Ascomycetes with cellulolytic, amylolytic, pectinolytic, and mannanolytic activities inhabiting dead beech (Fagus crenata) trees
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- amylosa metabolismus MeSH
- Ascomycota klasifikace izolace a purifikace metabolismus MeSH
- buk (rod) mikrobiologie MeSH
- celulosa metabolismus MeSH
- DNA fungální chemie genetika MeSH
- fungální RNA genetika MeSH
- geny rRNA MeSH
- kultivační média chemie MeSH
- mannany metabolismus MeSH
- mikrobiologie životního prostředí MeSH
- papír MeSH
- pektiny metabolismus MeSH
- ribozomální DNA chemie genetika MeSH
- RNA ribozomální genetika MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amylosa MeSH
- celulosa MeSH
- DNA fungální MeSH
- fungální RNA MeSH
- kultivační média MeSH
- mannany MeSH
- pektiny MeSH
- ribozomální DNA MeSH
- RNA ribozomální MeSH
- RNA, ribosomal, 26S MeSH Prohlížeč
It is generally accepted that dead tree decomposition is performed mainly by delignifying basidiomycetes. While ascomycetes have been reported to inhabit dead tree bark, their contribution to dead tree decomposition is still unclear. Here, we isolated five bark-inhabiting ascomycetes possessing cellulolytic activity from dead beech tree and assessed their polysaccharolytic activities. When cultivated in a medium containing filter paper as a sole carbon source, three strains degraded >40 % of the filter paper in a 4-week cultivation and the others degraded 15-30 % of the paper. The degraders possessed amylolytic, pectinolytic, and mannanolytic activities as well as cellulolytic activity, implying that they play an important role in dead tree decomposition after delignification by basidiomycetes. Phylogenetic analysis based on large subunit ribosomal DNA (lsu-DNA) sequences implied that the isolates belonged to Penicillium or Amorphotheca.
Zobrazit více v PubMed
FEMS Immunol Med Microbiol. 2004 Jan 15;40(1):41-9 PubMed
Mol Biol Evol. 1987 Jul;4(4):406-25 PubMed
Fungal Genet Biol. 1999 Jul-Aug;27(2-3):175-85 PubMed
Mycologia. 2002 May-Jun;94(3):421-7 PubMed
J Gen Microbiol. 1973 May;76(1):243-6 PubMed
Folia Microbiol (Praha). 2007;52(5):498-502 PubMed
Evolution. 1985 Jul;39(4):783-791 PubMed
Science. 1948 Mar 5;107(2775):254-5 PubMed
Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 PubMed
Folia Microbiol (Praha). 2009;54(1):74-80 PubMed
Exp Mycol. 1995 Sep;19(3):223-33 PubMed
Appl Environ Microbiol. 2005 Sep;71(9):5544-50 PubMed
J Clin Microbiol. 2005 May;43(5):2092-103 PubMed
Mycologia. 2006 Mar-Apr;98(2):172-9 PubMed
Appl Microbiol Biotechnol. 2006 Jan;69(5):573-9 PubMed
Appl Microbiol. 1973 Mar;25(3):454-7 PubMed
Int J Syst Bacteriol. 1997 Jul;47(3):832-6 PubMed
Biotechnol Prog. 2005 May-Jun;21(3):816-22 PubMed
FEMS Microbiol Rev. 2008 May;32(3):501-21 PubMed
J Mol Biol. 1990 Oct 5;215(3):403-10 PubMed
Appl Biochem Biotechnol. 2004 Spring;113-116:389-401 PubMed
Antonie Van Leeuwenhoek. 1998 May;73(4):331-71 PubMed
Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy