Cell viability of microencapsulated Bifidobacterium animalis subsp. lactis under freeze-drying, storage and gastrointestinal tract simulation conditions
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
- MeSH
- Bifidobacterium fyziologie účinky záření MeSH
- časové faktory MeSH
- gastrointestinální trakt mikrobiologie MeSH
- kojenec MeSH
- lidé MeSH
- lyofilizace * MeSH
- mikrobiální viabilita účinky záření MeSH
- náhražky mateřského mléka MeSH
- počet mikrobiálních kolonií MeSH
- příprava léků MeSH
- probiotika účinky záření MeSH
- skladování léků metody MeSH
- teplota MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The purpose of this study was to improve the survival of Bifidobacterium animalis subsp. lactis 10140 during freeze-drying process by microencapsulation, using a special pediatric prebiotics mixture (galactooligosaccharides and fructooligosaccharides). Probiotic microorganisms were encapsulated with a coat combination of prebiotics-calcium-alginate prior to freeze-drying. Both encapsulated and free cells were then freeze-dried in their optimized combinations of skim milk and prebiotics. Response surface methodology (RSM) was used to produce a coating combination as well as drying medium with the highest cell viability during freeze-drying. The optimum encapsulation composition was found to be 2.1 % Na-alginate, 2.9 % prebiotic, and 21.7 % glycerol. Maximum survival predicted by the model was 81.2 %. No significant (p > 0.05) difference between the predicted and experimental values verified the adequacy of final reduced models. The protection ability of encapsulation was then examined over 120 days of storage at 4 and 25 °C and exposure to a sequential model of infantile GIT conditions including both gastric conditions (pH 3.0 and 4.0, 90 min, 37 °C) and intestinal conditions (pH 7.5, 5 h, 37 °C). Significantly improved cell viability showed that microencapsulation of B. lactis 10140 with the prebiotics was successful in producing a stable symbiotic powdery nutraceutical.
Zobrazit více v PubMed
Int J Food Microbiol. 2004 Jun 1;93(2):209-17 PubMed
Acta Paediatr Suppl. 1999 Aug;88(430):47-57 PubMed
Appl Environ Microbiol. 2005 Jun;71(6):3060-7 PubMed
Curr Issues Intest Microbiol. 2002 Sep;3(2):39-48 PubMed
J Nutr. 2008 Jun;138(6):1091-5 PubMed
Appl Environ Microbiol. 1990 Oct;56(10):3112-6 PubMed
J Appl Microbiol. 2005;99(6):1330-9 PubMed
Int J Food Microbiol. 2000 Dec 5;62(1-2):47-55 PubMed
J Pediatr Gastroenterol Nutr. 2002 Mar;34(3):291-5 PubMed
J Microbiol Methods. 2004 Jan;56(1):27-35 PubMed
Cryobiology. 1999 Aug;39(1):88-102 PubMed
Neonatology. 2007;92(1):64-6 PubMed
Appl Environ Microbiol. 2006 Apr;72(4):3042-5 PubMed
J Pediatr Gastroenterol Nutr. 2000 Jan;30(1):61-7 PubMed
J Appl Microbiol. 2005;99(2):333-8 PubMed
J Appl Microbiol. 1998 May;84(5):759-68 PubMed
J Appl Microbiol. 2003;94(6):947-52 PubMed
J Food Sci. 2009 Mar;74(2):M100-7 PubMed
Cryobiology. 2007 Oct;55(2):108-14 PubMed
J Clin Gastroenterol. 2004 Jul;38(6 Suppl):S80-3 PubMed
Int J Food Microbiol. 1999 Mar 1;47(1-2):79-87 PubMed
J Ind Microbiol Biotechnol. 2006 Jan;33(1):55-61 PubMed
Am J Clin Nutr. 2001 Feb;73(2 Suppl):406S-409S PubMed
Appl Environ Microbiol. 2009 Feb;75(4):965-9 PubMed
J Nutr. 2007 Nov;137(11):2420-4 PubMed
Int J Food Microbiol. 2003 Sep 15;86(3):293-301 PubMed
Int J Food Microbiol. 2000 Oct 1;61(1):17-25 PubMed
Eur J Clin Nutr. 1992 Oct;46 Suppl 2:S33-50 PubMed
Int J Food Microbiol. 2002 Sep 15;78(1-2):99-117 PubMed