.013. PubMed DOI
Gasanoff E.S., Yaguzhinsky L.S., Garab G. Cardiolipin, non-bilayer structures and mitochondrial bioenergetics: Relevance to cardiovascular disease. Cells. 2021;10:1721. doi: 10.3390/cells10071721. PubMed DOI PMC
Raghuraman H., Chattopadhyay A. Melittin: A membrane-active peptide with diverse functions. Biosci. Rep. 2007;27:189–223. doi: 10.1007/s10540-006-9030-z. PubMed DOI
Nam K.W., Je K.H., Lee J.H., Han H.J., Lee H.J., Kang S.K., Mar W. Inhibition of COX-2 activity and proinflammatory cytokines (TNF-alpha and IL-1beta) production by water-soluble sub-fractionated parts from bee (Apis mellifera) venom. Arch. Pharmacal Res. 2003;26:383–388. doi: 10.1007/BF02976695. PubMed DOI
Son D.J., Lee J.W., Lee Y.H., Song H.S., Lee C.K., Hong J.T. Therapeutic application of anti-arthritis, pain releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol. Ther. 2007;115:246–270. doi: 10.1016/j.pharmthera.2007.04.004. PubMed DOI
Leandro L.F., Mendes C.A., Casemiro L.A., Vinholis A.H., Cunha W.R., Almeida R.D., Martins C.H. Antimicrobial activity of apitoxin, melittin and phospholipase A2 of honeybee (Apis mellifera) venom against oral pathogens. An. Acad. Bras. Ciências. 2015;87:147–155. doi: 10.1590/0001-3765201520130511. PubMed DOI
Lim H., Baek S., Jung H. Bee venom and its peptide component melittin suppress growth and migration of melanoma cells via inhibition of PI3K/AKT/mTOR and MAPK pathways. Molecules. 2019;24:929. doi: 10.3390/molecules24050929. PubMed DOI PMC
Duffy C., Sorolla A., Wang E., Golden E., Woodward E., Davern K., Ho D., Johnstone E., Pfleger K., Redfern A., et al. Honeybee venom and melittin suppress growth factor receptor activation in HER2-enriched and triple-negative breast cancer. NPJ Precis. Oncol. 2020;4:24. doi: 10.1038/s41698-020-00129-0. PubMed DOI PMC
Sangboonruang S., Kitidee K., Chantawannakul P., Tragoolpua K., Tragoolpua Y. Melittin from Apis florea venom as a promising therapeutic agent for skin cancer treatment. Antibiotics. 2020;9:517. doi: 10.3390/antibiotics9080517. PubMed DOI PMC
Moghaddam F.D., Akbarzadeh I., Marzbankia E., Farid M., Reihani A.H., Javidfar M., Mortazavi P. Delivery of melittin-loaded niosomes for breast cancer treatment: An in vitro and in vivo evaluation of anti-cancer effect. Cancer Nanotechnol. 2021;12:14. doi: 10.1186/s12645-021-00085-9. DOI
Shaw P., Kumar N., Hammerschmid D., Privat-Maldonado A., Dewilde S., Bogaerts A. Synergistic effects of melittin and plasma treatment: A promising approach for cancer therapy. Cancers. 2019;11:1109. doi: 10.3390/cancers11081109. PubMed DOI PMC
Lv S., Sylvestre M., Song K., Pun S.H. Development of D-melittin polymeric nanoparticles for anti-cancer treatment. Biomaterials. 2021;277:121076. doi: 10.1016/j.biomaterials.2021.121076. PubMed DOI PMC
Fletcher J.E., Jiang M.S. Possible mechanisms of action of cobra snake venom cardiotoxins and bee venom melittin. Toxicon. 1993;31:669–695. doi: 10.1016/0041-0101(93)90375-S. PubMed DOI
Saini S.S., Chopra A.K., Peterson J.W. Melittin activates endogenous phospholipase D during cytolysis of human monocytic leukemia cells. Toxicon. 1999;37:1605–1619. doi: 10.1016/S0041-0101(99)00110-5. PubMed DOI
Ivkov V.G., Berestovskii G.N. The Lipid Bilayer of Biological Membranes. Nauka; Moscow, Russia: 1982.
Van Den Bogaart G., Guzmán J.V., Mika J.T., Poolman B. On the mechanism of pore formation by melittin. J. Biol. Chem. 2008;283:33854–33857. doi: 10.1074/jbc.M805171200. PubMed DOI PMC
Terwilliger T.C., Weissman L., Eisenberg D. The structure of melittin in the form of crystals and its implication for melittin’s lytic and surface activities. Biophys. J. 1982;37:353–361. doi: 10.1016/S0006-3495(82)84683-3. PubMed DOI PMC
Lee M.T., Sun T.L., Hung W.C., Huang H.W. Process of inducing pores in membranes by melittin. Proc. Natl. Acad. Sci. USA. 2013;110:14243–14248. doi: 10.1073/pnas.1307010110. PubMed DOI PMC
Xu Y., Hanlon P., Rael E.D., Gasanoff E.S. Bee venom melittin modulates phospholipase A2 activity by affecting substrate interface on the surface of phosphatidylcholine membrane. Ann. Toxicol. 2020;2:26–35.
Li J., Hanlon P., Gasanoff E.S. Interaction of bee venom melittin, a potential anti-cancer drug, with phosphatidylcholine membrane enriched with phosphatidylserine. EC Pharmacol. Toxicol. 2020;8:119–129.
Ran S., Downes A., Thorpe P.E. Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res. 2002;62:6132–6140. PubMed
Sharma B., Kanwar S.S. Phosphatidylserine: A cancer cell targeting biomarker. Semin. Cancer Biol. 2018;52:17–25. doi: 10.1016/j.semcancer.2017.08.012. PubMed DOI
Mirtalipov D. Biochemistry of Cells. Institute of Nuclear Physics of USSR Academy of Sciences; Tashkent, Uzbekistan: 1992. A cytolytic peptide from bee venom inhibits mitochondrial respiration of T cells derived from human leukemia; pp. 66–97.
Mirtalipov D. Biochemistry of Cells. Institute of Nuclear Physics of USSR Academy of Sciences; Tashkent, Uzbekistan: 1992. Hydrolytic activities of phospholipases A, C, and D, lipid metabolism and blood cell malignancy; pp. 36–65.
Aripov T.F., Gasanov S.E., Salakhutdinov B.A., Sadykov A.S. Interaction of cobra venom cytotoxin with oriented phospholipid multibilayers. Dokl. Akad. Nauk. SSSR. 1986;288:728–730. PubMed
Berliner L.J. Methods of Spin Labels. Mir; Moscow, Russia: 1979.
Gasanov S.E., Shrivastava I.H., Israilov F.S., Kim A.A., Rylova K.A., Zhang B., Dagda R.K. Naja naja oxiana cobra venom cytotoxins CTI and CTII disrupt mitochondrial membrane integrity: Implications for basic three-fingered cytotoxins. PLoS ONE. 2015;10:e0129248. doi: 10.1371/journal.pone.0129248. PubMed DOI PMC
Gasanov S.E., Kim A.A., Yaguzhinski L.S., Dagda R.K. Non-bilayer structures in mitochondrial membranes regulate ATP synthase activity. Biochim. Biophys. Acta. 2018;1860:586–599. doi: 10.1016/j.bbamem.2017.11.014. PubMed DOI PMC
Eble K.S., Coleman W.B., Hantgan R.R., Cunningham C.C. Tightly associated cardiolipin in the bovine heart mitochondrial ATP synthase as analyzed by 31P nuclear magnetic resonance spectroscopy. J. Biol. Chem. 1990;265:19434–19440. doi: 10.1016/S0021-9258(17)45391-9. PubMed DOI
Segal N.K., Gasanov S.E., Palamarchuk L.A., Ius’kovich A.K., Kolesova G.M., Mansurova S.E., Iaguzhinskii L.S. Mitochondrial proteolipids. Biokhimiia. 1993;58:1812–1819. PubMed
Li F., Shivastava I.H., Hanlon P., Dagda R.K., Gasanoff E.S. Molecular mechanism by which cobra venom cardiotoxin interact with the outer mitochondrial membrane. Toxins. 2020;12:425. doi: 10.3390/toxins12070425. PubMed DOI PMC
Petrosillo G., Matera M., Casanova G., Ruggiero F.M., Paradies G. Mitochondrial dysfunction in rat brain with aging: Involvement of complex I, reactive oxygen species and cardiolipin. Neurochem. Int. 2008;53:126–131. doi: 10.1016/j.neuint.2008.07.001. PubMed DOI
Boveris A., Navarro A. Brain mitochondrial disfunction in aging. IUBMB Life. 2008;60:308–314. doi: 10.1002/iub.46. PubMed DOI
Navarro A., Boveris A. The mitochondrial energy transduction system and the aging process. Am. J. Physiol. Cell Physiol. 2007;292:670–686. doi: 10.1152/ajpcell.00213.2006. PubMed DOI
Miyoshi N., Oubrahim H., Chock P.B., Stadtman E.R. Age-dependent cell death and the role of ATP in hydrogen peroxideinduced apoptosis and necrosis. Proc. Natl. Acad. Sci. USA. 2006;103:1727–1731. doi: 10.1073/pnas.0510346103. PubMed DOI PMC
Gomez L.A., Hagen T.M. Age-related decline in mitochondrial bioenergetics: Does supercomplex destabilization determine lower oxidative capacity and higher superoxide production? Semin. Cell Dev. Biol. 2012;23:758–767. doi: 10.1016/j.semcdb.2012.04.002. PubMed DOI PMC
Zhao K., Luo G., Zhao G.M., Schiller P.W., Szeto H.H. Transcellular transport of a highly polar 3+ net charge opioid tetrapeptide. J. Pharm. Exp. 2003;304:425–432. doi: 10.1124/jpet.102.040147. PubMed DOI
Szeto H.H., Birk A.V. Serendipity and the discovery of novel compounds that restore mitochondrial plasticity. Clin. Pharm. 2014;96:672–683. doi: 10.1038/clpt.2014.174. PubMed DOI PMC
Szeto H.H. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br. J. Pharm. 2014;171:2029–2050. doi: 10.1111/bph.12461. PubMed DOI PMC
Zhang B., Li F., Chen Z., Shrivastava I.H., Gasanoff E.S., Dagda R.K. Naja mossambica mossambica cobra cardiotoxin targets mitochondria to disrupt mitochondrial membrane structure and function. Toxins. 2019;11:152. doi: 10.3390/toxins11030152. PubMed DOI PMC
Gasanov S.E., Aripov T.F., Gasanov E.E. Study on Structure of Phospholipid Membranes Modified by Membrane-Active Polypeptides. Institute of Nuclear Physics of USSR Academy of Sciences; Tashkent, Uzbekistan: 1988.
Gasanov S.E., Alsarraj M.A., Gasanov N.E., Rael E.D. Cobra venom cytotoxin free of phospholipase A2 and its effect on model membranes and T leukemia cells. J. Membr. Biol. 1997;155:133–142. doi: 10.1007/s002329900165. PubMed DOI
Deamer D., Bangham A.D. Large volume liposomes by an ether vaporization method. Biochim. Biophys. Acta (BBA)-Nucleic Acids Protein Synth. 1976;443:629–634. PubMed
Gasanov S.E., Kamaev F.G., Salakhutdinov B.A., Aripov T.F. Nauchnye Doklady Vysshei Shkoly. Biologicheskie Nauki; Moscow, Russia: 1990. The fusogenic properties of the cytotoxins of cobra venom in a model membrane system; pp. 42–50. PubMed
Gasanov S.E., Gasanov N.E., Rael E.D. Phospholipase A2 and cobra venom cytotoxin V5 interactions and membrane structure. Gen. Physiol. Biophys. 1995;14:107–123. PubMed
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012;4:17. doi: 10.1186/1758-2946-4-17. PubMed DOI PMC