An Optimized and Cost-Effective RNA Extraction Method for Secondary Metabolite-Enriched Tissues of Norway Spruce (Picea abies)

. 2024 Jan 28 ; 13 (3) : . [epub] 20240128

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38337922

Grantová podpora
QK1910480 Ministry of Agriculture
43950/1312/3123 Czech University of Life Sciences Prague

Since the development of next-generation sequencing techniques and with the growing interest in transcriptomic studies, there is a demand for high-throughput RNA extraction techniques. General RNA extraction protocols are unreliable when it comes to the quality and quantity of isolated RNA obtained from different tissue types of different plant species. Despite Norway spruce (Picea abies) being one of the most significant and commercially valuable tree species in European forests, only limited genetic research is available. In this study, we developed a cetyltrimethylammonium bromide (CTAB) protocol by modifying the original method. We compared this CTAB protocol with other widely used methods for extracting RNA from different tissues (needle, phloem, and root) of Norway spruce, known for its richness in polyphenols, polysaccharides, and secondary metabolites. The modified CTAB method proves to be superior to the kit-based and TRIzol-based methods for extracting RNA from the metabolite-rich tissues of Norway spruce, resulting in high RNA quality and integrity values (RIN~7-9). The modified CTAB RNA extraction method is rapid, cost-effective, and relatively simple in yielding the desired RNA quality from Norway spruce tissues. It is optimal for RNA sequencing and other downstream molecular applications.

Zobrazit více v PubMed

Caudullo G., Tinner W., De Rigo D. Picea abies in Europe: Distribution, habitat, usage and threats. In: San-Miguel-Ayanz J., de Rigo D., Caudullo G., Houston Durrant T., Mauri A., editors. European Atlas of Forest Tree Species. Publication Office of the European Union; Luxembourg: 2016. pp. 114–116.

Jactel H., Nicoll B.C., Branco M., Gonzalez-Olabarria J.R., Grodzki W., Långström B., Moreira F., Netherer S., Orazio C., Piou D., et al. The influences of forest stand management on biotic and abiotic risks of damage. Ann. For. Sci. 2009;66:701. doi: 10.1051/forest/2009054. DOI

Trubin A., Kozhoridze G., Zabihi K., Modlinger R., Singh V.V., Surový P., Jakuš R. Detection of susceptible Norway spruce to bark beetle attack using PlanetScope multispectral imagery. Front. For. Glob. Chang. 2023;6:1130721. doi: 10.3389/ffgc.2023.1130721. DOI

Zabihi K., Singh V.V., Trubin A., Tomášková I., Blaženec M., Surový P., Jakuš R. Sap flow as a function of variables within nested scales: Ordinary least squares vs. spatial regression models. Environ. Res. Ecol. 2023;2:025002. doi: 10.1088/2752-664X/acd6ff. DOI

Wang Z., Gerstein M., Snyder M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009;10:57–63. doi: 10.1038/nrg2484. PubMed DOI PMC

Liu H., Wang J., Sun H., Han X., Peng Y., Liu J., Liu K., Ding Y., Wang C., Du B. Transcriptome profiles reveal the growth-promoting mechanism of Paenibacillus polymyxa YC0136 on tobacco (Nicotiana tabacum L.) Front. Microbiol. 2020;11:584174. doi: 10.3389/fmicb.2020.584174. PubMed DOI PMC

Yan W.J., Pendi F.H., Hussain H. Improved CTAB method for RNA extraction of thick waxy leaf tissues from sago palm (Metroxylon sagu Rottb.) Chem. Biol. Technol. Agric. 2022;9:63. doi: 10.1186/s40538-022-00329-9. DOI

Ghawana S., Paul A., Kumar H., Kumar A., Singh H., Bhardwaj P.K., Rani A., Singh R.S., Raizada J., Singh K., et al. An RNA isolation system for plant tissues rich in secondary metabolites. BMC Res. Notes. 2011;4:85. doi: 10.1186/1756-0500-4-85. PubMed DOI PMC

Nath O., Fletcher S.J., Hayward A., Shaw L.M., Agarwal R., Furtado A., Henry R.J., Mitter N. A comprehensive high-quality DNA and RNA extraction protocol for a range of cultivars and tissue types of the woody crop avocado. Plants. 2022;11:242. doi: 10.3390/plants11030242. PubMed DOI PMC

Gudenschwager O., González-Agüero M., Defilippi B.G. A general method for high-quality RNA isolation from metabolite-rich fruits. S. Afr. J. Bot. 2012;83:186–192. doi: 10.1016/j.sajb.2012.08.004. DOI

Huang H.H., Xu L.L., Tong Z.K., Lin E.P., Liu Q.P., Cheng L.J., Zhu M.Y. De novo characterization of the Chinese fir (Cunninghamia lanceolata) transcriptome and analysis of candidate genes involved in cellulose and lignin biosynthesis. BMC Genom. 2012;13:648. doi: 10.1186/1471-2164-13-648. PubMed DOI PMC

Morante-Carriel J., Sellés-Marchart S., Martínez-Márquez A., Martínez-Esteso M.J., Luque I., Bru-Martínez R. RNA isolation from loquat and other recalcitrant woody plants with high quality and yield. Anal. Biochem. 2014;452:46–53. doi: 10.1016/j.ab.2014.02.010. PubMed DOI

Wang S.X., Hunter W., Plant A. Isolation and purification of functional total RNA from woody branches and needles of Sitka and white spruce. Biotechniques. 2000;28:292–296. doi: 10.2144/00282st06. PubMed DOI

Chang S., Puryear J., Cairney J. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 1993;11:113–116. doi: 10.1007/BF02670468. DOI

Sasi S., Krishnan S., Kodackattumannil P., Shamisi A.A., Aldarmaki M., Lekshmi G., Kottackal M., Amiri K.M. DNA-free high-quality RNA extraction from 39 difficult-to-extract plant species (representing seasonal tissues and tissue types) of 32 families, and its validation for downstream molecular applications. Plant Methods. 2023;19:84. doi: 10.1186/s13007-023-01063-5. PubMed DOI PMC

Johnson M.T.J., Carpenter E.J., Tian Z., Bruskiewich R., Burris J.N., Carrigan C.T., Chase M.W., Clarke N.D., Covshoff S., Depamphilis C.W., et al. Evaluating methods for isolating total RNA and predicting the success of sequencing phylogenetically diverse plant transcriptomes. PLoS ONE. 2012;7:e50226. doi: 10.1371/journal.pone.0050226. PubMed DOI PMC

Lee S., Moon J.S., Ko T.S., Petros D., Goldsbrough P.B., Korban S.S. Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol. 2003;131:656–663. doi: 10.1104/pp.014118. PubMed DOI PMC

Hu C.G., Honda C., Kita M., Zhang Z., Tsuda T., Moriguchi T. A simple protocol for RNA isolation from fruit trees containing high levels of polysaccharides and polyphenol compounds. Plant Mol. Biol. Rep. 2002;20:69a–69g. doi: 10.1007/BF02801935. DOI

Kolosova N., Miller B., Ralph S., Ellis B.E., Douglas C., Ritland K., Bohlmann J. Isolation of high-quality RNA from gymnosperm and angiosperm trees. Biotechniques. 2004;36:821–824. doi: 10.2144/04365ST06. PubMed DOI

Meisel L., Fonseca B., González S., Baeza-Yates R., Cambiazo V., Campos R., Gonzalez M., Orellana A., Retamales J., Silva H. A rapid and efficient method for purifying high quality total RNA from peaches (Prunus persica) for functional genomics analyses. Biol. Res. 2005;38:83–88. doi: 10.4067/S0716-97602005000100010. PubMed DOI

Asif M., Trivedi P., Solomos T., Tucker M. Isolation of high-quality RNA from apple (Malus domestica) fruit. J. Agric. Food Chem. 2006;54:5227–5229. doi: 10.1021/jf053137n. PubMed DOI

Untergasser A. “RNAprep-Trizol combined with Columns” Untergasser’s Lab. Winter 2008. [(accessed on 1 August 2023)]. Available online: https://www.untergasser.de/lab/protocols/rna_prep_comb_trizol_v1_0.htm.

Vennapusa A.R., Somayandal C.J., Jagadish S.V.K. A universal method for high quality RNA extraction from plant tissues rich in starch, proteins and fiber. Sci. Rep. 2020;10:16887. doi: 10.1038/s41598-020-73958-5. PubMed DOI PMC

Ahmed M., Sarwar M.B., Ashfaq R., Ahmed A., Yanag X., ud Din S., Sajid M., Syed Q., Abidi S.H., Wang X. Low-cost and highly efficient: A method for high-quality nucleic acid isolation from cotton fibres. bioRxiv. 2022 doi: 10.1101/2022.10.07.511236. DOI

Kiefer E., Heller W., Ernst D. A simple and efficient protocol for isolation of functional RNA from plant tissues rich in secondary metabolites. Plant Mol. Biol. Rep. 2000;18:33–39. doi: 10.1007/BF02825291. DOI

Yockteng R., Almeida A.M., Yee S., Andre T., Hill C., Specht C.D. A method for extracting high-quality RNA from diverse plants for next-generation sequencing and gene expression analyses. Appl. Plant Sci. 2013;1:1300070. doi: 10.3732/apps.1300070. PubMed DOI PMC

Kukurba K.R., Montgomery S.B. RNA Sequencing and Analysis. Cold Spring Harb. Protoc. 2015;11:951–969. doi: 10.1101/pdb.top084970. PubMed DOI PMC

Mitchell N., McAssey E.V., Hodel R.G.J. Emerging methods in botanical DNA/RNA extraction. Appl. Plant Sci. 2023;11:e11530. doi: 10.1002/aps3.11530. DOI

Bhardwaj K., Silva A.S., Atanassova M., Sharma R., Nepovimova E., Musilek K., Sharma R., Alghuthaymi M.A., Dhanjal D.S., Nicoletti M., et al. Conifers Phytochemicals: A Valuable Forest with Therapeutic Potential. Molecules. 2021;26:3005. doi: 10.3390/molecules26103005. PubMed DOI PMC

Seçgin Z., Gökdemir G., Atabay E.S., Kurt Kızıldoğan A., Kavas M. Development of new total RNA isolation method for tissues with rich phenolic compounds. Turk. J. Biochem. 2020;45:343–350. doi: 10.1515/tjb-2019-0375. DOI

Carpinetti P.D.A., Fioresi V.S., Ignez da Cruz T., de Almeida F.A.N., Canal D., Ferreira A., Ferreira M.F.D.S. Efficient method for isolation of high-quality RNA from Psidium guajava L. tissues. PLoS ONE. 2021;16:e0255245. doi: 10.1371/journal.pone.0255245. PubMed DOI PMC

Xiao H., Kim W.S., Meng B. A highly effective and versatile technology for the isolation of RNAs from grapevines and other woody perennials for use in virus diagnostics. Virol. J. 2015;12:171. doi: 10.1186/s12985-015-0376-3. PubMed DOI PMC

Tattersall E.A., Ergul A., AlKayal F., DeLuc L., Cushman J.C., Cramer G.R. Comparison of methods for isolating high-quality RNA from leaves of grapevine. Am. J. Enol. Vitic. 2005;56:400–406. doi: 10.5344/ajev.2005.56.4.400. DOI

Lewinsohn E., Steele C.L., Croteau R. Simple isolation of functional RNA from woody stems of gymnosperms. Plant Mol. Biol. Rep. 1994;12:20–25. doi: 10.1007/BF02668660. DOI

Nizam A., Kalath H., Kumar A. A modified method for efficient RNA isolation from mangrove root tissues rich in secondary metabolites. BioTechniques. 2023;74:302–316. doi: 10.2144/btn-2022-0078. PubMed DOI

Masoomi-Aladizgeh F., Jabbari L., Khayam Nekouei R., Aalami A., Atwell B.J., Haynes P.A. A universal protocol for high-quality DNA and RNA isolation from diverse plant species. PLoS ONE. 2023;14:e0295852. doi: 10.1371/journal.pone.0295852. PubMed DOI PMC

Schultz D.J., Craig R., Cox-Foster D.L., Mumma R.O., Medford J.I. RNA isolation from recalcitrant plant tissue. Plant Mol. Biol. Rep. 1994;12:310–316. doi: 10.1007/BF02669273. DOI

Azevedo H., Lino-Neto T., Tavares R.M. An improved method for high-quality RNA isolation from needles of adult maritime pine trees. Plant Mol. Biol. Rep. 2003;21:333–338. doi: 10.1007/BF02772582. DOI

Gautam A. DNA and RNA Isolation Techniques for Non-Experts. Springer; Cham, Switzerland: 2022. Lithium Chloride-Based Isolation of RNA. Techniques in Life Science and Biomedicine for the Non-Expert. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...