Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy

. 2013 Mar ; 58 (2) : 163-76. [epub] 20120726

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid23011949

Cellulase (CEL) presently constitutes a major group of industrial enzyme based on its diverse ranges of utilization. Apart from such current and well-established applications-as in cotton processing, paper recycling, detergent formulation, juice extraction, and animal feed additives-their uses in agricultural biotechnology and bioenergy have been exploited. Supplementation of CELs to accelerate decomposition of plant residues in soil results in improved soil fertility. So far, applying CELs/antagonistic cellulolytic fungi to crops has shown to promote plant growth performance, including enhanced seed germination and protective effects. Their actions are believed mainly to trigger plant defense mechanisms and/or to act as biocontrol agents that mediate disease suppression. However, the exact interaction between the enzymes/fungi and plants has not been clearly elucidated. Under mild conditions, removal of plant cell wall polysaccharides by CELs for protoplast preparation results in reduced protoplast damage and increased viability and yields. CELs have recently shown great potential in enzyme aid extraction of bioactive compounds from plant materials before selective extraction through enhancing release of target molecules, especially those associated with the wall matrix. To date, attempts have been made to formulate CEL preparation for cellulosic-based bioethanol production. The high cost of CELs has created a bottleneck, resulting in an uneconomic production process. The utilization of low-cost carbohydrates, strain improvement, and gene manipulations has been alternatively aimed at reducing the cost of CEL production. In this review, we focus on and discuss current knowledge of CELs and their applications in agriculture, biotechnology, and bioenergy.

Zobrazit více v PubMed

Bioresour Technol. 2010 May;101(10):3724-31 PubMed

Appl Microbiol Biotechnol. 2011 Sep;91(6):1477-92 PubMed

Molecules. 2010 Dec 03;15(12):8813-26 PubMed

Curr Opin Microbiol. 2011 Jun;14(3):259-63 PubMed

Biosci Biotechnol Biochem. 2008 Feb;72(2):321-8 PubMed

Microbiol Res. 2010 Mar 31;165(3):190-8 PubMed

Folia Microbiol (Praha). 2007;52(4):415-21 PubMed

Plant Cell. 2008 Jan;20(1):228-40 PubMed

Biochemistry. 2010 Apr 20;49(15):3305-16 PubMed

J Agric Food Chem. 2006 Aug 23;54(17):6336-42 PubMed

J Microbiol Biotechnol. 2010 May;20(5):893-903 PubMed

Curr Opin Biotechnol. 2007 Jun;18(3):237-45 PubMed

Biotechnol Adv. 2009 Mar-Apr;27(2):185-94 PubMed

Phytopathology. 1999 Jun;89(6):506-17 PubMed

J Agric Food Chem. 2009 Feb 11;57(3):1051-9 PubMed

Curr Opin Biotechnol. 2008 Jun;19(3):218-27 PubMed

Trends Biotechnol. 2008 Aug;26(8):413-24 PubMed

Appl Environ Microbiol. 2002 May;68(5):2614-8 PubMed

Microbiol Mol Biol Rev. 2006 Jun;70(2):283-95 PubMed

J Agric Food Chem. 2009 May 27;57(10):4342-51 PubMed

Bioresour Technol. 2010 Jun;101(12):4472-8 PubMed

J Biotechnol. 1997 Sep 16;57(1-3):71-81 PubMed

J Plant Physiol. 2010 Sep 15;167(14):1204-10 PubMed

J Agric Food Chem. 2005 Nov 30;53(24):9560-5 PubMed

J Biosci Bioeng. 2009 Jun;107(6):610-4 PubMed

Appl Microbiol Biotechnol. 2010 Jan;85(3):573-80 PubMed

Bioresour Technol. 2011 Apr;102(8):5207-13 PubMed

Nat Rev Mol Cell Biol. 2005 Nov;6(11):850-61 PubMed

J Microbiol Biotechnol. 2009 Mar;19(3):277-85 PubMed

Trends Biotechnol. 2011 Sep;29(9):419-25 PubMed

Bioresour Technol. 2010 Sep;101(18):7094-8 PubMed

Microbiol Mol Biol Rev. 2002 Sep;66(3):506-77, table of contents PubMed

J Agric Food Chem. 2002 Jul 31;50(16):4491-6 PubMed

Nat Rev Microbiol. 2004 Jul;2(7):541-51 PubMed

Annu Rev Microbiol. 1968;22:87-108 PubMed

Planta. 2005 Apr;220(6):889-99 PubMed

J Nutr. 2006 Feb;136(2):404-8 PubMed

Biosci Biotechnol Biochem. 2010;74(4):802-5 PubMed

J Ind Microbiol Biotechnol. 2008 May;35(5):377-391 PubMed

Curr Opin Chem Biol. 2006 Apr;10(2):141-6 PubMed

Biotechnol Adv. 2000 Aug;18(5):355-83 PubMed

Carbohydr Res. 2008 Aug 11;343(12):1966-79 PubMed

Appl Environ Microbiol. 2000 Oct;66(10):4305-14 PubMed

J Biol Chem. 2000 Feb 18;275(7):4973-80 PubMed

Biotechnol Bioeng. 2000 Oct 20;70(2):151-9 PubMed

J Biotechnol. 2007 Sep 15;131(3):362-9 PubMed

Plant Physiol. 2000 Feb;122(2):527-34 PubMed

Folia Microbiol (Praha). 2009 Sep;54(5):375-90 PubMed

Biotechnol Adv. 1998 Jan;16(1):1-32 PubMed

Trends Biotechnol. 2010 Mar;28(3):111-6 PubMed

Annu Rev Entomol. 2010;55:609-32 PubMed

J Exp Bot. 1994 Nov;45(Spec Iss):1711-9 PubMed

Biodegradation. 2012 Feb;23(1):57-68 PubMed

Physiol Mol Biol Plants. 2009 Apr;15(2):103-13 PubMed

Bioresour Technol. 2010 Nov;101(22):8742-9 PubMed

J Agric Food Chem. 2005 Jan 12;53(1):42-8 PubMed

Folia Microbiol (Praha). 2003;48(1):76-82 PubMed

Plant Mol Biol. 2001 Sep;47(1-2):311-40 PubMed

Biotechnol Adv. 1997;15(3-4):583-620 PubMed

Curr Opin Biotechnol. 2009 Jun;20(3):295-9 PubMed

Folia Microbiol (Praha). 2010 Jan;55(1):29-34 PubMed

Science. 2007 Feb 9;315(5813):804-7 PubMed

Appl Environ Microbiol. 2011 Jun;77(12):4260-3 PubMed

Science. 2006 Apr 21;312(5772):436-9 PubMed

Am J Med. 2002 Dec 30;113 Suppl 9B:71S-88S PubMed

Eur J Biochem. 2001 Aug;268(15):4217-26 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The effect of lyophilization and storage time on the survival rate and hydrolytic activity of Trichoderma strains

. 2018 Jul ; 63 (4) : 433-441. [epub] 20180105

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...