Alterations in Sensorimotor and Mesiotemporal Cortices and Diffuse White Matter Changes in Primary Progressive Multiple Sclerosis Detected by Adiabatic Relaxometry

. 2021 ; 15 () : 711067. [epub] 20210914

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34594184

Background: The research of primary progressive multiple sclerosis (PPMS) has not been able to capitalize on recent progresses in advanced magnetic resonance imaging (MRI) protocols. Objective: The presented cross-sectional study evaluated the utility of four different MRI relaxation metrics and diffusion-weighted imaging in PPMS. Methods: Conventional free precession T1 and T2, and rotating frame adiabatic T1ρ and T2ρ in combination with diffusion-weighted parameters were acquired in 13 PPMS patients and 13 age- and sex-matched controls. Results: T1ρ, a marker of crucial relevance for PPMS due to its sensitivity to neuronal loss, revealed large-scale changes in mesiotemporal structures, the sensorimotor cortex, and the cingulate, in combination with diffuse alterations in the white matter and cerebellum. T2ρ, particularly sensitive to local tissue background gradients and thus an indicator of iron accumulation, concurred with similar topography of damage, but of lower extent. Moreover, these adiabatic protocols outperformed both conventional T1 and T2 maps and diffusion tensor/kurtosis approaches, methods previously used in the MRI research of PPMS. Conclusion: This study introduces adiabatic T1ρ and T2ρ as elegant markers confirming large-scale cortical gray matter, cerebellar, and white matter alterations in PPMS invisible to other in vivo biomarkers.

Zobrazit více v PubMed

Anderson V. M., Fisniku L. K., Khaleeli Z., Summers M. M., Penny S. A., Altmann D. R., et al. (2010). Hippocampal atrophy in relapsing-remitting and primary progressive MS: a comparative study. PubMed DOI

Antel J., Antel S., Caramanos Z., Arnold D. L., Kuhlmann T. (2012). Primary progressive multiple sclerosis: part of the MS disease spectrum or separate disease entity? PubMed DOI

Bodini B., Chard D., Altmann D. R., Tozer D., Miller D. H., Thompson A. J., et al. (2016). White and gray matter damage in primary progressive MS: the chicken or the egg? PubMed DOI PMC

Bonnier G., Fischi-Gomez E., Roche A., Hilbert T., Kober T., Krueger G., et al. (2018). Personalized pathology maps to quantify diffuse and focal brain damage. PubMed DOI PMC

Bonnier G., Maréchal B., Fartaria M. J., Falkowskiy P., Marques J. P., Simioni S., et al. (2017). The combined quantification and interpretation of multiple quantitative magnetic resonance imaging metrics enlightens longitudinal changes compatible with brain repair in relapsing-remitting multiple sclerosis patients. PubMed DOI PMC

Ceccarelli A., Rocca M. A., Valsasina P., Rodegher M., Pagani E., Falini A., et al. (2009). A multiparametric evaluation of regional brain damage in patients with primary progressive multiple sclerosis. PubMed DOI PMC

Cortese R., Collorone S., Ciccarelli O., Toosy A. T. (2019). Advances in brain imaging in multiple sclerosis. PubMed PMC

Dehmeshki J., Chard D. T., Leary S. M., Watt H. C., Silver N. C., Tofts P. S., et al. (2003). The normal appearing grey matter in primary progressive multiple sclerosis. PubMed

Dusek P., Dezortova M., Wuerfel J. (2013). Imaging of iron. PubMed

Enzinger C., Barkhof F., Ciccarelli O., Filippi M., Kappos L., Rocca M. A., et al. (2015). Nonconventional MRI and microstructural cerebral changes in multiple sclerosis. PubMed DOI

Filip P., Svatkova A., Carpenter A. F., Eberly L. E., Nestrasil I., Nissi M. J., et al. (2020). Rotating frame MRI relaxations as markers of diffuse white matter abnormalities in multiple sclerosis. PubMed DOI PMC

Filippi M., Rocca M. A., Ciccarelli O., De Stefano N., Evangelou N., Kappos L., et al. (2016). MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. PubMed DOI PMC

Fisher E., Lee J.-C., Nakamura K., Rudick R. A. (2008). Gray matter atrophy in multiple sclerosis: a longitudinal study. PubMed DOI

Green A. J., Gelfand J. M., Cree B. A., Bevan C., Boscardin W. J., Mei F., et al. (2017). Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. PubMed DOI

Hannoun S., Bagory M., Durand-Dubief F., Ibarrola D., Comte J.-C., Confavreux C., et al. (2012). Correlation of diffusion and metabolic alterations in different clinical forms of multiple sclerosis. PubMed DOI PMC

Jensen J. H., Helpern J. A., Ramani A., Lu H., Kaczynski K. (2005). Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. PubMed DOI

Khaleeli Z., Altmann D. R., Cercignani M., Ciccarelli O., Miller D. H., Thompson A. J. (2008). Magnetization transfer ratio in gray matter: a potential surrogate marker for progression in early primary progressive multiple sclerosis. PubMed DOI

Lassmann H. (2018). Multiple sclerosis pathology. PubMed PMC

Leary S. M., Silver N. C., Stevenson V. L., Barker G. J., Miller D. H., Thompson A. J. (1999). Magnetisation transfer of normal appearing white matter in primary progressive multiple sclerosis. PubMed DOI

Lommers E., Simon J., Reuter G., Delrue G., Dive D., Degueldre C., et al. (2019). Multiparameter MRI quantification of microstructural tissue alterations in multiple sclerosis. PubMed DOI PMC

Manfredonia F., Ciccarelli O., Khaleeli Z., Tozer D. J., Sastre-Garriga J., Miller D. H., et al. (2007). Normal-appearing brain T1 relaxation time predicts disability in early primary progressive multiple sclerosis. PubMed DOI

Mangia S., Carpenter A. F., Tyan A. E., Eberly L. E., Garwood M., Michaeli S. (2014). Magnetization transfer and adiabatic T1ρ MRI reveal abnormalities in normal-appearing white matter of subjects with multiple sclerosis. PubMed DOI PMC

Mehta V., Pei W., Yang G., Li S., Swamy E., Boster A., et al. (2013). Iron is a sensitive biomarker for inflammation in multiple sclerosis lesions. PubMed DOI PMC

Mesaros S., Rocca M. A., Pagani E., Sormani M. P., Petrolini M., Comi G., et al. (2011). Thalamic damage predicts the evolution of primary-progressive multiple sclerosis at 5 years. PubMed DOI PMC

Michaeli S., Burns T. C., Kudishevich E., Harel N., Hanson T., Sorce D. J., et al. (2009). Detection of neuronal loss using T1ρ MRI assessment of 1H2O spin dynamics in the aphakia mouse. PubMed DOI PMC

Michaeli S., Sorce D. J., Idiyatullin D., Ugurbil K., Garwood M. (2004). Transverse relaxation in the rotating frame induced by chemical exchange. PubMed DOI

Michaeli S., Sorce D. J., Springer C. S., Jr., Ugurbil K., Garwood M. (2006). T1ρ MRI contrast in the human brain: modulation of the longitudinal rotating frame relaxation shutter-speed during an adiabatic RF pulse. PubMed DOI

Mitsumori F., Watanabe H., Takaya N. (2009). Estimation of brain iron concentration in vivo using a linear relationship between regional iron and apparent transverse relaxation rate of the tissue water at 4.7 T. PubMed DOI

Ontaneda D., Thompson A. J., Fox R. J., Cohen J. A. (2017). Progressive multiple sclerosis: prospects for disease therapy, repair, and restoration of function. PubMed DOI

Peterson J. W., Bö L., Mörk S., Chang A., Trapp B. D. (2001). Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. PubMed DOI

Petracca M., Margoni M., Bommarito G., Inglese M. (2018). Monitoring progressive multiple sclerosis with novel imaging techniques. PubMed DOI PMC

Rocca M. A., Absinta M., Filippi M. (2012). The role of advanced magnetic resonance imaging techniques in primary progressive MS. PubMed DOI

Rocca M. A., Riccitelli G., Rodegher M., Ceccarelli A., Falini A., Falautano M., et al. (2010). Functional MR imaging correlates of neuropsychological impairment in primary-progressive multiple sclerosis. PubMed DOI PMC

Rovaris M., Bozzali M., Iannucci G., Ghezzi A., Caputo D., Montanari E., et al. (2002). Assessment of normal-appearing white and gray matter in patients with primary progressive multiple sclerosis: a diffusion-tensor magnetic resonance imaging Study. PubMed

Rovaris M., Gallo A., Valsasina P., Benedetti B., Caputo D., Ghezzi A., et al. (2005). Short-term accrual of gray matter pathology in patients with progressive multiple sclerosis: an in vivo study using diffusion tensor MRI. PubMed DOI

Simpson S., Taylor B. V., van der Mei I. (2015). The role of epidemiology in MS research: past successes, current challenges and future potential. PubMed DOI

Tallantyre E. C., Bø L., Al-Rawashdeh O., Owens T., Polman C. H., Lowe J., et al. (2009). Greater loss of axons in primary progressive multiple sclerosis plaques compared to secondary progressive disease. PubMed DOI

Tallantyre E. C., Bø L., Al-Rawashdeh O., Owens T., Polman C. H., Lowe J. S., et al. (2010). Clinico-pathological evidence that axonal loss underlies disability in progressive multiple sclerosis. PubMed DOI

Trapp B. D., Peterson J., Ransohoff R. M., Rudick R., Mörk S., Bö L. (1998). Axonal transection in the lesions of multiple sclerosis. PubMed

Vrenken H., Geurts J. J. (2007). Gray and normal-appearing white matter in multiple sclerosis: an MRI perspective. PubMed DOI

Winkler A. M., Ridgway G. R., Webster M. A., Smith S. M., Nichols T. E. (2014). Permutation inference for the general linear model. PubMed DOI PMC

Winkler A. M., Webster M. A., Brooks J. C., Tracey I., Smith S. M., Nichols T. E. (2016). Non-parametric combination and related permutation tests for neuroimaging. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...