modulus of elasticity
Dotaz
Zobrazit nápovědu
Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures.
- MeSH
- fotoelektronová spektroskopie MeSH
- lasery * MeSH
- lidé MeSH
- modul pružnosti účinky léků MeSH
- nádorové buněčné linie MeSH
- nerezavějící ocel farmakologie MeSH
- pevnost v tahu účinky léků MeSH
- poréznost MeSH
- povrchové vlastnosti MeSH
- testování materiálů metody MeSH
- tvar buňky MeSH
- železo farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Ti-based alloys have increased importance for biomedical applications due to their excellent properties. In particular, the two recently developed TiZrPdSi(Nb) alloys, with a predominant β-Ti phase microstructure, have good mechanical properties, such as a relatively low Young's modulus and high hardness. In the present work, the cytocompatibility of these alloys was assessed using human osteoblast-like Saos-2 cells. Cells grown on the alloys showed larger spreading areas (more than twice) and higher vinculin content (nearly 40% increment) when compared with cells grown on glass control surfaces, indicating a better cell adhesion. Moreover, cell proliferation was 18% higher for cells growing on both alloys than for cells growing on glass and polystyrene control surfaces. Osteogenic differentiation was evaluated by quantifying the expression of four osteogenic genes (osteonectin, osteocalcin, osteopontin, and bone sialoprotein), the presence of three osteogenic proteins (alkaline phosphatase, collagen I, and osteocalcin) and the activity of alkaline phosphatase at different time-points. The results demonstrated that TiZrPdSi and TiZrPdSiNb alloys enhance osteoblast differentiation, and that cells grown on TiZrPdSiNb alloy present higher levels of some late osteogenic markers during the first week in culture. These results suggest that the TiZrPdSi(Nb) alloys can be considered as excellent candidates for orthopaedical uses. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 834-842, 2018.
- MeSH
- buněčná diferenciace účinky léků MeSH
- buněčné linie MeSH
- lidé MeSH
- modul pružnosti * MeSH
- niob chemie farmakologie MeSH
- osteoblasty cytologie metabolismus MeSH
- osteogeneze účinky léků MeSH
- palladium chemie farmakologie MeSH
- silikony chemie farmakologie MeSH
- slitiny * chemie farmakologie MeSH
- testování materiálů * MeSH
- titan chemie farmakologie MeSH
- zirkonium chemie farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A new method to estimate the selected viscoelastic parameters of foods using damped vibration analysis is presented for the evaluation of fruits and baked products. A flat disk is attached to the flat sample surface using a laser rangefinder that measures the sample thickness in advance, and it is locked by a trigger. Next, the trigger is released to allow the probe to press the sample through the force of gravity. The damped vibration of the probe caused by the deformation of the food is measured by monitoring the displacement of the probe via a linear encoder. The bulk modulus and viscosity are estimated using the fractional Zener model and mass. Young's modulus (E) is estimated independently by determining the maximum velocity of the probe using Hooke's law. Poisson's ratio (ν), and the shear modulus and viscosity are calculated by employing the estimated E and bulk modulus. The bulk modulus, bulk viscosity, shear modulus, shear viscosity, and E of apples were found to be higher than those of bananas. The bulk modulus, bulk viscosity, E, and shear modulus for white bread were lower than those for pound cake, but the ν values were higher, whereas those of sponge cake were intermediate. After drying the baked products for 1 day, most of the parameters of the samples increased, but the value of ν for white bread decreased. The proposed free-falling device estimated the four viscoelastic coefficients, Poisson's ratio, and Young's modulus of the food sample in less than 1 s.
- MeSH
- modul pružnosti MeSH
- pružnost * MeSH
- viskozita MeSH
- Publikační typ
- časopisecké články MeSH
This work deals with the mechanical characterization by depth-sensing indentation (DSI) of PLLA and PLDA composites reinforced with micro-particles of Mg (up to 15wt%), which is a challenging task since the indented volume must provide information of the bulk composite, i.e. contain enough reinforcement particles. The composites were fabricated by combining hot extrusion and compression moulding. Physico-chemical characterization by TGA and DSC indicates that Mg anticipates the thermal degradation of the polymers but does not compromise their stability during processing. Especial emphasis is devoted to determine the effect of strain rate and Mg content on mechanical behavior, thus important information about the visco-elastic behavior and time-dependent response of the composites is obtained. Relevant for the intended application is that Mg addition increases the elastic modulus and hardness of the polymeric matrices and induces a higher resistance to flow. The elastic modulus obtained by DSI experiments shows good agreement with that obtained by uniaxial compression tests. The results indicate that DSI experiments are a reliable method to calculate the modulus of polymeric composites reinforced with micro-particles. Taking into consideration the mechanical properties results, PLA/Mg composite could be used as substitute for biodegradable monolithic polymeric implants already in the market for orthopedics (freeform meshes, mini plates, screws, pins, …), craniomaxillofacial, or spine.
High resolution imaging of biological structures and changes induced by various agents such as drugs and toxins is commonly performed by fluorescence and electron microscopy (EM). Although high-resolution imaging is possible with EM, the requirements for fixation and staining of samples for image contrast severely limits the study of living organisms. Atomic force microscopy (AFM), on the other hand, is capable of simultaneous nanometer spatial resolution and piconewton force detection, allowing detailed study of cell surface morphology and monitoring cytomechanical information. We present a method that images and studies mechanically characterized cells using AFM. We used a HeLa cell line (cervix carcinoma cell), which is sensitive to photodynamic treatment (PDT); growth media as a scanning surrounding; atomic force microscopy NT-MDT Aura for cytomechanical measurement; and scanning electron microscope Hitachi Su 6600 for control images of the cells. The modulus of elasticity for intact and photodynamically damaged cells can indicate mechanical changes to the main properties of cells. Cell elasticity changes can provide information on the degree or value of cell damage, for example after PDT. Measurements were carried out on approximately sixty cells, including three independent experiments on a control group and on sixty cells in a photodamaged group. Cells before PDT show higher elasticity: the median of Young´s modulus on the nucleus was 35.283 kPa and outside of the nucleus 107.442 kPa. After PDT, the median of Young's modulus on the nucleus was 61.144 kPa and outside of the nucleus was 193.605 kPa.
Low-modulus biomedical beta titanium alloys often suffer from low strength which limits their use as load-bearing orthopaedic implants. In this study, twelve different Ti-Nb-Zr-Ta based alloys alloyed with Fe, Si and O additions were prepared by arc melting and hot forging. The lowest elastic modulus (65GPa) was achieved in the benchmark TNTZ alloy consisting only of pure β phase with low stability due to the 'proximity' to the β to α'' martensitic transformation. Alloying by Fe and O significantly increased elastic modulus, which correlates with the electrons per atom ratio (e/a). Sufficient amount of Fe/O leads to increased yield stress, increased elongation to fracture and also to work hardening during deformation. A 20% increase in strength and a 20% decrease in the elastic modulus when compared to the common Ti-6Al-4V alloy was achieved in TNTZ-Fe-Si-O alloys, which proved to be suitable for biomedical use due to their favorable mechanical properties.
- MeSH
- biokompatibilní materiály analýza MeSH
- křemík MeSH
- kyslík MeSH
- modul pružnosti MeSH
- niob MeSH
- slitiny analýza MeSH
- tantal MeSH
- testování materiálů MeSH
- titan MeSH
- zatížení muskuloskeletálního systému MeSH
- železo MeSH
- zinek MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Despite the wide choice of commercial heart valve prostheses, cryopreserved semilunar allograft heart valves (C-AHV) are required, and successfully transplanted in selected groups of patients. The expiration limit (EL) criteria have not been defined yet. Most Tissue Establishments (TE) use the EL of 5 years. From physiological, functional, and surgical point of view, the morphology and mechanical properties of aortic and pulmonary roots represent basic features limiting the EL of C-AHV. The aim of this work was to review methods of AHV tissue structural analysis and mechanical testing from the perspective of suitability for EL validation studies. Microscopic structure analysis of great arterial wall and semilunar leaflets tissue should clearly demonstrate cells as well as the extracellular matrix components by highly reproducible and specific histological staining procedures. Quantitative morphometry using stereological grids has proved to be effective, as the exact statistics was feasible. From mechanical testing methods, tensile test was the most suitable. Young's moduli of elasticity, ultimate stress and strain were shown to represent most important AHV tissue mechanical characteristics, suitable for exact statistical analysis. C-AHV are prepared by many different protocols, so as each TE has to work out own EL for C-AHV.
- MeSH
- alografty MeSH
- aorta MeSH
- aortální chlopeň * chirurgie MeSH
- kryoprezervace * MeSH
- lidé MeSH
- modul pružnosti MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This aim of this study is to determine the elastoplastic properties of Ni-free Al3FeSi2 intermetallic coatings grown on medical stainless steel under different experimental conditions. Elastoplastic properties are defined by the plasticity index (PI), which correlates the hardness and the Young's modulus. Special emphasis is devoted to correlate the PI with the wear resistance under sliding contact, determined by scratch testing, and fracture toughness, determined by using a novel method based on successive impacts with small loads. With regard to the substrate, the developed coatings are harder and exhibit a lower Young's reduced modulus, irrespective of the experimental conditions. It has been shown that preheating of the samples prior to hot dipping and immersion influences the type and volume fraction of precipitates, which in turn also affect the nanomechanical properties. The higher the preheating temperature is, the greater the Young's reduced modulus is. For a given preheating condition, an increase of the immersion time yields a decrease in hardness. Although apparent friction coefficients of coated specimens are smaller than those obtained on AISI 316 LVM, they increase when using preheating or higher immersion times during processing, which correlates with the PI. The presence of precipitates produces an increase in fracture toughness, with values greater than those presented by samples processed on melted AlSi alloys with lower Si content (12 wt%). Therefore, these intermetallic coatings could be considered "hard but tough", suitable to enhance the wear resistance, especially when using short periods of immersion.
Metalloporphyrins are an important group of sensitizers with a porphyrin skeleton. Their photophysical properties are significantly affected by the nature of the central ion. In this work, we focus on the mechanical properties of a cervix carcinoma cell line which underwent photodynamic treatment (PDT) with MgTPPS4 photosensitzer. Atomic force microscopy alongside confocal microscopy was used to quantify and qualify the structural characteristics before and after PDT. Cells before PDT showed a fine actin network and higher elasticity with the median of Young modulus 12.2 kPa. After PDT, the median of Young modulus was 13.4 kPa and a large redistribution in the actin network was observed.
- MeSH
- cytoskelet účinky léků fyziologie účinky záření MeSH
- fotosenzibilizující látky chemie farmakologie MeSH
- HeLa buňky MeSH
- konfokální mikroskopie MeSH
- lidé MeSH
- metaloporfyriny chemie farmakologie MeSH
- mikroskopie atomárních sil MeSH
- modul pružnosti MeSH
- světlo MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Shear wave imaging is considered to be more precise and less operator dependent when compared with strain imaging. It enables quantitative and reproducible data (Young's modulus of the imaged tissue). However, results of shear wave imaging can be affected by a variety of different factors. The aim of this study is to evaluate the effect of the pressure applied by the ultrasound probe during examination on the measured values of Young's modulus. The effect of the tissue compression on the results of the real-time shear wave elastography was evaluated via the gelatine phantom measurements, via the ex vivo experiments with pig liver, and via the in vivo measurements of the thyroid gland stiffness on healthy volunteers. The results of our measurements confirmed that the measured value of Young's modulus increases with the increasing pressure applied on the imaged object. The highest increase was observed during the ex vivo experiments (400%), and the lowest increase was detected in the case of the phantom measurements (8%). A two- to threefold increase in Young's modulus was observed between the minimum and maximum pressure in the case of the in vivo elastography measurements of thyroid gland. The Veronda-Westman theoretical model was used for the description of the tissue nonlinearity. We conclude that tissue compression by the force exerted on the probe can significantly affect the results of the real-time shear wave elastography measurements. Minimum pressure should be used when measuring the absolute value of Young's modulus of superficial organs.
- MeSH
- elastografie metody MeSH
- fantomy radiodiagnostické MeSH
- játra anatomie a histologie MeSH
- lidé MeSH
- mechanické jevy * MeSH
- modely u zvířat MeSH
- modul pružnosti MeSH
- prasata MeSH
- referenční hodnoty MeSH
- štítná žláza anatomie a histologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH