Thylakoid membrane reorganizations revealed by small-angle neutron scattering of Monstera deliciosa leaves associated with non-photochemical quenching
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32931722
PubMed Central
PMC7536078
DOI
10.1098/rsob.200144
Knihovny.cz E-zdroje
- Klíčová slova
- chloroplast thylakoid membranes, grana, lamellar repeat distance, non-photochemical quenching, small-angle neutron scattering,
- MeSH
- Araceae chemie MeSH
- difrakce rentgenového záření * MeSH
- intracelulární membrány chemie metabolismus MeSH
- listy rostlin chemie MeSH
- maloúhlový rozptyl * MeSH
- neutrony * MeSH
- světlo MeSH
- tylakoidy genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Non-photochemical quenching (NPQ) is an important photoprotective mechanism in plants and algae. Although the process is extensively studied, little is known about its relationship with ultrastructural changes of the thylakoid membranes. In order to better understand this relationship, we studied the effects of illumination on the organization of thylakoid membranes in Monstera deliciosa leaves. This evergreen species is known to exhibit very large NPQ and to possess giant grana with dozens of stacked thylakoids. It is thus ideally suited for small-angle neutron scattering measurements (SANS)-a non-invasive technique, which is capable of providing spatially and statistically averaged information on the periodicity of the thylakoid membranes and their rapid reorganizations in vivo. We show that NPQ-inducing illumination causes a strong decrease in the periodic order of granum thylakoid membranes. Development of NPQ and light-induced ultrastructural changes, as well as the relaxation processes, follow similar kinetic patterns. Surprisingly, whereas NPQ is suppressed by diuron, it impedes only the relaxation of the structural changes and not its formation, suggesting that structural changes do not cause but enable NPQ. We also demonstrate that the diminishment of SANS peak does not originate from light-induced redistribution and reorientation of chloroplasts inside the cells.
Biological Research Centre Institute of Biophysics Temesvári körút 62 6726 Szeged Hungary
Biological Research Centre Institute of Plant Biology 6726 Szeged Hungary
European Spallation Source ESS ERIC PO Box 176 221 00 Lund Sweden
Forschungszentrum Jülich GmbH Jülich Centre for Neutron Science at MLZ 85748 Garching Germany
Institut Laue Langevin BP 156 38042 Grenoble Cedex 9 France
Max Planck Institute for Chemical Energy Conversion Stiftstr 34 36 45470 Mülheim a d Ruhr Germany
Zobrazit více v PubMed
Horton P. 2012. Optimization of light harvesting and photoprotection: molecular mechanisms and physiological consequences. Phil. Trans. R Soc. B 367, 3455–3465. (10.1098/rstb.2012.0069) PubMed DOI PMC
Lambrev PH, Miloslavina Y, Jahns P, Holzwarth AR. 2012. On the relationship between non-photochemical quenching and photoprotection of Photosystem II. Biochim. Biophys. Acta (BBA) Bioenerg. 1817, 760–769. (10.1016/j.bbabio.2012.02.002) PubMed DOI
Nilkens M, Kress E, Lambrev P, Miloslavina Y, Müller M, Holzwarth AR, Jahns P. 2010. Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochim. Biophys. Acta 1797, 466–475. (10.1016/j.bbabio.2010.01.001) PubMed DOI
Harbinson J. 2018. Chlorophyll fluorescence as a tool for describing the operation and regulation of photosynthesis in vivo. In Light harvesting in photosynthesis (eds Croce R, van Grondelle R, van Amerongen H, van Stokkum I). Boca Raton, FL: CRC Press.
Horton P, Ruban AV, Walters RG. 1996. Regulation of Light Harvesting in Green Plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 655–684. (10.1146/annurev.arplant.47.1.655) PubMed DOI
Murchie EH, Lawson T. 2013. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J. Exp. Bot. 64, 3983–3998. (10.1093/jxb/ert208) PubMed DOI
van Amerongen H, Chmeliov J. 2019. Instantaneous switching between different modes of non-photochemical quenching in plants. Consequences for increasing biomass production. Biochim. Biophys. Acta (BBA) Bioenerg. 1861, 148119 (10.1016/j.bbabio.2019.148119) PubMed DOI
Pawlak K, Paul S, Liu C, Reus M, Yang C, Holzwarth AR. 2020. On the PsbS-induced quenching in the plant major light-harvesting complex LHCII studied in proteoliposomes. Photosynth. Res. 144, 195–208. (10.1007/s11120-020-00740-z) PubMed DOI
Holzwarth AR, Miloslavina Y, Nilkens M, Jahns P. 2009. Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chem. Phys. Lett. 438, 262–267. (10.1016/j.cplett.2009.10.085) DOI
Li X-P, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK. 2000. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403, 391–395. (10.1038/35000131) PubMed DOI
Li XP, Gilmore AM, Caffarri S, Bassi R, Golan T, Kramer D, Niyogi KK. 2004. Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J. Biol. Chem. 279, 22 866–22 874. (10.1074/jbc.M402461200) PubMed DOI
Jahns P, Holzwarth AR. 2012. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta (BBA) Bioenerg. 1817, 182–193. (10.1016/j.bbabio.2011.04.012) PubMed DOI
Holt NE, Zigmantas D, Valkunas L, Li X-P, Niyogi KK, Fleming GR. 2005. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307, 433–436. (10.1126/science.1105833) PubMed DOI
Yamamoto HY, Bugos RC, David Hieber A. 1999. Biochemistry and Molecular Biology of the Xanthophyll Cycle. In The photochemistry of carotenoids (eds Frank HA, Young AJ, Britton G, Cogdell RJ), pp. 293–303. Dordrecht, The Netherlands: Springer Netherlands.
Demmig-Adams B. 1990. Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim. Biophys. Acta (BBA) Bioenerg. 1020, 1–24. (10.1016/0005-2728(90)90088-L) DOI
Ruban AV. 2016. Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol. 170, 1903–1916. (10.1104/pp.15.01935) PubMed DOI PMC
Garab G. 2014. Structural Changes and Non-Photochemical Quenching of Chlorophyll a Fluorescence in Oxygenic Photosynthetic Organisms. In (eds Demming-Adams B, Garab G, Adams WW III, Govindjee), pp. 343–71. Dordrecht, The Netherlands: Springer Science+Business Media.
Nevo R, Charuvi D, Tsabari O, Reich Z. 2012. Composition, architecture and dynamics of the photosynthetic apparatus in higher plants. Plant J. 70, 157–176. (10.1111/j.1365-313X.2011.04876.x) PubMed DOI
Janik E, et al. 2013. Molecular architecture of plant thylakoids under physiological and light stress conditions: a study of lipid-light-harvesting complex II model membranes. Plant Cell. 25, 2155–2170. (10.1105/tpc.113.113076) PubMed DOI PMC
Iwai M, Yokono M, Nakano A. 2014. Visualizing structural dynamics of thylakoid membranes. Sci. Rep. 4, 3768 (10.1038/srep03768) PubMed DOI PMC
Kirchhoff H. 2019. Chloroplast ultrastructure in plants. New Phytologist. 223, 565–574. (10.1111/nph.15730) PubMed DOI
Lambrev PH, Akhtar P. 2019. Macroorganisation and flexibility of thylakoid membranes. Biochem. J. 476, 2981–3018. (10.1042/BCJ20190080) PubMed DOI
Kouřil R, Dekker JP, Boekema EJ. 2012. Supramolecular organization of photosystem II in green plants. Biochim. Biophys. Acta. 1817, 2–12. (10.1016/j.bbabio.2011.05.024) PubMed DOI
Gruszecki WI. 2013. Structure–function relationship of the plant photosynthetic pigment–protein complex LHCII studied with molecular spectroscopy techniques. In Advances in protein chemistry and structural biology, vol. 93 (ed. Christov CZ.), pp. 81–93. New York, NY: Academic Press. PubMed
Kiss AZ, Ruban AV, Horton P. 2008. The PsbS protein controls the organization of the photosystem ii antenna in higher plant thylakoid membranes. J. Biol. Chem. 283, 3972–3978. (10.1074/jbc.M707410200) PubMed DOI
Betterle N, Ballottari M, Zorzan S, de Bianchi S, Cazzaniga S, Dall'Osto L, Morosinotto T, Bassi R. 2009. Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J. Biol. Chem. 284, 15 255–15 266. (10.1074/jbc.M808625200) PubMed DOI PMC
Johnson MP, Goral TK, Duffy CDP, Brain APR, Mullineaux CW, Ruban AV. 2011. Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell 23, 1468–1479. (10.1105/tpc.110.081646) PubMed DOI PMC
Damkjær JT, Kereïche S, Johnson MP, Kovacs L, Kiss AZ, Boekema EJ, Ruban AV, Horton P, Jansson S. 2009. The photosystem II light-harvesting protein Lhcb3 affects the macrostructure of photosystem II and the rate of state transitions in Arabidopsis. Plant Cell. 21, 3245–3256. (10.1105/tpc.108.064006) PubMed DOI PMC
Ware MA, Giovagnetti V, Belgio E, Ruban AV. 2015. PsbS protein modulates non-photochemical chlorophyll fluorescence quenching in membranes depleted of photosystems. J. Photochem. Photobiol., B 152, 301–307. (10.1016/j.jphotobiol.2015.07.016) PubMed DOI
Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M, Garab G, Croce R, Holzwarth AR. 2008. Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett. 582, 3625–3631. (10.1016/j.febslet.2008.09.044) PubMed DOI
Ruban AV, Mullineaux CW. 2014. Non-Photochemical Fluorescence Quenching and the Dynamics of Photosystem II Structure. In Non-Photochemical quenching and energy dissipation in plants, algae and cyanobacteria (eds Demmig-Adams B, Garab G, Adams W III, Govindjee), pp. 373–386. Dordrecht, The Netherlands: Springer Netherlands.
Demmig-Adams B, Garab G, Adams W III, Govindjee. 2014. Non-Photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Dordrecht, The Netherlands: Springer Netherlands.
de Bianchi S, Dall'Osto L, Tognon G, Morosinotto T, Bassi R. 2008. Minor antenna proteins CP24 and CP26 affect the interactions between photosystem II subunits and the electron transport rate in grana membranes of Arabidopsis. Plant Cell. 20, 1012–1028. (10.1105/tpc.107.055749) PubMed DOI PMC
Kirchhoff H. 2013. Architectural switches in plant thylakoid membranes. Photosynth. Res. 116, 481–487. (10.1007/s11120-013-9843-0) PubMed DOI
Malnoë A, Schultink A, Shahrasbi S, Rumeau D, Havaux M, Niyogi KK. 2018. The plastid lipocalin LCNP is required for sustained photoprotective energy dissipation in Arabidopsis. Plant Cell. 30, 196–208. (10.1105/tpc.17.00536) PubMed DOI PMC
Krieger A, Moya I, Weis E. 1992. Energy-dependent quenching of chlorophyll a fluorescence: effect of pH on stationary fluorescence and picosecond-relaxation kinetics in thylakoid membranes and Photosystem II preparations. Biochim. Biophys. Acta (BBA) Bioenerg. 1102, 167–176. (10.1016/0005-2728(92)90097-L) DOI
Horton P. 2014. Developments in Research on Non-Photochemical Fluorescence Quenching: Emergence of Key Ideas, Theories and Experimental Approaches. In Non-Photochemical quenching and energy dissipation in plants, algae and cyanobacteria (eds Demmig-Adams B, Garab G, Adams W III, Govindjee), pp. 73–95. Dordrecht, The Netherlands: Springer Netherlands.
Heller WT, Littrell KC. 2009. Small-Angle Neutron Scattering for Molecular Biology: Basics and Instrumentation. In Micro and nano technologies in bioanalysis: methods and protocols (eds Foote RS, Lee JW), pp. 293–305. Totowa, NJ: Humana Press. PubMed
Mahieu E, Gabel F. 2018. Biological small-angle neutron scattering: recent results and development. Acta Crystallographica Section D 74, 715–726. (10.1107/S2059798318005016) PubMed DOI
Zaccai G. 2012. Straight lines of neutron scattering in biology: a review of basic controls in SANS and EINS. Eur. Biophys. J. 41, 781–787. (10.1007/s00249-012-0825-5) PubMed DOI
Nagy G, et al. 2011. Reversible membrane reorganizations during photosynthesis in vivo: revealed by small-angle neutron scattering. Biochem. J. 436, 225–230. (10.1042/BJ20110180) PubMed DOI
Nagy G, et al. 2014. Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo. Proc. Natl Acad. Sci. USA 111, 5042–5047. (10.1073/pnas.1322494111) PubMed DOI PMC
Nagy G, et al. 2012. Modulation of the multilamellar membrane organization and of the chiral macrodomains in the diatom Phaeodactylum tricornutum revealed by small-angle neutron scattering and circular dichroism spectroscopy. Photosynth. Res. 111, 71–79. (10.1007/s11120-011-9693-6) PubMed DOI
Liberton M, Page LE, O'Dell WB, O'Neill H, Mamontov E, Urban VS, Pakrasi HB. 2013. Organization and flexibility of cyanobacterial thylakoid membranes examined by neutron scattering. J. Biol. Chem. 288, 3632–3640. (10.1074/jbc.M112.416933) PubMed DOI PMC
Liberton M, Collins AM, Page LE, O'Dell WB, O'Neill H, Urban VS, Timlin JA, Pakrasi HB. 2013. Probing the consequences of antenna modification in cyanobacteria. Photosynth. Res. 118, 17–24. (10.1007/s11120-013-9940-0) PubMed DOI
Posselt D, et al. 2012. Small-angle neutron scattering study of the ultrastructure of chloroplast thylakoid membranes: periodicity and structural flexibility of the stroma lamellae. Biochim. Biophys. Acta 1817, 1220–1228. (10.1016/j.bbabio.2012.01.012) PubMed DOI
Bar Eyal L, et al. 2017. Changes in aggregation states of light-harvesting complexes as a mechanism for modulating energy transfer in desert crust cyanobacteria. Proc. Natl Acad. Sci. USA 114, 9481–9486. (10.1073/pnas.1708206114) PubMed DOI PMC
Herdean A, et al. 2016. A voltage-dependent chloride channel fine-tunes photosynthesis in plants. Nat. Commun. 7, 11654 (10.1038/ncomms11654) PubMed DOI PMC
Ünnep R, Zsiros O, Horcsik Z, Marko M, Jajoo A, Kohlbrecher J, Garab G, Nagy G. 2017. Low-pH induced reversible reorganizations of chloroplast thylakoid membranes—as revealed by small-angle neutron scattering. Biochim. Biophys. Acta 1858, 360–365. (10.1016/j.bbabio.2017.02.010) PubMed DOI
Demmig-Adams B, et al. 2006. Modulation of PsbS and flexible vs sustained energy dissipation by light environment in different species. Physiol. Plant. 127, 670–680. (10.1111/j.1399-3054.2006.00698.x) DOI
Demmig-Adams B, Muller O, Stewart JJ, Cohu CM, Adams WW. 2015. Chloroplast thylakoid structure in evergreen leaves employing strong thermal energy dissipation. J. Photochem. Photobiol., B 152, 357–366. (10.1016/j.jphotobiol.2015.03.014) PubMed DOI
Fruhwirth T, Fritz G, Freiberger N, Glatter O. 2004. Structure and order in lamellar phases determined by small-angle scattering. J. Appl. Crystallogr. 37, 703–710. (10.1107/S0021889804012956) DOI
Karlsson PM, et al. 2015. The Arabidopsis thylakoid transporter PHT4;1 influences phosphate availability for ATP synthesis and plant growth. Plant J. 84, 99–110. (10.1111/tpj.12962) PubMed DOI
Demmig-Adams B, Adams WW. 2006. 3rd. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol. 172, 11–21. (10.1111/j.1469-8137.2006.01835.x) PubMed DOI
Anderson JM, Horton P, Kim EH, Chow WS. 2012. Towards elucidation of dynamic structural changes of plant thylakoid architecture. Phil. Trans. R Soc. B 367, 3515–3524. (10.1098/rstb.2012.0373) PubMed DOI PMC
Ünnep R, et al. 2014. The ultrastructure and flexibility of thylakoid membranes in leaves and isolated chloroplasts as revealed by small-angle neutron scattering. Biochim. Biophys. Acta. 1837, 1572–1580. (10.1016/j.bbabio.2014.01.017) PubMed DOI
Ünnep R, Garab G, Nagy G, Tóth T, Moyet L, Kovacs L. et al 2013. Nature and mechanisms of reorganizations in the multilamellar photosynthetic membrane systems of plants and algae studied by SANS. Grenoble, France: Institut Laue-Langevin (ILL). See https://doi.ill.fr/10.5291/ILL-DATA.8-02-687.
Radulescu A, et al. 2016. Studying soft-matter and biological systems over a wide length-scale from nanometer and micrometer sizes at the small-angle neutron diffractometer KWS-2. J. Vis. Exp. 118, e54639 (10.3791/54639) PubMed DOI PMC
Pipich V. 2015. QtiSAS :: SA(N)S+ framework. See http://qtisas.com/doku.php.
Nagy G, et al. 2013. Kinetics of structural reorganizations in multilamellar photosynthetic membranes monitored by small angle neutron scattering. Eur. Phys. J. E. 36, 69 (10.1140/epje/i2013-13069-0) PubMed DOI
Koizumi M, Takahashi K, Mineuchi K, Nakamura T, Kano H. 1998. Light gradients and the transverse distribution of chlorophyll fluorescence in mangrove and camellia leaves. Ann. Bot. 81, 527–533. (10.1006/anbo.1998.0589) DOI
Murakami S, Packer L. 1970. Protonation and chloroplast membrane structure. J. Cell Biol. 47, 332–351. (10.1083/jcb.47.2.332) PubMed DOI PMC
Rantala S, Tikkanen M. 2018. Phosphorylation-induced lateral rearrangements of thylakoid protein complexes upon light acclimation. Plant Direct. 2, e00039 (10.1002/pld3.39) PubMed DOI PMC
Albertsson P-Å. 2001. A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci. 6, 349–354. (10.1016/S1360-1385(01)02021-0) PubMed DOI
Anderson JM. 1989. The grana margins of plant thylakoid membranes. Physiol. Plant. 76, 243–248. (10.1111/j.1399-3054.1989.tb05640.x) DOI
Jacobson ER. 2007. Infectious diseases and pathology of reptiles: color atlas and text, 1st edn Boca Raton, FL: CRC Press.
Ruban AV, Johnson MP, Duffy CDP. 2012. The photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta (BBA) Bioenerg. 1817, 167–181. (10.1016/j.bbabio.2011.04.007) PubMed DOI
Jahns P, Latowski D, Strzalka K. 2009. Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. Biochim. Biophys. Acta (BBA) Bioenerg. 1787, 3–14. (10.1016/j.bbabio.2008.09.013) PubMed DOI
Ruban AV, et al. 2007. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450, 575–578. (10.1038/nature06262) PubMed DOI
Rozak PR, Seiser RM, Wacholtz WF, Wise RR. 2002. Rapid, reversible alterations in spinach thylakoid appression upon changes in light intensity. Plant Cell Environ. 25, 421–429. (10.1046/j.0016-8025.2001.00823.x) DOI
Arnoux P, Morosinotto T, Saga G, Bassi R, Pignol D. 2009. A structural basis for the pH-dependent xanthophyll cycle in Arabidopsis thaliana. Plant Cell. 21, 2036–2044. (10.1105/tpc.109.068007) PubMed DOI PMC
Xu P, Tian L, Kloz M, Croce R. 2015. Molecular insights into zeaxanthin-dependent quenching in higher plants. Sci. Rep. 5, 13679 (10.1038/srep13679) PubMed DOI PMC
Ruban AV, Johnson MP. 2015. Visualizing the dynamic structure of the plant photosynthetic membrane. Nature Plants 1, 15161 (10.1038/nplants.2015.161) PubMed DOI
Goss R, Lohr M, Latowski D, Grzyb J, Vieler A, Wilhelm C, Strzalka K. 2005. Role of hexagonal structure-forming lipids in diadinoxanthin and violaxanthin solubilization and de-epoxidation. Biochemistry 44, 4028–4036. (10.1021/bi047464k) PubMed DOI
Garab G, et al. 2017. Lipid polymorphism in chloroplast thylakoid membranes—as revealed by 31P-NMR and time-resolved merocyanine fluorescence spectroscopy. Sci. Rep. 7, 13343 (10.1038/s41598-017-13574-y) PubMed DOI PMC
Jajoo A, Szabó M, Zsiros O, Garab G. 2012. Low pH induced structural reorganization in thylakoid membranes. Biochim. Biophys. Acta (BBA) Bioenerg. 1817, 1388–1391. (10.1016/j.bbabio.2012.01.002) PubMed DOI
Garab G. 2016. Self-assembly and structural–functional flexibility of oxygenic photosynthetic machineries: personal perspectives. Photosynth. Res. 127, 131–150. (10.1007/s11120-015-0192-z) PubMed DOI
Adams PG, Vasilev C, Hunter CN, Johnson MP. 2018. Correlated fluorescence quenching and topographic mapping of Light-Harvesting Complex II within surface-assembled aggregates and lipid bilayers. Biochim. Biophys. Acta (BBA) – Bioenerg. 1859, 1075–1085. (10.1016/j.bbabio.2018.06.011) PubMed DOI PMC
Holzwarth AR, Lenk D, Jahns P. 2013. On the analysis of non-photochemical chlorophyll fluorescence quenching curves. I. Theoretical considerations . Biochim. Biophys. Acta (BBA) Bioenerg. 1827, 786–792. (10.1016/j.bbabio.2013.02.011) PubMed DOI
Vogelman TC, Nishio JN, Smith WK. 1996. Leaves and light capture: light propagation and gradients of carbon fixation within leaves. Trends Plants Sci. 1, 1360–1385. (10.1016/S1360-1385(96)80031-8) DOI
Nagy G. 2011. Structure and dynamics of photosynthetic membranes as revealed by neutron scattering. Grenoble, France: Université de Grenoble.
Stingaciu L-R, O'Neill HM, Liberton M, Pakrasi HB, Urban VS. 2019. Influence of chemically disrupted photosynthesis on cyanobacterial thylakoid dynamics in Synechocystis sp. PCC 6803. Sci. Rep. 9, 5711 (10.1038/s41598-019-42024-0) PubMed DOI PMC
Kadota A, Sato Y, Wada M. 2000. Intracellular chloroplast photorelocation in the moss Physcomitrella patens is mediated by phytochrome as well as by a blue-light receptor. Planta 210, 932–937. (10.1007/s004250050700) PubMed DOI
Suetsugu N, Wada M. 2012. Chloroplast photorelocation movement: a sophisticated strategy for chloroplasts to perform efficient photosynthesis. In Advances in photosynthesis (ed. Najafpour MM.), pp. 215–234. Rijeka, Croatia: IntechOpen.
Cazzaniga S, Dall’ Osto L, Kong S-G, Wada M, Bassi R. 2013. Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photooxidative stress in Arabidopsis. Plant J. 76, 568–579. (10.1111/tpj.12314) PubMed DOI
Kong SG, Arai Y, Suetsugu N, Yanagida T, Wada M. 2013. Rapid severing and motility of chloroplast-actin filaments are required for the chloroplast avoidance response in Arabidopsis. Plant Cell. 25, 572–590. (10.1105/tpc.113.109694) PubMed DOI PMC
Wada M. 2013. Chloroplast movement. Plant Sci. 210, 177–182. (10.1016/j.plantsci.2013.05.016) PubMed DOI
Short TW, Briggs WR. 1994. The transduction of blue light signals in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 143–171. (10.1146/annurev.pp.45.060194.001043) DOI
Zurzycki J. 1980. Blue light-induced intracellular movements. In The blue light syndrome: proceedings in life sciences (ed. Senger H.). Berlin, Germany: Springer.
Banaś AK, Aggarwal C, Łabuz J, Sztatelman O, Gabryś H. 2012. Blue light signalling in chloroplast movements. J. Exp. Bot. 63, 1559–1574. (10.1093/jxb/err429) PubMed DOI