Decolorization and detoxication of reactive industrial dyes by immobilized fungi Trametes pubescens and Pleurotus ostreatus
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
- MeSH
- barvicí látky metabolismus MeSH
- biodegradace MeSH
- bioreaktory mikrobiologie MeSH
- fermentace MeSH
- imobilizované buňky metabolismus MeSH
- Pleurotus enzymologie metabolismus MeSH
- Polyporales enzymologie metabolismus MeSH
- průmyslová mikrobiologie * MeSH
- průmyslový odpad * MeSH
- textilní průmysl * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- barvicí látky MeSH
- průmyslový odpad * MeSH
Trametes pubescens and Pleurotus ostreatus, immobilized on polyurethane foam cubes in bioreactors, were used to decolorize three industrial and model dyes at concentrations of 200, 1000 and 2000 ppm. Five sequential cycles were run for each dye and fungus. The activity of laccase, Mn-dependent and independent peroxidases, lignin peroxidase, and aryl-alcohol oxidase were daily monitored during the cycles and the toxicity of media containing 1000 and 2000 ppm of each dye was assessed by the Lemna minor (duckweed) ecotoxicity test. Both fungi were able to efficiently decolorize all dyes even at the highest concentration, and the duckweed test showed a significant reduction (p < or = 0.05) of the toxicity after the decolorization treatment. T. pubescens enzyme activities varied greatly and no clear correlation between decolorization and enzyme activity was observed, while P. ostreatus showed constantly a high laccase activity during decolorization cycles. T. pubescens showed better decolorization and detoxication capability (compared to the better known P. ostreatus). As wide differences in enzyme activity of the individual strains were observed, the strong decolorization obtained with the two fungi suggested that different dye decolorization mechanisms might be involved.
Zobrazit více v PubMed
Biochem J. 1988 Sep 15;254(3):877-83 PubMed
Biotechnol Adv. 2003 Dec;22(1-2):161-87 PubMed
Folia Microbiol (Praha). 2006;51(6):573-8 PubMed
J Ind Microbiol Biotechnol. 2004 Mar;31(3):127-32 PubMed
Bioresour Technol. 2001 Sep;79(3):251-62 PubMed
Bioresour Technol. 2001 May;77(3):247-55 PubMed
World J Microbiol Biotechnol. 1992 May;8(3):309-12 PubMed
Biotechnol Lett. 2005 Jan;27(1):69-72 PubMed
Lett Appl Microbiol. 2001 Jul;33(1):21-5 PubMed
Bioresour Technol. 2002 Jan;81(2):155-7 PubMed
Toxicol Lett. 2003 May 15;142(3):185-94 PubMed
Folia Microbiol (Praha). 2006;51(6):579-90 PubMed
Appl Environ Microbiol. 1994 Sep;60(9):3447-9 PubMed
Chemosphere. 2002 Oct;49(1):9-15 PubMed
Folia Microbiol (Praha). 2006;51(5):425-30 PubMed
J Basic Microbiol. 2001;41(2):115-29 PubMed
Appl Microbiol Biotechnol. 2001 Jul;56(1-2):81-7 PubMed
Prikl Biokhim Mikrobiol. 2004 Jan-Feb;40(1):5-23 PubMed
Biotechnol Prog. 2005 Sep-Oct;21(5):1436-41 PubMed
Chemosphere. 2004 Oct;57(3):165-9 PubMed
Folia Microbiol (Praha). 2005;50(2):155-60 PubMed
J Biotechnol. 2003 Feb 27;101(1):49-56 PubMed
Adv Appl Microbiol. 2004;56:185-213 PubMed
Water Sci Technol. 2001;43(2):261-9 PubMed
Folia Microbiol (Praha). 2007;52(5):498-502 PubMed
Appl Microbiol Biotechnol. 2002 Oct;60(1-2):218-23 PubMed
Folia Microbiol (Praha). 2002;47(3):283-6 PubMed
Environ Mol Mutagen. 2006 Aug;47(7):533-40 PubMed
Irpex lacteus, a white-rot fungus with biotechnological potential--review
Isolation and selection of novel basidiomycetes for decolorization of recalcitrant dyes