Effect of Ply Orientation on the Mechanical Performance of Carbon Fibre Honeycomb Cores
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
BUT FSI-S-23-8235
Brno University of Technology
PubMed
37299302
PubMed Central
PMC10255388
DOI
10.3390/polym15112503
PII: polym15112503
Knihovny.cz E-zdroje
- Klíčová slova
- experimental prototype technology, finite element analysis, modulus of elasticity, thermo-dimensional stability,
- Publikační typ
- časopisecké články MeSH
Carbon fibres used as a honeycomb core material (subject to a proper in-depth analysis of their reinforcement patterns) allows solving the thermo-dimensional stability problem of the units for space systems. Based on the results of numerical simulations with the support of finite element analysis, the paper provides an evaluation of the accuracy of analytical dependencies for the determination of the moduli of elasticity of a carbon fibre honeycomb core in tension/compression and shear. It is shown that a carbon fibre honeycomb reinforcement pattern has a significant impact on the mechanical performance of the carbon fibre honeycomb core. For example, for honeycombs measuring 10 mm in height, the maximum shear modulus values corresponding to the reinforcement pattern of ±45° exceed the minimum values for a reinforcement pattern of 0° and 90° by more than 5 times in the XOZ plane and 4 times for the shear modulus in the YOZ plane. The maximum modulus of the elasticity of the honeycomb core in the transverse tension, corresponding to a reinforcement pattern of ±75°, exceeds the minimum modulus for the reinforcement pattern of ±15° more than 3 times. We observe a decrease in the values of the mechanical performance of the carbon fibre honeycomb core depending on its height. With a honeycomb reinforcement pattern of ±45°, the decrease in the shear modulus is 10% in the XOZ plane and 15% in the YOZ plane. The reduction in the modulus of elasticity in the transverse tension for the reinforcement pattern does not exceed 5%. It is shown that in order to ensure high-level moduli of elasticity with respect to tension/compression and shear at the same time, it is necessary to focus on a reinforcement pattern of ±64°. The paper covers the development of the experimental prototype technology that produces carbon fibre honeycomb cores and structures for aerospace applications. It is shown by experiments that the use of a larger number of thin layers of unidirectional carbon fibres provides more than a 2-time reduction in honeycomb density while maintaining high values of strength and stiffness. Our findings can permit a significant expansion of the area of application relative to this class of honeycomb cores in aerospace engineering.
Zobrazit více v PubMed
Fomin O., Logvinenko O., Burlutsky O., Rybin A. Scientific substantiation of thermal leveling for deformations in the car structure. Int. J. Eng. Technol. UAE. 2018;7:125–129. doi: 10.14419/ijet.v7i4.3.19721. DOI
Panchenko S., Vatulia G., Lovska A., Ravlyuk V., Elyazov I., Huseynov I. Influence of structural solutions of an improved brake cylinder of a freight car of railway transport on its load in operation. EUREKA Phys. Eng. 2022;6:45–55. doi: 10.21303/2461-4262.2022.002638. DOI
Henson G. Materials for Launch Vehicle Structures. Aerosp. Mater. Appl. 2018;255:435–504. doi: 10.2514/5.9781624104893.0435.0504. DOI
Kombarov V., Kryzhyvets Y., Biletskyi I., Tsegelnyk Y., Aksonov Y., Piddubna L. Numerical Control of Fiberglass Pipe Bends Manufacturing; Proceedings of the 2021 IEEE 2nd KhPI Week on Advanced Technology (KhPIWeek); Kharkiv, Ukraine. 13–17 September 2021; pp. 357–362. DOI
Tiwary A., Kumar R., Chohan J.S. A review on characteristics of composite and advanced materials used for aerospace applications. Mater. Today Proc. 2021;51:865–870. doi: 10.1016/j.matpr.2021.06.276. DOI
Schubert M., Perfetto S., Dafnis A., Atzrodt H., Mayer D. Multifunctional and lightweight load-bearing composite structures for satellites. MATEC Web Conf. 2018;233:00019. doi: 10.1051/matecconf/201823300019. DOI
Slyvynskyi V.I., Sanin A.F., Kharchenko M.E., Kondratyev A.V. Thermally and dimensionally stable structures of carbon-carbon laminated composites for space applications; Proceedings of the 65th International Astronautical Congress 2014: Our World Needs Space; Toronto, ON, Canada. 29 September–3 October 2014; pp. 5739–5751.
Siivola J., Minakuchi S., Takeda N. Dimpling monitoring and assessment of satellite honeycomb sandwich structures by distributed fiber optic sensors. Procedia Eng. 2017;188:186–193. doi: 10.1016/j.proeng.2017.04.473. DOI
Castanie B., Bouvet C., Ginot M. Review of composite sandwich structure in aeronautic applications. Compos. Part C Open Access. 2020;1:100004. doi: 10.1016/j.jcomc.2020.100004. DOI
Yu G.C., Feng L.J., Wu L.Z. Thermal and mechanical properties of a multifunctional composite square honeycomb sandwich structure. Mater. Des. 2016;102:238–246. doi: 10.1016/j.matdes.2016.04.050. DOI
Chen H., Liu X., Zhang Y., Xiao C., Zhang T., Zhang Y., Hu Y. Numerical investigation of the compressive behavior of 2.5D woven carbon-fiber (2.5D-CFRP) honeycomb and experimental validation. Compos. Struct. 2023;312:116858. doi: 10.1016/j.compstruct.2023.116858. DOI
Andrzejewski J., Gronikowski M., Anisko J. A Novel Manufacturing Concept of LCP Fiber-Reinforced GPET-Based Sandwich Structures with an FDM 3D-Printed Core. Materials. 2022;15:5405. doi: 10.3390/ma15155405. PubMed DOI PMC
Yao S.S., Jin F.L., Rhee K.Y., Hui D., Park S.J. Recent advances in carbon-fiber-reinforced thermoplastic composites: A review. Compos. Part B Eng. 2018;142:241–250. doi: 10.1016/j.compositesb.2017.12.007. DOI
Sugiyama K., Matsuzaki R., Ueda M., Todoroki A., Hirano Y. 3D printing of composite sandwich structures using continuous carbon fiber and fiber tension. Compos. Part A Appl. Sci. Manuf. 2018;113:114–121. doi: 10.1016/j.compositesa.2018.07.029. DOI
Vargas-Rojas E., Nocetti-Cotelo C.A. Alternative proposal, based on systems-engineering methods, aimed at substituting with carbon-epoxy laminates the load-bearing aluminum sandwiches employed in the structure of a small satellite. Adv. Space Res. 2020;66:193–218. doi: 10.1016/j.asr.2020.04.004. DOI
Alia R., Zhou J., Guan Z., Qin Q., Duan Y., Cantwel W.J. The effect of loading rate on the compression properties of carbon fibre-reinforced epoxy honeycomb structures. J. Comp. Mater. 2020;54:2565–2576. doi: 10.1177/0021998319900364. DOI
Le C. New Developments in Honeycomb Core Materials Presented by Christian Le AF/NASA Sandwich Structures for Space Systems Rev 022802. [(accessed on 13 December 2022)]; Available online: http://www-eng.lbl.gov/~ecanderssen/moisture/Moisture_Adsorption/NewDevelopments.pdf.
Li Y., Xiao Y., Yu L., Ji K., Li D.S. A review on the tooling technologies for composites manufacturing of aerospace structures: Materials, structures and processes. Compos. Part A Appl. Sci. Manuf. 2022;154:106762. doi: 10.1016/j.compositesa.2021.106762. DOI
Maneengam A., Siddique M.J., Selvaraj R., Kakaravada I., Arumugam A.B., Singh L.K., Kumar N. Influence of multi-walled carbon nanotubes reinforced honeycomb core on vibration and damping responses of carbon fiber composite sandwich shell structures. Polym. Compos. 2022;43:2073. doi: 10.1002/pc.26522. DOI
Zhang J.W., Yanagimoto J. Design and fabrication of formable CFRTP core sandwich sheets. CIRP Ann. Manuf. Technol. 2019;68:281–284. doi: 10.1016/j.cirp.2019.04.060. DOI
Shupikov A., Smetankina N., Ye S. Nonstationary Heat Conduction in Complex-Shape Laminated Plates. Trans. ASME J. Heat Mass Transf. 2007;129:335–341. doi: 10.1115/1.2427073. DOI
Kondratiev A.V., Kovalenko V.O. Optimization of design parameters of the main composite fairing of the launch vehicle under simultaneous force and thermal loading. Space Sci. Technol. 2019;25:3–21. doi: 10.15407/knit2019.04.003. DOI
Kurennov S., Barakhov K., Vambol O. Topological optimization of a symmetrical adhesive joint. Island model of genetic algorithm. Radioelect. Comp. Syst. 2022;2022:67–83. doi: 10.32620/reks.2022.3.05. DOI
Mackerle J. Finite element analyses of sandwich structures: A bibliography (1980–2001) Eng. Comput. 2002;19:206–245. doi: 10.1108/02644400210419067. DOI
Sikulskiy V., Sikulskyi S., Maiorova K., Dyachenko Y. Modeling the forming process by successive local deforming for monolithic stiffened panels. Int. J. Adv. Manuf. Technol. 2023;124:1569–1578. doi: 10.1007/s00170-022-10582-9. DOI
Caliri M.F., Ferreira A.J.M., Tita V. A review on plate and shell theories for laminated and sandwich structures highlighting the Finite Element Method. Compos. Struct. 2016;156:63–77. doi: 10.1016/j.compstruct.2016.02.036. DOI
Pavlenko I., Pitel’ J., Ivanov V., Berladir K., Mižáková J., Kolos V., Trojanowska J. Using regression analysis for automated material selection in smart manufacturing. Mathematics. 2022;10:1888. doi: 10.3390/math10111888. DOI
Herrmann A.S., Virson J.R. Design and Manufacture of Monolithic Sandwich Structures with Cellular Cares. Engineering Materials Advisory Services Ltd. Publisher; Stockholm, Sweden: 1999. p. 274.
Vasiliev V.V., Gurdal Z. Optimal Design: Theory and Applications to Materials and Structures. CRC Press; Boca Raton, FL, USA: 1999. 330p
Qiao P.Z., Fan W., Davalos J.F., Zou G.P. Optimization of transverse shear moduli for composite honeycomb cores. Compos. Struct. 2008;85:265–274. doi: 10.1016/j.compstruct.2008.04.011. DOI
Kondratiev A., Slyvyns’kyy V., Gaydachuk V., Kirichenko V. Basic Parameters’ Optimization Concept for Composite Nose Fairings of Launchers; Proceedings of the 62nd International Astronautical Congress; Cape Town, South Africa. 3–7 October 2011; New York, NY, USA: Curran; 2012. pp. 5701–5710.
Garbin D.F., Tonatto M.L.P., Amico S.C. Compressive and Flexural Behavior of Fiberglass/Polyurethane Sandwich Panels: Experimental and Numerical Study. Mechan. Compos. Mater. 2021;57:459–468. doi: 10.1007/s11029-021-09969-8. DOI
Slyvynskyi V.I., Alyamovskyi A.I., Kondratjev A.V., Kharchenko M.E. Carbon honeycomb plastic as light-weight and durable structural material; Proceedings of the 63rd International Astronautical Congress 2012, IAC 2012; Naples, Italy. 1–5 October 2012; pp. 6519–6529.
Lei H.S., Yao K., Wen W.B., Zhou H., Fang D.N. Experimental and numerical investigation on the crushing behavior of sandwich composite under edgewise compression loading. Compos. Part B Eng. 2016;94:34–44. doi: 10.1016/j.compositesb.2016.03.049. DOI
Kondratiev A., Prontsevych O. Stabilization of physical-mechanical characteristics of honeycomb filler based on the adjustment of technological techniques for its fabrication. East. Eur. J. Enterp. Technol. 2018;5:71–77. doi: 10.15587/1729-4061.2018.143674. DOI
Kondratiev A., Slivinsky M. Method for determining the thickness of a binder layer at its nonuniform mass transfer inside the channel of a honeycomb filler made from polymeric paper. East. Eur. J. Enterp. Technol. 2018;6:42–48. doi: 10.15587/1729-4061.2018.150387. DOI
Feng Y.X., Qiu H., Gao Y.C., Zheng H., Tan J.R. Creative design for sandwich structures: A review. Int. J. Adv. Robot. Syst. 2020;17:1729881420921327. doi: 10.1177/1729881420921327. DOI
Feng L.-J., Yang Z.-T., Yu G.-C., Chen X.-J., Wu L.-Z. Compressive and shear properties of carbon fiber composite square honeycombs with optimized high-modulus hierarchical phases. Compos. Struct. 2018;201:845–856. doi: 10.1016/j.compstruct.2018.06.080. DOI
Wang Z.X., Chen X.J., Yu G.C., Deng J., Feng L.J., Wu L.Z. Improving shear strength of carbon fiber composite honeycombs with the surface microprinting technology. Compos. Struct. 2023;304:116420. doi: 10.1016/j.compstruct.2022.116420. DOI
Zhao W.K., Liu Z.X., Yu G.C., Wu L.Z. A new multifunctional carbon fiber honeycomb sandwich structure with excellent mechanical and thermal performances. Compos. Struct. 2021;274:114306. doi: 10.1016/j.compstruct.2021.114306. DOI
Chen X.J., Yu G.C., Wang Z.X., Feng L.J., Wu L.Z. Enhancing out-of-plane compressive performance of carbon fiber composite honeycombs. Compos. Struct. 2021;255:112984. doi: 10.1016/j.compstruct.2020.112984. DOI
Wei X.Y., Li D.F., Xiong J. Fabrication and mechanical behaviors of an all-composite sandwich structure with a hexagon honeycomb core based on the tailor-folding approach. Compos. Sci. Technol. 2019;184:107878. doi: 10.1016/j.compscitech.2019.107878. DOI
Nassiraei H., Rezadoost P. Static capacity of tubular X-joints reinforced with fiber reinforced polymer subjected to compressive load. Eng. Struct. 2021;236:112041. doi: 10.1016/j.engstruct.2021.112041. DOI
Dou H., Ye W.G., Zhang D.H., Cheng Y.Y., Wu C.H. Comparative study on in-plane compression properties of 3D printed continuous carbon fiber reinforced composite honeycomb and aluminum alloy honeycomb. Thin Walled Struct. 2022;176:109335. doi: 10.1016/j.tws.2022.109335. DOI
Pehlivan L., Baykasoglu C. An experimental study on the compressive response of CFRP honeycombs with various cell configurations. Compos. Part B Eng. 2019;162:653–661. doi: 10.1016/j.compositesb.2019.01.044. DOI
Kondratiev A., Píštěk V., Smovziuk L., Shevtsova M., Fomina A., Kučera P. Stress–strain behaviour of reparable composite panel with step–variable thickness. Polymers. 2021;13:3830. doi: 10.3390/polym13213830. PubMed DOI PMC
Vasiliev V.V., Morozov E.V. Chapter 3—Mechanics of Laminates. In: Vasiliev V.V., Morozov E.V., editors. Advanced Mechanics of Composite Materials and Structures Advanced Mechanics of Composite Materials and Structures. 4th ed. Elsevier; Amsterdam, The Netherlands: 2018. pp. 191–242. DOI
Kondratiev A., Píštěk V., Smovziuk L., Shevtsova M., Fomina A., Kučera P., Prokop A. Effects of the Temperature–Time Regime of Curing of Composite Patch on Repair Process Efficiency. Polymers. 2021;13:4342. doi: 10.3390/polym13244342. PubMed DOI PMC
Shah V. Handbook of Plastics Testing and Failure Analysis. 4th ed. John Wiley and Sons, Inc.; Hoboken, NJ, USA: 2020. p. 528.
Slivinskij V.I., Volkonskij L.N., Slivinskij M.V., Kharchenko M.E., Alyamovskij A.I., Turuntaev I.V., Gajdachuk V.E., Zuev D.I., Nalivkin M.A., Reshetnikov V.F. Method for Manufacturing Carbon-Fiber Honeycomb Filler. 74037 UA. [(accessed on 19 December 2020)];UK Patent. 2012 October 10; Available online: https://patents.google.com/patent/UA74037U/en.
Kondratiev A.V., Gaidachuk V.E. Mathematical Analysis of Technological Parameters for Producing Superfine Prepregs by Flattening Carbon Fibers. Mech. Compos. Mater. 2021;57:91–100. doi: 10.1007/s11029-021-09936-3. DOI