Editorial
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu úvodníky
PubMed
39649483
PubMed Central
PMC11586841
DOI
10.32615/ps.2023.044
PII: PS61398
Knihovny.cz E-zdroje
Zobrazit více v PubMed
Akhtar P., Lindorfer D., Lingvay M. et al.: Anisotropic circular dichroism of light-harvesting complex II in oriented lipid bilayers: theory meets experiment. – J. Phys. Chem. B 123: 1090-1098, 2019. 10.1021/acs.jpcb.8b12474 PubMed DOI
Barzda V., Istokovics A., Simidjiev I., Garab G.: Structural flexibility of chiral macroaggregates of light-harvesting chlorophyll a/b pigment-protein complexes. Light-induced reversible structural changes associated with energy dissipation. – Biochemistry 35: 8981-8985, 1996. 10.1021/bi960114g PubMed DOI
Cseh Z., Vianelli A., Rajagopal S. et al.: Thermo-optically induced reorganizations in the main light harvesting antenna of plants. I. Non-Arrhenius type of temperature dependence and linear light-intensity dependencies. – Photosynth. Res. 86: 263-273, 2005. 10.1007/s11120-005-5104-1 PubMed DOI
Damkjær J.T., Kereïche S., Johnson M.P. et al.: The photosystem II light-harvesting protein Lhcb3 affects the macrostructure of photosystem II and the rate of state transitions in Arabidopsis. – Plant Cell 21: 3245-3256, 2009. 10.1105/tpc.108.064006 PubMed DOI PMC
Dlouhý O., Karlický V., Javornik U. et al.: Structural entities associated with different lipid phases of plant thylakoid membranes – selective susceptibilities to different lipases and proteases. – Cells 11: 2681, 2022a. 10.3390/cells11172681 PubMed DOI PMC
Dlouhý O., Karlický V., Javornik U. et al.: Lipid polymorphism of plant thylakoid membranes. Structural and functional units associated with non-bilayer phases. – BBA-Bioenergetics 1863: 148836, 2022b. 10.1016/j.bbabio.2022.148836 DOI
Dlouhý O., Kurasová I., Karlický V. et al.: Modulation of non-bilayer lipid phases and the structure and functions of thylakoid membranes: effects on the water-soluble enzyme violaxanthin de-epoxidase. – Sci. Rep.-UK 10: 11959, 2020. 10.1038/s41598-020-68854-x PubMed DOI PMC
Fehér B., Voets I.K., Nagy G.: The impact of physiologically relevant temperatures on physical properties of thylakoid membranes: a molecular dynamics study. – Photosynthetica 61: 441-450, 2023. 10.32615/ps.2023.035 DOI
Finzi L., Bustamante C., Garab G., Juang C.B.: Direct observation of large chiral domains in chloroplast thylakoid membranes by differential polarization microscopy. – PNAS 86: 8748-8752, 1989. 10.1073/pnas.86.22.8748 PubMed DOI PMC
Garab G., Faludi-Daniel A., Sutherland J.C., Hind G.: Macroorganization of chlorophyll a/b light-harvesting complex in thylakoids and aggregates: information from circular differential scattering. – Biochemistry 27: 2425-2430, 1988a. 10.1021/bi00407a027 DOI
Garab G., Kieleczawa J., Sutherland J.C. et al.: Organization of pigment protein complexes into macrodomains in the thylakoid membranes of wild-type and chlorophyll b-less mutant of barley as revealed by circular-dichroism. – Photochem. Photobiol. 54: 273-281, 1991. 10.1111/j.1751-1097.1991.tb02016.x DOI
Garab G., Leegood R.C., Walker D.A. et al.: Reversible changes in macroorganization of the light-harvesting chlorophyll a/b pigment-protein complex detected by circular dichroism. – Biochemistry 27: 2430-2434, 1988c. 10.1021/bi00407a028 DOI
Garab G., Lohner K., Laggner P., Farkas T.: Self-regulation of the lipid content of membranes by non-bilayer lipids: a hypothesis. – Trends Plant Sci. 5: 489-494, 2000. 10.1016/S1360-1385(00)01767-2 PubMed DOI
Garab G., Magyar M., Sipka G., Lambrev P.H.: New foundations for the physical mechanism of variable chlorophyll a fluorescence. Quantum efficiency versus the light-adapted state of photosystem II. – J. Exp. Bot. 74: 5458-5471, 2023. 10.1093/jxb/erad252 PubMed DOI
Garab G., Mustárdy L.: Role of LHCII-containing macrodomains in the structure, function and dynamics of grana. – Aust. J. Plant Physiol. 26: 649-658, 1999. 10.1071/PP99069 DOI
Garab G., Ughy B., de Waard P. et al.: Lipid polymorphism in chloroplast thylakoid membranes – as revealed by 31P-NMR and time-resolved merocyanine fluorescence spectroscopy. – Sci. Rep.-UK 7: 13343, 2017. 10.1038/s41598-017-13574-y PubMed DOI PMC
Garab G., Ughy B., Goss R.: Role of MGDG and non-bilayer lipid phases in the structure and dynamics of chloroplast thylakoid membranes. – In: Nakamura Y., Li-Beisson Y. (ed.): Lipids in Plant and Algae Development. Pp. 127-157. Springer, Cham: 2016. 10.1007/978-3-319-25979-6_6 PubMed DOI
Garab G., van Amerongen H.: Linear dichroism and circular dichroism in photosynthesis research. – Photosynth. Res. 101: 135-146, 2009. 10.1007/s11120-009-9424-4 PubMed DOI PMC
Garab G., Wells S., Finzi L., Bustamante C.: Helically organized macroaggregates of pigment protein complexes in chloroplasts – evidence from circular intensity differential scattering. – Biochemistry 27: 5839-5843, 1988b. 10.1021/bi00416a003 PubMed DOI
Garab G., Yaguzhinsky L.S., Dlouhý O. et al.: Structural and functional roles of non-bilayer lipid phases of chloroplast thylakoid membranes and mitochondrial inner membranes. – Prog. Lipid Res. 86: 101163, 2022. 10.1016/j.plipres.2022.101163 PubMed DOI
Gasanoff E.S., Yaguzhinsky L.S., Garab G.: Cardiolipin, non-bilayer structures and mitochondrial bioenergetics: relevance to cardiovascular disease. – Cells 10: 1721, 2021. 10.3390/cells10071721 PubMed DOI PMC
Gholizadeh F., Darkó É., Benczúr K. et al.: Growth light substantially affects both primary and secondary metabolic processes in Catharanthus roseus plants. – Photosynthetica 61: 451-460, 2023. 10.32615/ps.2023.037 DOI
Govindjee G.: In appreciation of an ingenious scientist and a great friend: Győző Garab. – Photosynthetica 61: 461-464, 2023. 10.32615/ps.2023.040 DOI
Hind G., Wall J.S., Várkonyi Z. et al.: Membrane crystals of plant light-harvesting complex II disassemble reversibly in light. – Plant Cell Physiol. 55: 1296-1303, 2014. 10.1093/pcp/pcu064 PubMed DOI PMC
Holm J.K., Várkonyi Z., Kovács L. et al.: Thermo-optically induced reorganizations in the main light harvesting antenna of plants. II. Indications for the role of LHCII-only macrodomains in thylakoids. – Photosynth. Res. 86: 275-282, 2005. 10.1007/s11120-005-5302-x PubMed DOI
Istokovics A., Simidjiev I., Lajko F., Garab G.: Characterization of the light induced reversible changes in the chiral macroorganization of the chromophores in chloroplast thylakoid membranes. Temperature dependence and effect of inhibitors. – Photosynth. Res. 54: 45-53, 1997. 10.1023/A:1005891708054 DOI
Janik-Zabrotowicz E., Gruszecki W.I.: LHCII – a protein like a ‘Swiss Army knife’ with many mechanisms and functions. – Photosynthetica 61: 405-416, 2023. 10.32615/ps.2023.025 DOI
Kaňa R., Šedivá B., Prášil O.: Microdomains heterogeneity in the thylakoid membrane proteins visualized by super-resolution microscopy. – Photosynthetica 61: 483-491, 2023. 10.32615/ps.2023.043 DOI
Kotakis C., Akhtar P., Zsiros O. et al.: Increased thermal stability of photosystem II and the macro-organization of thylakoid membranes, induced by co-solutes, associated with changes in the lipid-phase behaviour of thylakoid membranes. – Photosynthetica 56: 254-264, 2018. 10.1007/s11099-018-0782-z DOI
Kovács L., Damkjaer J., Kereïche S. et al.: Lack of the light-harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. – Plant Cell 18: 3106-3120, 2006. 10.1105/tpc.106.045641 PubMed DOI PMC
Krumova S.B., Dijkema C., de Waard P. et al.: Phase behavior of phosphatidylglycerol in spinach thylakoid membranes as revealed by 31P-NMR. – BBA-Biomembranes 1778: 997-1003, 2008. 10.1016/j.bbamem.2008.01.004 PubMed DOI
Krumova S., Petrova A., Koleva D. et al.: Priming of Pisum sativum seeds with stabilized Pluronic P85 nanomicelles: effects on seedling development and photosynthetic function. – Photosynthetica 61: 432-440, 2023. 10.32615/ps.2023.033 DOI
Liebisch T., Başoglu M., Jäger S., Büchel C.: Influence of reduced amounts of sulfoquinovosyl diacylglycerol on the thylakoid membranes of the diatom Thalassiosira pseudonana. – Photosynthetica 61: 425-431, 2023. 10.32615/ps.2023.032 DOI
Magyar M., Akhtar P., Sipka G. et al.: Dependence of the rate-limiting steps in the dark-to-light transition of photosystem II on the lipidic environment of the reaction center. – Photosynthetica 60: 147-156, 2022. 10.32615/ps.2022.016 DOI
Magyar M., Sipka G., Han W. et al.: Characterization of the rate-limiting steps in the dark-to-light transitions of closed photosystem II: Temperature dependence and invariance of waiting times during multiple light reactions. – Int. J. Mol. Sci. 24: 94, 2023. 10.3390/ijms24010094 PubMed DOI PMC
Magyar M., Sipka G., Kovács L. et al.: Rate-limiting steps in the dark-to-light transition of Photosystem II – revealed by chlorophyll-a fluorescence induction. – Sci. Rep.-UK 8: 2755, 2018. 10.1038/s41598-018-21195-2 PubMed DOI PMC
Miloslavina Y., Lambrev P.H., Jávorfi T. et al.: Anisotropic circular dichroism signatures of oriented thylakoid membranes and lamellar aggregates of LHCII. – Photosynth. Res. 111: 29-39, 2012. 10.1007/s11120-011-9664-y PubMed DOI
Nagy G., Garab G.: Neutron scattering in photosynthesis research: recent advances and perspectives for testing crop plants. – Photosynth. Res. 150: 41-49, 2021. 10.1007/s11120-020-00763-6 PubMed DOI PMC
Nagy G., Posselt D., Kovács L. et al.: Reversible membrane reorganizations during photosynthesis in vivo: revealed by small-angle neutron scattering. – Biochem. J. 436: 225-230, 2011. 10.1042/BJ20110180 PubMed DOI
Nagy G., Szabó M., Ünnep R. et al.: Modulation of the multilamellar membrane organization and of the chiral macrodomains in the diatom Phaeodactylum tricornutum revealed by small-angle neutron scattering and circular dichroism spectroscopy. – Photosynth. Res. 111: 71-79, 2012. 10.1007/s11120-011-9693-6 PubMed DOI
Nielsen J.T., Kulminskaya N.V., Bjerring M. et al.: In situ high-resolution structure of the baseplate antenna complex in Chlorobaculum tepidum. – Nat. Commun. 7: 12454, 2016. 10.1038/ncomms12454 PubMed DOI PMC
Páli T., Garab G., Horváth L.I., Kóta Z.: Functional significance of the lipid-protein interface in photosynthetic membranes. – Cell Mol. Life Sci. 60: 1591-1606, 2003. 10.1007/s00018-003-3173-x PubMed DOI PMC
Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 818. Springer, Dordrecht: 2004. 10.1007/978-1-4020-3218-9 DOI
Patil P.P., Nagy K., Ábrahám Á. et al.: Monitoring the photosynthetic activity at single cell level in Haematococcus lacustris. – Photosynthetica 61: 473-482, 2023. 10.32615/ps.2023.042 DOI
Posselt D., Nagy G., Kirkensgaard J.J.K. et al.: Small-angle neutron scattering study of the ultrastructure of chloroplast thylakoid membranes – periodicity and structural flexibility of the stroma lamellae. – BBA-Bioenergetics 1817: 1220-1228, 2012. 10.1016/j.bbabio.2012.01.012 PubMed DOI
Schansker G., Tóth S.Z., Holzwarth A.R., Garab G.: Chlorophyll a fluorescence: beyond the limits of the QA model. – Photosynth. Res. 120: 43-58, 2014. 10.1007/s11120-013-9806-5 PubMed DOI
Simidjiev I., Barzda V., Mustárdy L., Garab G.: Role of thylakoid lipids in the structural flexibility of lamellar aggregates of the isolated light-harvesting chlorophyll a/b complex of photosystem II. – Biochemistry 37: 4169-4173, 1998. 10.1021/bi972726m PubMed DOI
Simidjiev I., Stoylova S., Amenitsch H. et al.: Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro. – PNAS 97: 1473-1476, 2000. 10.1073/pnas.97.4.1473 PubMed DOI PMC
Simidjiev I., Várkonyi Z., Lambrev P.H., Garab G.: Isolation and characterization of lamellar aggregates of LHCII and LHCII-lipid macro-assemblies with light-inducible structural transitions. – In: Carpentier R. (ed.): Photosynthesis Research Protocols. Methods in Molecular Biology. Vol. 684. Pp. 127-138. Humana Press, Totowa: 2011. 10.1007/978-1-60761-925-3_12 PubMed DOI
Sipka G., Magyar M., Mezzetti A. et al.: Light-adapted charge-separated state of photosystem II: structural and functional dynamics of the closed reaction center. – Plant Cell 33: 1286-1302, 2021. 10.1093/plcell/koab008 PubMed DOI PMC
Sipka G., Müller P., Brettel K. et al.: Redox transients of P680 associated with the incremental chlorophyll-a fluorescence yield rises elicited by a series of saturating flashes in diuron-treated Photosystem II core complex of Thermosynechococcus vulcanus. – Physiol. Plantarum 166: 22-32, 2019. 10.1111/ppl.12945 PubMed DOI
Steinbach G., Besson F., Pomozi I., Garab G.: Differential polarization laser scanning microscopy: biological applications. – Proc. SPIE 5969, 2005. 10.1117/12.639362 DOI
Steinbach G., Pomozi I., Zsiros O. et al.: Imaging anisotropy using differential polarization laser scanning confocal microscopy. – Acta Histochem. 111: 317-326, 2009. 10.1016/j.acthis.2008.11.021 PubMed DOI
Szabó M., Lepetit B., Goss R. et al.: Structurally flexible macro-organization of the pigment–protein complexes of the diatom Phaeodactylum tricornutum. – Photosynth. Res. 95: 237-245, 2008. 10.1007/s11120-007-9252-3 PubMed DOI
Széles E., Kuntam S., Vidal-Meireles A. et al.: Single-cell microfluidics in combination with chlorophyll a fluorescence measurements to assess the lifetime of the Chlamydomonas PSBO protein. – Photosynthetica 61: 417-424, 2023. 10.32615/ps.2023.028 DOI
Ünnep R., Paul S., Zsiros O. et al.: Thylakoid membrane reorganizations revealed by small-angle neutron scattering of Monstera deliciosa leaves associated with non-photochemical quenching. – Open Biol. 10: 200144, 2020. 10.1098/rsob.200144 PubMed DOI PMC
Ünnep R., Zsiros O., Hörcsik Z. et al.: Low-pH induced reversible reorganizations of chloroplast thylakoid membranes – As revealed by small-angle neutron scattering. – BBA-Bioenergetics 1858: 360-365, 2017. 10.1016/j.bbabio.2017.02.010 PubMed DOI
Ünnep R., Zsiros O., Solymosi K. et al.: The ultrastructure and flexibility of thylakoid membranes in leaves and isolated chloroplasts as revealed by small-angle neutron scattering. – BBA-Bioenergetics 1837: 1572-1580, 2014. 10.1016/j.bbabio.2014.01.017 PubMed DOI
Vujin J., Szabó T., Panajotovic R. et al.: Photosynthetic reaction center/graphene bio-hybrid for low-power optoelectronics. – Photosynthetica 61: 465-472, 2023. 10.32615/ps.2023.041 DOI