Thylakoid membrane reorganizations revealed by small-angle neutron scattering of Monstera deliciosa leaves associated with non-photochemical quenching

. 2020 Sep ; 10 (9) : 200144. [epub] 20200916

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32931722

Non-photochemical quenching (NPQ) is an important photoprotective mechanism in plants and algae. Although the process is extensively studied, little is known about its relationship with ultrastructural changes of the thylakoid membranes. In order to better understand this relationship, we studied the effects of illumination on the organization of thylakoid membranes in Monstera deliciosa leaves. This evergreen species is known to exhibit very large NPQ and to possess giant grana with dozens of stacked thylakoids. It is thus ideally suited for small-angle neutron scattering measurements (SANS)-a non-invasive technique, which is capable of providing spatially and statistically averaged information on the periodicity of the thylakoid membranes and their rapid reorganizations in vivo. We show that NPQ-inducing illumination causes a strong decrease in the periodic order of granum thylakoid membranes. Development of NPQ and light-induced ultrastructural changes, as well as the relaxation processes, follow similar kinetic patterns. Surprisingly, whereas NPQ is suppressed by diuron, it impedes only the relaxation of the structural changes and not its formation, suggesting that structural changes do not cause but enable NPQ. We also demonstrate that the diminishment of SANS peak does not originate from light-induced redistribution and reorientation of chloroplasts inside the cells.

Zobrazit více v PubMed

Horton P. 2012. Optimization of light harvesting and photoprotection: molecular mechanisms and physiological consequences. Phil. Trans. R Soc. B 367, 3455–3465. (10.1098/rstb.2012.0069) PubMed DOI PMC

Lambrev PH, Miloslavina Y, Jahns P, Holzwarth AR. 2012. On the relationship between non-photochemical quenching and photoprotection of Photosystem II. Biochim. Biophys. Acta (BBA) Bioenerg. 1817, 760–769. (10.1016/j.bbabio.2012.02.002) PubMed DOI

Nilkens M, Kress E, Lambrev P, Miloslavina Y, Müller M, Holzwarth AR, Jahns P. 2010. Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochim. Biophys. Acta 1797, 466–475. (10.1016/j.bbabio.2010.01.001) PubMed DOI

Harbinson J. 2018. Chlorophyll fluorescence as a tool for describing the operation and regulation of photosynthesis in vivo. In Light harvesting in photosynthesis (eds Croce R, van Grondelle R, van Amerongen H, van Stokkum I). Boca Raton, FL: CRC Press.

Horton P, Ruban AV, Walters RG. 1996. Regulation of Light Harvesting in Green Plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 655–684. (10.1146/annurev.arplant.47.1.655) PubMed DOI

Murchie EH, Lawson T. 2013. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J. Exp. Bot. 64, 3983–3998. (10.1093/jxb/ert208) PubMed DOI

van Amerongen H, Chmeliov J. 2019. Instantaneous switching between different modes of non-photochemical quenching in plants. Consequences for increasing biomass production. Biochim. Biophys. Acta (BBA) Bioenerg. 1861, 148119 (10.1016/j.bbabio.2019.148119) PubMed DOI

Pawlak K, Paul S, Liu C, Reus M, Yang C, Holzwarth AR. 2020. On the PsbS-induced quenching in the plant major light-harvesting complex LHCII studied in proteoliposomes. Photosynth. Res. 144, 195–208. (10.1007/s11120-020-00740-z) PubMed DOI

Holzwarth AR, Miloslavina Y, Nilkens M, Jahns P. 2009. Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chem. Phys. Lett. 438, 262–267. (10.1016/j.cplett.2009.10.085) DOI

Li X-P, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK. 2000. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403, 391–395. (10.1038/35000131) PubMed DOI

Li XP, Gilmore AM, Caffarri S, Bassi R, Golan T, Kramer D, Niyogi KK. 2004. Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J. Biol. Chem. 279, 22 866–22 874. (10.1074/jbc.M402461200) PubMed DOI

Jahns P, Holzwarth AR. 2012. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta (BBA) Bioenerg. 1817, 182–193. (10.1016/j.bbabio.2011.04.012) PubMed DOI

Holt NE, Zigmantas D, Valkunas L, Li X-P, Niyogi KK, Fleming GR. 2005. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307, 433–436. (10.1126/science.1105833) PubMed DOI

Yamamoto HY, Bugos RC, David Hieber A. 1999. Biochemistry and Molecular Biology of the Xanthophyll Cycle. In The photochemistry of carotenoids (eds Frank HA, Young AJ, Britton G, Cogdell RJ), pp. 293–303. Dordrecht, The Netherlands: Springer Netherlands.

Demmig-Adams B. 1990. Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim. Biophys. Acta (BBA) Bioenerg. 1020, 1–24. (10.1016/0005-2728(90)90088-L) DOI

Ruban AV. 2016. Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol. 170, 1903–1916. (10.1104/pp.15.01935) PubMed DOI PMC

Garab G. 2014. Structural Changes and Non-Photochemical Quenching of Chlorophyll a Fluorescence in Oxygenic Photosynthetic Organisms. In (eds Demming-Adams B, Garab G, Adams WW III, Govindjee), pp. 343–71. Dordrecht, The Netherlands: Springer Science+Business Media.

Nevo R, Charuvi D, Tsabari O, Reich Z. 2012. Composition, architecture and dynamics of the photosynthetic apparatus in higher plants. Plant J. 70, 157–176. (10.1111/j.1365-313X.2011.04876.x) PubMed DOI

Janik E, et al. 2013. Molecular architecture of plant thylakoids under physiological and light stress conditions: a study of lipid-light-harvesting complex II model membranes. Plant Cell. 25, 2155–2170. (10.1105/tpc.113.113076) PubMed DOI PMC

Iwai M, Yokono M, Nakano A. 2014. Visualizing structural dynamics of thylakoid membranes. Sci. Rep. 4, 3768 (10.1038/srep03768) PubMed DOI PMC

Kirchhoff H. 2019. Chloroplast ultrastructure in plants. New Phytologist. 223, 565–574. (10.1111/nph.15730) PubMed DOI

Lambrev PH, Akhtar P. 2019. Macroorganisation and flexibility of thylakoid membranes. Biochem. J. 476, 2981–3018. (10.1042/BCJ20190080) PubMed DOI

Kouřil R, Dekker JP, Boekema EJ. 2012. Supramolecular organization of photosystem II in green plants. Biochim. Biophys. Acta. 1817, 2–12. (10.1016/j.bbabio.2011.05.024) PubMed DOI

Gruszecki WI. 2013. Structure–function relationship of the plant photosynthetic pigment–protein complex LHCII studied with molecular spectroscopy techniques. In Advances in protein chemistry and structural biology, vol. 93 (ed. Christov CZ.), pp. 81–93. New York, NY: Academic Press. PubMed

Kiss AZ, Ruban AV, Horton P. 2008. The PsbS protein controls the organization of the photosystem ii antenna in higher plant thylakoid membranes. J. Biol. Chem. 283, 3972–3978. (10.1074/jbc.M707410200) PubMed DOI

Betterle N, Ballottari M, Zorzan S, de Bianchi S, Cazzaniga S, Dall'Osto L, Morosinotto T, Bassi R. 2009. Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J. Biol. Chem. 284, 15 255–15 266. (10.1074/jbc.M808625200) PubMed DOI PMC

Johnson MP, Goral TK, Duffy CDP, Brain APR, Mullineaux CW, Ruban AV. 2011. Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell 23, 1468–1479. (10.1105/tpc.110.081646) PubMed DOI PMC

Damkjær JT, Kereïche S, Johnson MP, Kovacs L, Kiss AZ, Boekema EJ, Ruban AV, Horton P, Jansson S. 2009. The photosystem II light-harvesting protein Lhcb3 affects the macrostructure of photosystem II and the rate of state transitions in Arabidopsis. Plant Cell. 21, 3245–3256. (10.1105/tpc.108.064006) PubMed DOI PMC

Ware MA, Giovagnetti V, Belgio E, Ruban AV. 2015. PsbS protein modulates non-photochemical chlorophyll fluorescence quenching in membranes depleted of photosystems. J. Photochem. Photobiol., B 152, 301–307. (10.1016/j.jphotobiol.2015.07.016) PubMed DOI

Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M, Garab G, Croce R, Holzwarth AR. 2008. Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett. 582, 3625–3631. (10.1016/j.febslet.2008.09.044) PubMed DOI

Ruban AV, Mullineaux CW. 2014. Non-Photochemical Fluorescence Quenching and the Dynamics of Photosystem II Structure. In Non-Photochemical quenching and energy dissipation in plants, algae and cyanobacteria (eds Demmig-Adams B, Garab G, Adams W III, Govindjee), pp. 373–386. Dordrecht, The Netherlands: Springer Netherlands.

Demmig-Adams B, Garab G, Adams W III, Govindjee. 2014. Non-Photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Dordrecht, The Netherlands: Springer Netherlands.

de Bianchi S, Dall'Osto L, Tognon G, Morosinotto T, Bassi R. 2008. Minor antenna proteins CP24 and CP26 affect the interactions between photosystem II subunits and the electron transport rate in grana membranes of Arabidopsis. Plant Cell. 20, 1012–1028. (10.1105/tpc.107.055749) PubMed DOI PMC

Kirchhoff H. 2013. Architectural switches in plant thylakoid membranes. Photosynth. Res. 116, 481–487. (10.1007/s11120-013-9843-0) PubMed DOI

Malnoë A, Schultink A, Shahrasbi S, Rumeau D, Havaux M, Niyogi KK. 2018. The plastid lipocalin LCNP is required for sustained photoprotective energy dissipation in Arabidopsis. Plant Cell. 30, 196–208. (10.1105/tpc.17.00536) PubMed DOI PMC

Krieger A, Moya I, Weis E. 1992. Energy-dependent quenching of chlorophyll a fluorescence: effect of pH on stationary fluorescence and picosecond-relaxation kinetics in thylakoid membranes and Photosystem II preparations. Biochim. Biophys. Acta (BBA) Bioenerg. 1102, 167–176. (10.1016/0005-2728(92)90097-L) DOI

Horton P. 2014. Developments in Research on Non-Photochemical Fluorescence Quenching: Emergence of Key Ideas, Theories and Experimental Approaches. In Non-Photochemical quenching and energy dissipation in plants, algae and cyanobacteria (eds Demmig-Adams B, Garab G, Adams W III, Govindjee), pp. 73–95. Dordrecht, The Netherlands: Springer Netherlands.

Heller WT, Littrell KC. 2009. Small-Angle Neutron Scattering for Molecular Biology: Basics and Instrumentation. In Micro and nano technologies in bioanalysis: methods and protocols (eds Foote RS, Lee JW), pp. 293–305. Totowa, NJ: Humana Press. PubMed

Mahieu E, Gabel F. 2018. Biological small-angle neutron scattering: recent results and development. Acta Crystallographica Section D 74, 715–726. (10.1107/S2059798318005016) PubMed DOI

Zaccai G. 2012. Straight lines of neutron scattering in biology: a review of basic controls in SANS and EINS. Eur. Biophys. J. 41, 781–787. (10.1007/s00249-012-0825-5) PubMed DOI

Nagy G, et al. 2011. Reversible membrane reorganizations during photosynthesis in vivo: revealed by small-angle neutron scattering. Biochem. J. 436, 225–230. (10.1042/BJ20110180) PubMed DOI

Nagy G, et al. 2014. Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo. Proc. Natl Acad. Sci. USA 111, 5042–5047. (10.1073/pnas.1322494111) PubMed DOI PMC

Nagy G, et al. 2012. Modulation of the multilamellar membrane organization and of the chiral macrodomains in the diatom Phaeodactylum tricornutum revealed by small-angle neutron scattering and circular dichroism spectroscopy. Photosynth. Res. 111, 71–79. (10.1007/s11120-011-9693-6) PubMed DOI

Liberton M, Page LE, O'Dell WB, O'Neill H, Mamontov E, Urban VS, Pakrasi HB. 2013. Organization and flexibility of cyanobacterial thylakoid membranes examined by neutron scattering. J. Biol. Chem. 288, 3632–3640. (10.1074/jbc.M112.416933) PubMed DOI PMC

Liberton M, Collins AM, Page LE, O'Dell WB, O'Neill H, Urban VS, Timlin JA, Pakrasi HB. 2013. Probing the consequences of antenna modification in cyanobacteria. Photosynth. Res. 118, 17–24. (10.1007/s11120-013-9940-0) PubMed DOI

Posselt D, et al. 2012. Small-angle neutron scattering study of the ultrastructure of chloroplast thylakoid membranes: periodicity and structural flexibility of the stroma lamellae. Biochim. Biophys. Acta 1817, 1220–1228. (10.1016/j.bbabio.2012.01.012) PubMed DOI

Bar Eyal L, et al. 2017. Changes in aggregation states of light-harvesting complexes as a mechanism for modulating energy transfer in desert crust cyanobacteria. Proc. Natl Acad. Sci. USA 114, 9481–9486. (10.1073/pnas.1708206114) PubMed DOI PMC

Herdean A, et al. 2016. A voltage-dependent chloride channel fine-tunes photosynthesis in plants. Nat. Commun. 7, 11654 (10.1038/ncomms11654) PubMed DOI PMC

Ünnep R, Zsiros O, Horcsik Z, Marko M, Jajoo A, Kohlbrecher J, Garab G, Nagy G. 2017. Low-pH induced reversible reorganizations of chloroplast thylakoid membranes—as revealed by small-angle neutron scattering. Biochim. Biophys. Acta 1858, 360–365. (10.1016/j.bbabio.2017.02.010) PubMed DOI

Demmig-Adams B, et al. 2006. Modulation of PsbS and flexible vs sustained energy dissipation by light environment in different species. Physiol. Plant. 127, 670–680. (10.1111/j.1399-3054.2006.00698.x) DOI

Demmig-Adams B, Muller O, Stewart JJ, Cohu CM, Adams WW. 2015. Chloroplast thylakoid structure in evergreen leaves employing strong thermal energy dissipation. J. Photochem. Photobiol., B 152, 357–366. (10.1016/j.jphotobiol.2015.03.014) PubMed DOI

Fruhwirth T, Fritz G, Freiberger N, Glatter O. 2004. Structure and order in lamellar phases determined by small-angle scattering. J. Appl. Crystallogr. 37, 703–710. (10.1107/S0021889804012956) DOI

Karlsson PM, et al. 2015. The Arabidopsis thylakoid transporter PHT4;1 influences phosphate availability for ATP synthesis and plant growth. Plant J. 84, 99–110. (10.1111/tpj.12962) PubMed DOI

Demmig-Adams B, Adams WW. 2006. 3rd. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol. 172, 11–21. (10.1111/j.1469-8137.2006.01835.x) PubMed DOI

Anderson JM, Horton P, Kim EH, Chow WS. 2012. Towards elucidation of dynamic structural changes of plant thylakoid architecture. Phil. Trans. R Soc. B 367, 3515–3524. (10.1098/rstb.2012.0373) PubMed DOI PMC

Ünnep R, et al. 2014. The ultrastructure and flexibility of thylakoid membranes in leaves and isolated chloroplasts as revealed by small-angle neutron scattering. Biochim. Biophys. Acta. 1837, 1572–1580. (10.1016/j.bbabio.2014.01.017) PubMed DOI

Ünnep R, Garab G, Nagy G, Tóth T, Moyet L, Kovacs L. et al 2013. Nature and mechanisms of reorganizations in the multilamellar photosynthetic membrane systems of plants and algae studied by SANS. Grenoble, France: Institut Laue-Langevin (ILL). See https://doi.ill.fr/10.5291/ILL-DATA.8-02-687.

Radulescu A, et al. 2016. Studying soft-matter and biological systems over a wide length-scale from nanometer and micrometer sizes at the small-angle neutron diffractometer KWS-2. J. Vis. Exp. 118, e54639 (10.3791/54639) PubMed DOI PMC

Pipich V. 2015. QtiSAS :: SA(N)S+ framework. See http://qtisas.com/doku.php.

Nagy G, et al. 2013. Kinetics of structural reorganizations in multilamellar photosynthetic membranes monitored by small angle neutron scattering. Eur. Phys. J. E. 36, 69 (10.1140/epje/i2013-13069-0) PubMed DOI

Koizumi M, Takahashi K, Mineuchi K, Nakamura T, Kano H. 1998. Light gradients and the transverse distribution of chlorophyll fluorescence in mangrove and camellia leaves. Ann. Bot. 81, 527–533. (10.1006/anbo.1998.0589) DOI

Murakami S, Packer L. 1970. Protonation and chloroplast membrane structure. J. Cell Biol. 47, 332–351. (10.1083/jcb.47.2.332) PubMed DOI PMC

Rantala S, Tikkanen M. 2018. Phosphorylation-induced lateral rearrangements of thylakoid protein complexes upon light acclimation. Plant Direct. 2, e00039 (10.1002/pld3.39) PubMed DOI PMC

Albertsson P-Å. 2001. A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci. 6, 349–354. (10.1016/S1360-1385(01)02021-0) PubMed DOI

Anderson JM. 1989. The grana margins of plant thylakoid membranes. Physiol. Plant. 76, 243–248. (10.1111/j.1399-3054.1989.tb05640.x) DOI

Jacobson ER. 2007. Infectious diseases and pathology of reptiles: color atlas and text, 1st edn Boca Raton, FL: CRC Press.

Ruban AV, Johnson MP, Duffy CDP. 2012. The photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta (BBA) Bioenerg. 1817, 167–181. (10.1016/j.bbabio.2011.04.007) PubMed DOI

Jahns P, Latowski D, Strzalka K. 2009. Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. Biochim. Biophys. Acta (BBA) Bioenerg. 1787, 3–14. (10.1016/j.bbabio.2008.09.013) PubMed DOI

Ruban AV, et al. 2007. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450, 575–578. (10.1038/nature06262) PubMed DOI

Rozak PR, Seiser RM, Wacholtz WF, Wise RR. 2002. Rapid, reversible alterations in spinach thylakoid appression upon changes in light intensity. Plant Cell Environ. 25, 421–429. (10.1046/j.0016-8025.2001.00823.x) DOI

Arnoux P, Morosinotto T, Saga G, Bassi R, Pignol D. 2009. A structural basis for the pH-dependent xanthophyll cycle in Arabidopsis thaliana. Plant Cell. 21, 2036–2044. (10.1105/tpc.109.068007) PubMed DOI PMC

Xu P, Tian L, Kloz M, Croce R. 2015. Molecular insights into zeaxanthin-dependent quenching in higher plants. Sci. Rep. 5, 13679 (10.1038/srep13679) PubMed DOI PMC

Ruban AV, Johnson MP. 2015. Visualizing the dynamic structure of the plant photosynthetic membrane. Nature Plants 1, 15161 (10.1038/nplants.2015.161) PubMed DOI

Goss R, Lohr M, Latowski D, Grzyb J, Vieler A, Wilhelm C, Strzalka K. 2005. Role of hexagonal structure-forming lipids in diadinoxanthin and violaxanthin solubilization and de-epoxidation. Biochemistry 44, 4028–4036. (10.1021/bi047464k) PubMed DOI

Garab G, et al. 2017. Lipid polymorphism in chloroplast thylakoid membranes—as revealed by 31P-NMR and time-resolved merocyanine fluorescence spectroscopy. Sci. Rep. 7, 13343 (10.1038/s41598-017-13574-y) PubMed DOI PMC

Jajoo A, Szabó M, Zsiros O, Garab G. 2012. Low pH induced structural reorganization in thylakoid membranes. Biochim. Biophys. Acta (BBA) Bioenerg. 1817, 1388–1391. (10.1016/j.bbabio.2012.01.002) PubMed DOI

Garab G. 2016. Self-assembly and structural–functional flexibility of oxygenic photosynthetic machineries: personal perspectives. Photosynth. Res. 127, 131–150. (10.1007/s11120-015-0192-z) PubMed DOI

Adams PG, Vasilev C, Hunter CN, Johnson MP. 2018. Correlated fluorescence quenching and topographic mapping of Light-Harvesting Complex II within surface-assembled aggregates and lipid bilayers. Biochim. Biophys. Acta (BBA) – Bioenerg. 1859, 1075–1085. (10.1016/j.bbabio.2018.06.011) PubMed DOI PMC

Holzwarth AR, Lenk D, Jahns P. 2013. On the analysis of non-photochemical chlorophyll fluorescence quenching curves. I. Theoretical considerations . Biochim. Biophys. Acta (BBA) Bioenerg. 1827, 786–792. (10.1016/j.bbabio.2013.02.011) PubMed DOI

Vogelman TC, Nishio JN, Smith WK. 1996. Leaves and light capture: light propagation and gradients of carbon fixation within leaves. Trends Plants Sci. 1, 1360–1385. (10.1016/S1360-1385(96)80031-8) DOI

Nagy G. 2011. Structure and dynamics of photosynthetic membranes as revealed by neutron scattering. Grenoble, France: Université de Grenoble.

Stingaciu L-R, O'Neill HM, Liberton M, Pakrasi HB, Urban VS. 2019. Influence of chemically disrupted photosynthesis on cyanobacterial thylakoid dynamics in Synechocystis sp. PCC 6803. Sci. Rep. 9, 5711 (10.1038/s41598-019-42024-0) PubMed DOI PMC

Kadota A, Sato Y, Wada M. 2000. Intracellular chloroplast photorelocation in the moss Physcomitrella patens is mediated by phytochrome as well as by a blue-light receptor. Planta 210, 932–937. (10.1007/s004250050700) PubMed DOI

Suetsugu N, Wada M. 2012. Chloroplast photorelocation movement: a sophisticated strategy for chloroplasts to perform efficient photosynthesis. In Advances in photosynthesis (ed. Najafpour MM.), pp. 215–234. Rijeka, Croatia: IntechOpen.

Cazzaniga S, Dall’ Osto L, Kong S-G, Wada M, Bassi R. 2013. Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photooxidative stress in Arabidopsis. Plant J. 76, 568–579. (10.1111/tpj.12314) PubMed DOI

Kong SG, Arai Y, Suetsugu N, Yanagida T, Wada M. 2013. Rapid severing and motility of chloroplast-actin filaments are required for the chloroplast avoidance response in Arabidopsis. Plant Cell. 25, 572–590. (10.1105/tpc.113.109694) PubMed DOI PMC

Wada M. 2013. Chloroplast movement. Plant Sci. 210, 177–182. (10.1016/j.plantsci.2013.05.016) PubMed DOI

Short TW, Briggs WR. 1994. The transduction of blue light signals in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 143–171. (10.1146/annurev.pp.45.060194.001043) DOI

Zurzycki J. 1980. Blue light-induced intracellular movements. In The blue light syndrome: proceedings in life sciences (ed. Senger H.). Berlin, Germany: Springer.

Banaś AK, Aggarwal C, Łabuz J, Sztatelman O, Gabryś H. 2012. Blue light signalling in chloroplast movements. J. Exp. Bot. 63, 1559–1574. (10.1093/jxb/err429) PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...