Irpex lacteus, a white-rot fungus with biotechnological potential--review
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
- MeSH
- Basidiomycota enzymologie genetika metabolismus MeSH
- biodegradace MeSH
- biotechnologie * MeSH
- fungální proteiny genetika metabolismus MeSH
- látky znečišťující životní prostředí metabolismus MeSH
- lignin metabolismus MeSH
- regulace genové exprese u hub MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- fungální proteiny MeSH
- látky znečišťující životní prostředí MeSH
- lignin MeSH
White-rot fungi that are efficient lignin degraders responsible for its turnover in nature have appeared twice in the center of biotechnological research - first, when the lignin degradation process started being systematically investigated and major enzyme activities and mechanisms involved were described, and second, when the huge remediation potential of these organisms was established. Originally, Phanerochaete chrysosporium became a model organism, characterized by a secondary metabolism regulatory pattern triggered by nutrient (mostly nitrogen) limitation. Last decade brought evidence of more varied regulatory patterns in white-rot fungi when ligninolytic enzymes were also abundantly synthesized under conditions of nitrogen sufficiency. Gradually, research was focused on other species, among them Irpex lacteus showing a remarkable pollutant toxicity resistance and biodegradation efficiency. Systematic research has built up knowledge of biochemistry and biotechnological applicability of this fungus, stressing the need to critically summarize and estimate these scattered data. The review attempts to evaluate the information on I. lacteus focusing on various enzyme activities and bioremediation of organopollutants in water and soil environments, with the aim of mediating this knowledge to a broader microbiological audience.
Zobrazit více v PubMed
Folia Microbiol (Praha). 2008;53(6):479-85 PubMed
J Microbiol Biotechnol. 2007 Jul;17(7):1147-51 PubMed
J Microbiol. 2005 Dec;43(6):503-9 PubMed
Folia Microbiol (Praha). 2008;53(4):289-94 PubMed
J Biochem. 1994 May;115(5):837-42 PubMed
Bioresour Technol. 2008 Feb;99(3):463-71 PubMed
Appl Environ Microbiol. 1995 May;61(5):1833-8 PubMed
J Biochem. 1992 May;111(5):600-5 PubMed
Science. 1985 Jun 21;228(4706):1434-6 PubMed
J Biotechnol. 2007 Feb 1;128(2):297-307 PubMed
Antibiot Khimioter. 1992 Feb;37(2):6-11 PubMed
Appl Microbiol Biotechnol. 2003 Apr;61(2):150-6 PubMed
Biochemistry. 1986 Mar 11;25(5):1159-65 PubMed
J Microbiol Biotechnol. 2008 Apr;18(4):767-72 PubMed
FEMS Microbiol Lett. 1999 Jan 1;170(1):181-6 PubMed
J Microbiol. 2004 Mar;42(1):37-41 PubMed
Appl Microbiol Biotechnol. 2000 Dec;54(6):826-31 PubMed
Biotechnol Bioeng. 2008 Oct 1;101(2):273-85 PubMed
Biosci Biotechnol Biochem. 1995 Nov;59(11):2097-103 PubMed
Folia Microbiol (Praha). 2006;51(5):425-30 PubMed
Res Microbiol. 2002 Oct;153(8):547-54 PubMed
Curr Microbiol. 2000 Nov;41(5):317-20 PubMed
Folia Microbiol (Praha). 2008;53(1):44-52 PubMed
Lett Appl Microbiol. 2007 Sep;45(3):270-5 PubMed
J Mol Biol. 1992 Aug 20;226(4):1291-3 PubMed
Appl Microbiol Biotechnol. 2000 Dec;54(6):850-3 PubMed
Chemosphere. 2006 Mar;63(1):175-81 PubMed
J Biosci Bioeng. 2001;91(4):359-62 PubMed
J Biosci Bioeng. 1999;87(4):442-51 PubMed
Chemosphere. 2008 Nov;73(9):1518-23 PubMed
J Biol Chem. 2002 May 24;277(21):18397-403 PubMed
J Biochem. 1989 Jan;105(1):127-32 PubMed
Biosci Biotechnol Biochem. 2005 Jul;69(7):1262-9 PubMed
Chemosphere. 2006 Jul;64(4):560-4 PubMed
J Biochem. 1976 May;79(5):989-95 PubMed
J Biochem. 1978 Nov;84(5):1217-26 PubMed
J Chromatogr A. 2002 Oct 18;974(1-2):213-22 PubMed
Folia Microbiol (Praha). 2006;51(6):573-8 PubMed
Appl Environ Microbiol. 1996 Jun;62(6):2045-52 PubMed
J Biochem. 1993 Aug;114(2):230-5 PubMed
J Biol Chem. 1990 May 5;265(13):7207-15 PubMed
J Biochem. 1976 May;79(5):977-88 PubMed
Biosci Biotechnol Biochem. 2003 Oct;67(10):2307-10 PubMed
Biodegradation. 2009 Sep;20(5):673-8 PubMed
J Biotechnol. 2001 Aug 23;89(2-3):113-22 PubMed
J Biochem. 1996 Dec;120(6):1123-9 PubMed
Microbiology (Reading). 1994 Oct;140 ( Pt 10):2691-8 PubMed
Enzyme Microb Technol. 2000 Feb 1;26(2-4):171-177 PubMed
J Biochem. 1980 Jun;87(6):1625-34 PubMed
J Biosci Bioeng. 1999;87(1):97-102 PubMed
Chemosphere. 2006 Mar;62(9):1558-63 PubMed
Folia Microbiol (Praha). 2002;47(3):255-8 PubMed
Appl Environ Microbiol. 1996 Nov;62(11):4206-9 PubMed
Appl Microbiol Biotechnol. 2001 Oct;57(1-2):20-33 PubMed
J Biochem. 1993 Aug;114(2):236-45 PubMed
J Clin Microbiol. 2005 Apr;43(4):2009-11 PubMed
FEMS Microbiol Lett. 1999 Mar 15;172(2):231-7 PubMed
Peptides. 2004 Jun;25(6):935-9 PubMed
Folia Microbiol (Praha). 2007;52(5):498-502 PubMed
J Biochem. 1985 Dec;98(6):1545-54 PubMed
Appl Environ Microbiol. 1997 May;63(5):1744-8 PubMed
Res Microbiol. 2006 Apr;157(3):248-53 PubMed
Carbohydr Res. 1998 Oct;311(4):219-29 PubMed
Appl Microbiol Biotechnol. 2006 Oct;72(5):912-6 PubMed
Arch Biochem Biophys. 1959 Mar;81(1):211-22 PubMed
J Biotechnol. 2000 Feb 17;77(2-3):235-45 PubMed
Appl Environ Microbiol. 2006 Nov;72(11):7050-6 PubMed
Environ Mol Mutagen. 2006 Aug;47(7):533-40 PubMed
J Biol Chem. 1999 Apr 9;274(15):10324-30 PubMed
J Mol Biol. 2004 Aug 27;341(5):1227-35 PubMed
Appl Microbiol Biotechnol. 2002 Jul;59(2-3):353-60 PubMed
Biochem Biophys Res Commun. 2002 May 3;293(2):857-61 PubMed
Appl Environ Microbiol. 1995 Dec;61(12):4374-7 PubMed
Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy