Ligninolytic ability and potential biotechnology applications of the South American fungus Pleurotus laciniatocrenatus
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
16110921
DOI
10.1007/bf02931465
Knihovny.cz E-zdroje
- MeSH
- biotechnologie metody MeSH
- dřevo MeSH
- Eucalyptus metabolismus MeSH
- kultivační média MeSH
- lakasa metabolismus MeSH
- lignin metabolismus MeSH
- peroxidasa metabolismus MeSH
- Pleurotus enzymologie růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Argentina MeSH
- Názvy látek
- kultivační média MeSH
- lakasa MeSH
- lignin MeSH
- peroxidasa MeSH
The extracellular ligninolytic enzyme system of Pleurotus laciniatocrenatus, grown under different culture conditions, was characterized and the ability of this strain to degrade different components of Eucalyptus globulus wood was determined. In shaken liquid cultures grown on a C-limited medium supplemented with yeast extract (0.1%) and peptone (0.5%), the fungus produced extracellular aryl-alcohol oxidase (Aao), laccase (Lac), manganese-dependent peroxidase (MnP) and manganese-independent peroxidase (MiP) activities, their maximum levels being, respectively, about 600, 50, 1360, and 920 pkat/mL. The supplementation of 1 mmol/L vanillic acid and 150 micromol/L CuSO4 produced an increase of Lac activity levels up to 4-fold and 68.3-fold, respectively. No significant differences were found in the levels of the other ligninolytic enzyme activities when compared to the basal medium. Solid-state fermentation cultures on E. globulus wood chips revealed Lac and MiP activities. These cultures showed degradative activity on lignin and lipophilic wood extractives.
Zobrazit více v PubMed
Appl Environ Microbiol. 1996 Mar;62(3):1070-2 PubMed
Curr Microbiol. 1997 Jan;34(1):1-5 PubMed
FEBS Lett. 1992 Mar 24;299(1):107-10 PubMed
Anal Biochem. 1976 May 7;72:248-54 PubMed
Arch Biochem Biophys. 2000 Nov 1;383(1):142-7 PubMed
Appl Environ Microbiol. 2002 Apr;68(4):1534-40 PubMed
Biodegradation. 1999 Jun;10(3):159-68 PubMed
Eur J Biochem. 1996 Apr 15;237(2):424-32 PubMed
Appl Environ Microbiol. 1997 Sep;63(9):3444-50 PubMed
Appl Environ Microbiol. 1993 Dec;59(12):4031-6 PubMed
Biochim Biophys Acta. 1991 Jan 23;1073(1):114-9 PubMed
FEBS Lett. 1998 May 29;428(3):141-6 PubMed
Rev Iberoam Micol. 2000 Jun;17(2):64-8 PubMed
Rapid Commun Mass Spectrom. 2002;16(1):62-8 PubMed
Rev Iberoam Micol. 1997 Sep;14(3):129-30 PubMed
Appl Environ Microbiol. 2000 Mar;66(3):920-4 PubMed
Folia Microbiol (Praha). 2003;48(4):525-8 PubMed
Mycologia. 2002 May-Jun;94(3):377-83 PubMed
Appl Microbiol Biotechnol. 2002 Apr;58(5):582-94 PubMed
Folia Microbiol (Praha). 2003;48(5):639-42 PubMed
Appl Environ Microbiol. 1999 Oct;65(10):4458-63 PubMed
Folia Microbiol (Praha). 2003;48(6):775-9 PubMed
Arch Biochem Biophys. 2000 Apr 1;376(1):171-9 PubMed
Folia Microbiol (Praha). 2003;48(3):413-6 PubMed
Biochim Biophys Acta. 1997 Apr 25;1339(1):23-30 PubMed
Appl Environ Microbiol. 2000 Feb;66(2):524-8 PubMed
J Biol Chem. 1998 Jun 19;273(25):15412-7 PubMed