Distance from main arteries influences microstructural and functional brain tissue characteristics
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P41 EB027061
NIBIB NIH HHS - United States
PubMed
38103623
PubMed Central
PMC10804248
DOI
10.1016/j.neuroimage.2023.120502
PII: S1053-8119(23)00652-3
Knihovny.cz E-zdroje
- Klíčová slova
- Arterial distance, Diffusion weighted imaging, Quantitative MRI, Relaxometry, Resting-state functional MRI,
- MeSH
- arterie MeSH
- bílá hmota * MeSH
- difuzní magnetická rezonance MeSH
- dospělí MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mozek MeSH
- pilotní projekty MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Given the substantial dependence of neurons on continuous supply of energy, the distribution of major cerebral arteries opens a question whether the distance from the main supply arteries constitutes a modulating factor for the microstructural and functional properties of brain tissue. To tackle this question, multimodal MRI acquisitions of 102 healthy volunteers over the full adult age span were utilised. Relaxation along a fictitious field in the rotating frame of rank n = 4 (RAFF4), adiabatic T1ρ, T2ρ, and intracellular volume fraction (fICVF) derived from diffusion-weighted imaging were implemented to quantify microstructural (cellularity, myelin density, iron concentration) tissue characteristics and degree centrality and fractional amplitude of low-frequency fluctuations to probe for functional metrics. Inverse correlation of arterial distance with robust homogeneity was detected for T1ρ, T2ρ and RAFF4 for cortical grey matter and white matter, showing substantial complex microstructural differences between brain tissue close and farther from main arterial trunks. Albeit with wider variability, functional metrics pointed to increased connectivity and neuronal activity in areas farther from main arteries. Surprisingly, multiple of these microstructural and functional distance-based gradients diminished with higher age, pointing to uniformization of brain tissue with ageing. All in all, this pilot study provides a novel insight on brain regionalisation based on artery distance, which merits further investigation to validate its biological underpinnings.
Zobrazit více v PubMed
Agarwal S, Sair HI, Yahyavi-Firouz-Abadi N, et al., 2016. Neurovascular uncoupling in resting state fMRI demonstrated in patients with primary brain gliomas. J. Magn. Reson. Imaging JMRI 43, 620–626. PubMed
Alsameen MH, Gong Z, Qian W, et al., 2020. C-NODDI: a constrained NODDI model for axonal density and orientation determinations in cerebral white matter. Front Neurol 14. PubMed PMC
Attwell D, Laughlin SB, 2001. An energy budget for signaling in the grey matter of the Brain. J. Cereb. Blood Flow Metab 21, 1133–1145. PubMed
Birkl C, Birkl-Toeglhofer AM, Endmayr V, et al., 2019. The influence of brain iron on myelin water imaging. Neuroimage 199, 545–552. PubMed PMC
Bouhrara M, Triebswetter C, Kiely M, et al., 2022. Association of cerebral blood flow with longitudinal changes in cerebral microstructural integrity in the Coronary Artery Risk Development in Young Adults (CARDIA) study. JAMA Netw. Open 5, e2231189. PubMed PMC
Chen JJ, Rosas HD, Salat DH, 2013. The relationship between cortical blood flow and sub-cortical white-matter health across the adult age span. PLoS One 8, e56733. PubMed PMC
Chen J, Venkat P, Zacharek A, et al., 2014. Neurorestorative therapy for stroke. Front. Hum. Neurosci 8, 382. PubMed PMC
Cox RW, 1996. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res 29, 162–173. PubMed
d’Arbeloff T, 2020. Cardiovascular fitness and structural brain integrity: an update on current evidence. GeroScience 42, 1285–1306. PubMed PMC
Desmond KL, Al-Ebraheem A, Janik R, et al., 2016. Differences in iron and manganese concentration may confound the measurement of myelin from R1 and R2 relaxation rates in studies of dysmyelination. NMR Biomed. 29, 985–998. PubMed
Duvernoy HM, Delon S, Vannson JL, 1981. Cortical blood vessels of the human brain. Brain Res. Bull 7, 519–579. PubMed
Ekstrom A, 2010. How and when the fMRI BOLD signal relates to underlying neural activity: the danger in dissociation. Brain Res. Rev 62, 233–244. PubMed PMC
Ermine CM, Bivard A, Parsons MW, et al., 2021. The ischemic penumbra: from concept to reality. Int. J. Stroke 16, 497–509. PubMed
Filip P, Svatkova A, Carpenter AF, et al., 2020a. Rotating frame MRI relaxations as markers of diffuse white matter abnormalities in multiple sclerosis. NeuroImage Clin. 26, 102234. PubMed PMC
Filip P, Vojtíšek L, Baláž M, et al., 2020b. Differential diagnosis of tremor syndromes using MRI relaxometry. Parkinsonism Relat. Disord 81, 190–193. PubMed
Filip P, Dufek M, Mangia S, et al., 2021. Alterations in sensorimotor and mesiotemporal cortices and diffuse white matter changes in primary progressive multiple sclerosis detected by adiabatic relaxometry. Front. Neurosci 1129. PubMed PMC
Filip P, Kokošová V, Valenta Z, et al., 2023. Utility of quantitative MRI metrics in brain ageing research. Front. Aging Neurosci 15, 1099499. PubMed PMC
Gebel JM, Sila CA, Sloan MA, et al., 1998. Thrombolysis-related intracranial hemorrhage. Stroke 29, 563–569. PubMed
Giezendanner S, Fisler MS, Soravia LM, et al., 2016. Microstructure and cerebral blood flow within white matter of the human brain: a TBSS analysis. PLoS One 11, e0150657. PubMed PMC
Glasser MF, Sotiropoulos SN, Wilson JA, et al., 2013. The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124. PubMed PMC
Guerrero JM, Adluru N, Bendlin BB, et al., 2019. Optimizing the intrinsic parallel diffusivity in NODDI: an extensive empirical evaluation. PLoS One 14, e0217118. PubMed PMC
Hakkarainen H, Sierra A, Mangia S, et al., 2016. MRI relaxation in the presence of fictitious fields correlates with myelin content in normal rat brain. Magn. Reson. Med 75, 161–168. PubMed PMC
Hawkins BT, Davis TP, 2005. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol. Rev 57, 173–185. PubMed
Herculano-Houzel S, Rothman DL, 2022. From a demand-based to a supply-limited framework of brain metabolism. Front. Integr. Neurosci 16, 818685. PubMed PMC
Holikova K, Laakso H, Salo R, et al., 2021. RAFF-4, magnetization transfer and diffusion tensor MRI of lysophosphatidylcholine induced demyelination and remyelination in rats. Front. Neurosci 15, 148. PubMed PMC
Kamiya K, Hori M, Aoki S, 2020. NODDI in clinical research. J. Neurosci. Methods 346, 108908. PubMed
Karbowski J, 2011. Scaling of brain metabolism and blood flow in relation to capillary and neural scaling. PLoS One 6, e26709. PubMed PMC
Kramer AF, Colcombe SJ, McAuley E, et al., 2003. Enhancing brain and cognitive function of older adults through fitness training. J. Mol. Neurosci 20, 213–221. PubMed
Lee PH, Macfarlane DJ, Lam TH, et al., 2011. Validity of the international physical activity questionnaire short form (IPAQ-SF): a systematic review. Int. J. Behav. Nutr. Phys. Act 8, 1–11. PubMed PMC
Liimatainen T, Hakkarainen H, Mangia S, et al., 2015. MRI contrasts in high rank rotating frames. Magn. Reson. Med 73, 254–262. PubMed PMC
Möller HE, Bossoni L, Connor JR, et al., 2019. Iron, myelin, and the brain: neuroimaging meets neurobiology. Trends Neurosci. 42, 384–401. PubMed
Michaeli S, Gröhn H, Gröhn O, et al., 2005. Exchange-influenced T2ρ contrast in human brain images measured with adiabatic radio frequency pulses. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med 53, 823–829. PubMed
Michaeli S, Oez G, Sorce DJ, et al., 2007. Assessment of brain iron and neuronal integrity in patients with Parkinson’s disease using novel MRI contrasts. Mov. Disord. Off. J. Mov. Disord. Soc 22, 334–340. PubMed
Michaeli S, Burns TC, Kudishevich E, et al., 2009. Detection of neuronal loss using T1ρ MRI assessment of 1H2O spin dynamics in the aphakia mouse. J. Neurosci. Methods 177, 160–167. PubMed PMC
Mitsumori F, Watanabe H, Takaya N, 2009. Estimation of brain iron concentration in vivo using a linear relationship between regional iron and apparent transverse relaxation rate of the tissue water at 4.7 T. Magn. Reson. Med 62, 1326–1330. PubMed
Mouches P, Forkert ND, 2019. A statistical atlas of cerebral arteries generated using multi-center MRA datasets from healthy subjects. Sci. Data 6, 1–8. PubMed PMC
Østergaard L, Engedal TS, Aamand R, et al., 2014. Capillary transit time heterogeneity and flow-metabolism coupling after traumatic brain injury. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab 34, 1585–1598. PubMed PMC
Palombo M, Ianus A, Guerreri M, et al., 2020. SANDI: a compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI. Neuroimage 215, 116835. PubMed PMC
Peters A, 2002. The effects of normal aging on myelin and nerve fibers: a review. J. Neurocytol 31, 581–593. PubMed
Reisberg D, 2013. The Oxford Handbook of Cognitive Psychology. Oxford University Press.
Satzer D, DiBartolomeo C, Ritchie MM, et al., 2015. Assessment of dysmyelination with RAFFn MRI: application to murine MPS I. PLoS One 10, e0116788. PubMed PMC
Schmid F, Barrett MJ, Jenny P, et al., 2019. Vascular density and distribution in neocortex. Neuroimage 197, 792–805. PubMed
Selvanayaki V, Sasikala K, 2020. Watershed stroke. Asian J. Nurs. Educ. Res 10, 483–486.
Smith SM, Beckmann CF, Andersson J, et al., 2013. Resting-state fMRI in the human connectome project. Neuroimage 80, 144–168. PubMed PMC
Stüber C, Morawski M, Schäfer A, et al., 2014. Myelin and iron concentration in the human brain: a quantitative study of MRI contrast. Neuroimage 93, 95–106. PubMed
Tariq M, Schneider T, Alexander DC, et al., 2016. Bingham–NODDI: mapping anisotropic orientation dispersion of neurites using diffusion MRI. Neuroimage 133, 207–223. PubMed
Tournier JD, Mori S, Leemans A, 2011. Diffusion tensor imaging and beyond. Magn. Reson. Med 65, 1532. PubMed PMC
Tuite PJ, Mangia S, Tyan AE, et al., 2012. Magnetization transfer and adiabatic R1ρ MRI in the brainstem of Parkinson’s disease. Parkinsonism Relat. Disord 18, 623–625. PubMed PMC
Uddin MN, Figley TD, Marrie RA, et al., 2018. Can T1w/T2w ratio be used as a myelin-specific measure in subcortical structures? Comparisons between FSE-based T1w/T2w ratios, GRASE-based T1w/T2w ratios and multi-echo GRASE-based myelin water fractions. NMR Biomed. 31, e3868. PubMed
Venkat P, Chopp M, Chen J, 2016. New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain. Croat. Med. J 57, 223–228. PubMed PMC
Zang YF, He Y, Zhu CZ, et al., 2007. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 29, 83–91. PubMed
Zuo XN, Ehmke R, Mennes M, et al., 2012. Network centrality in the human functional connectome. Cereb. Cortex 22, 1862–1875. PubMed