experimental prototype technology
Dotaz
Zobrazit nápovědu
The problem of designing tablet geometry and its internal structure that results into a specified release profile of the drug during dissolution was considered. A solution method based on parametric programming, inspired by CAD (computer-aided design) approaches currently used in other fields of engineering, was proposed and demonstrated. The solution of the forward problem using a parametric series of structural motifs was first carried out in order to generate a library of drug release profiles associated with each structural motif. The inverse problem was then solved in three steps: first, the combination of basic structural motifs whose superposition provides the closest approximation of the required drug release profile was found by a linear combination of pre-calculated release profiles. In the next step, the final tablet design was constructed and its dissolution curve found computationally. Finally, the proposed design was 3D printed and its dissolution profile was confirmed experimentally. The computational method was based on the numerical solution of drug diffusion in a boundary layer surrounding the tablet, coupled with erosion of the tablet structure encoded by the phase volume function. The tablets were 3D printed by fused deposition modelling (FDM) from filaments produced by hot-melt extrusion. It was found that the drug release profile could be effectively controlled by modifying the tablet porosity. Custom release profiles were obtained by combining multiple porosity regions in the same tablet. The computational method yielded accurate predictions of the drug release rate for both single- and multi-porosity tablets.
- MeSH
- 3D tisk * MeSH
- farmaceutická technologie metody MeSH
- poréznost MeSH
- tablety chemie farmakokinetika MeSH
- uvolňování léčiv MeSH
- Publikační typ
- časopisecké články MeSH
Additive Manufacturing (AM) is a name of a group of technologies that build 3D objects by adding layer-upon-layer of material. There are many technologies, including Rapid Prototyping (RP), Direct Digital Manufacturing (DDM), layered manufacturing and additive fabrication. Many types of materials can be used for AM technology. Biodegradable polymers such as polylactic acid (PLA) and polyhydroxybutyrate (PHB), are currently the subject of intensive research in the field of additive manufacturing and regenerative medicine. A number of biodegradable and bioresorbable materials, as well as scaffold designs, have been experimentally and clinically studied in many research facilities around the world. For effective using of bioprinting technologies in tissue and biomedical engineering, the knowledge of material and technological parameters in the process of printing is necessary. In this study the 3D printer Bioplotter EnvisionTEC (the printer with ability to print different materials from hydrogel to plastic materials) was used. Scaffolds for the purpose of the experiment were prepared via extrusion-based bioprinting. Experimental part of this study was focused on defining the influence of printing parameters and technological pre-processing of the material on quality and mechanical and geometrical properties of printed parts. Testing of printed samples showed high influence of pre-processing of material, mainly drying process, on mechanical and geometric quality of samples. Drying of material before printing process makes the material more stable and allows it to maintain defined material properties for a longer time than non-dried material. Time of heating of the material in printing cartridge has also high impact on material behaviour. Test results showed that if the time of heating of the material in the high temperature cartridge exceeds defined time limit, the material starts to degrade and is no more usable.
- MeSH
- 3D tisk * MeSH
- biokompatibilní materiály * chemie MeSH
- biomedicínské technologie MeSH
- kyselina polyglykolová chemie MeSH
- lidé MeSH
- polymery * MeSH
- pružnost MeSH
- testování materiálů MeSH
- tkáňové inženýrství * MeSH
- tkáňové podpůrné struktury MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
... Beuscart 31 -- A Prototype of an Information System for Assessing the Health Status of Prison -- Inmates ... ... Moravec Berger 347 Application of Space Technologies for Valuation of a Stress Level, O. Y. ... ... Bratko 436 -- Increasing the Diversity of Medical Data Mining through Distributed Object -- Technology ... ... Frydén 783 -- XV -- Electronic Patient Encounter, Card Technology, Electronic Data Interchange -- C3: ... ... Marchesi 791 -- An Experimental Electronic Patient Record for Stroke Patients, M.J. van der Meijden, ...
Studies in health technology and informatics, ISSN 0926-9630 volume 68
xvii, 1009 stran : ilustrace, tabulky ; 25 cm
Roboty vnímáme nejčastěji jako pomocníky člověka odstraňující namáhavou a monotónní práci. Vzhledem k nemocným a postiženým lidem začíná jejich uplatnění a nasazení v poslední době vzrůstat. Nejvíce se uplatňují v následujících oblastech: Katedra biomedicíncké informatiky (KBI), FBMI ČVUT se ve svých projektech zabývá mj. výzkumem funkčních protéz, asistivních technologií pro hendikepované a experimentálními diagnostickými přístroji. Pro ovládání funkčních protéz, tak pro užití asistivních technologií (např. pohyb kurzoru myši po obrazovce umožňující kvadruplegikovi psát nebo ovládat invalidní vozík) je nezbytné využít dostupných biologických signálů nejčastěji EMG (elektromiogram), EOG (elektrookulogram). Zařízení umožňující postiženému ovládat asistivní pomůcku nebo protézu musí vhodně zpracovat tyto biologické signály a ve vhodném datovém formátu jako řídící veličiny je postoupit řídícímu počítači. Zařízení představující interface mezi člověkem a technologií nazýváme rozhraní člověk – stroj (Human Machine Interface). V rámci pracoviště KBI byli vyvinuté následující rozhraní: Kurzor myši řízený EMG, EOG Prototyp předloketní protézy řízený EMG Kurzor myši řízený EMG signálem představuje rozhraní, které zesílí EMG signál, poté odfiltruje síťový šum a následně provede operaci prahování a transformaci na TTL logiku, kterou zpracuje mikrokontroler a sériovou linkou RS 232 pošle do PC, kde program běžící na pozadí Windows zabezpečí inkrementaci nebo dekrementaci souřadnice kurzoru myši. Kurzor myši řízený EOG signálem představuje zařízení, které signál zesílí a následně odfiltruje všechny mimovolní pohyby oka ze signálu a takto získané napětí A/D převodníkem převede na digitální signál. Tento digitální signál je mikrokontrolérem zprůměrňován klouzavým oknem a poslán přes sériovou linku do PC. Zde opět na pozadí operačního systému běží program, který hodnoty převede na pozici myši na obrazovce. Prototyp předloketní protézy paže řízený pomocí EMG signálů v pozičním a rychlostním módu využívá zařízení obsahující šesti kanálový snímač EMG potenciálů, který zpracuje signál ze šesti nezávislých svalů a mikrokontrolér v něm umístěný zpracuje signály do datového formátu obsahujícího příznak kanálu a amplitudu EMG, který odešle přes sériovou linku RS 232 – USB do řídícího počítače ALIX. ALIX obsahuje řídící logiku protézy a distribuuje povely k řídícím jednotkám pohonů EPOS, které spolu komunikují prostřednictvím CAN sítě.
We consider robots most frequently as assistant for difficult, hard and monotonous work. Importance of robots rise up regarding handicapped people. Department of Biomedical Informatics, Czech Technical University in Prague deals with research and development of active prostheses, assistive technologies for handicapped and experimental diagnostic instruments. The control of active prosthesis or assistive technology is based on available biological signals. The mostly used is EMG or EOG. An example of assistive technology can be a motion of mouse pointer on the screen enabling to quadriplegic to write or operate a wheelchair. The developed device has to correctly process the biosignals and drive the processed biosignals to a control PC as control variables in correct format of data. The device is consisted of interface between a human and the technology so it is called Human Machine Interface (HMI). The following interfaces were developed on the Department of Biomedical Informatics: Mouse pointer controlled by EMG, EOG Prototype of upper limb prosthesis controlled by EMG Mouse pointer controlled by EOG is device which amplifies the signal, filters all nonvolatile motion of the eye out of the signal. The filtered signal is converted by A/D converter to digital signal. The digital signal is smoothen by running average by microcontroller and it is driven via serial bus to PC. The program for operating the device is also written to control the position of the mouse pointer. Prototype of upper limb prosthesis controlled by EMG signals in position and velocity mode is consisted of the devices including six channel EMG sensor, which processes the signal from six independent muscles and an inner microcontroller processes the signal to channel_sign and amplitude format. The signal is afterwards sent via serial bus RS232 – USB to control embedded ALIX PC. ALIX contains control logic of the prosthesis a regulate control commands to control units EPOS. The EPOS units communicate via CAN bus.
... Makarov (France) 4 -- :ssion i -- :er Physics and Technology, Novel Approaches I -- High power laser ... ... Freire (Brazil) 20 -- High radiance diode-pumped solid-state laser technology development in the United ... ... Post (USA) 21 -- A compact Nd:YAG DPSSL using diamond-cooled technology -- H. P. Chou, Y.-L. ... ... Fujii (Japan) 76 -- Experimental effects of atomic oxygen on the development of an electric discharge ... ... Khvatov (Russia) 120 -- Characteristics of prototype mist singlet oxygen generator for COIL -- S. ...
1st ed. 209 s. ; 30 cm
... Prototyping an institutional IAIMS/UMLS information environment for an academic medical center. ... ... Information technologies in US medical schools. Clinical practices outpace academic applications. ... ... An experimental system for auditory image representations. leee Trans Biomed Eng 1992;39:112-21. 301 ...
484 stran : ilustrace, tabulky ; 28 cm
- MeSH
- chorobopisy - počítačové systémy MeSH
- management znalostí MeSH
- metody pro podporu rozhodování MeSH
- počítačové zpracování obrazu MeSH
- počítačové zpracování signálu MeSH
- řízení zdravotnictví MeSH
- zdravotnické informační systémy MeSH
- Publikační typ
- sborníky MeSH
- Konspekt
- Lékařské vědy. Lékařství
- NLK Obory
- lékařská informatika
- NLK Publikační typ
- ročenky