An Optimized and Cost-Effective RNA Extraction Method for Secondary Metabolite-Enriched Tissues of Norway Spruce (Picea abies)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK1910480
Ministry of Agriculture
43950/1312/3123
Czech University of Life Sciences Prague
PubMed
38337922
PubMed Central
PMC10857598
DOI
10.3390/plants13030389
PII: plants13030389
Knihovny.cz E-zdroje
- Klíčová slova
- CTAB, RNA extraction kits, RNA integrity, RNA-Seq, TRIzol, nanodrop, phenolic content,
- Publikační typ
- časopisecké články MeSH
Since the development of next-generation sequencing techniques and with the growing interest in transcriptomic studies, there is a demand for high-throughput RNA extraction techniques. General RNA extraction protocols are unreliable when it comes to the quality and quantity of isolated RNA obtained from different tissue types of different plant species. Despite Norway spruce (Picea abies) being one of the most significant and commercially valuable tree species in European forests, only limited genetic research is available. In this study, we developed a cetyltrimethylammonium bromide (CTAB) protocol by modifying the original method. We compared this CTAB protocol with other widely used methods for extracting RNA from different tissues (needle, phloem, and root) of Norway spruce, known for its richness in polyphenols, polysaccharides, and secondary metabolites. The modified CTAB method proves to be superior to the kit-based and TRIzol-based methods for extracting RNA from the metabolite-rich tissues of Norway spruce, resulting in high RNA quality and integrity values (RIN~7-9). The modified CTAB RNA extraction method is rapid, cost-effective, and relatively simple in yielding the desired RNA quality from Norway spruce tissues. It is optimal for RNA sequencing and other downstream molecular applications.
Zobrazit více v PubMed
Caudullo G., Tinner W., De Rigo D. Picea abies in Europe: Distribution, habitat, usage and threats. In: San-Miguel-Ayanz J., de Rigo D., Caudullo G., Houston Durrant T., Mauri A., editors. European Atlas of Forest Tree Species. Publication Office of the European Union; Luxembourg: 2016. pp. 114–116.
Jactel H., Nicoll B.C., Branco M., Gonzalez-Olabarria J.R., Grodzki W., Långström B., Moreira F., Netherer S., Orazio C., Piou D., et al. The influences of forest stand management on biotic and abiotic risks of damage. Ann. For. Sci. 2009;66:701. doi: 10.1051/forest/2009054. DOI
Trubin A., Kozhoridze G., Zabihi K., Modlinger R., Singh V.V., Surový P., Jakuš R. Detection of susceptible Norway spruce to bark beetle attack using PlanetScope multispectral imagery. Front. For. Glob. Chang. 2023;6:1130721. doi: 10.3389/ffgc.2023.1130721. DOI
Zabihi K., Singh V.V., Trubin A., Tomášková I., Blaženec M., Surový P., Jakuš R. Sap flow as a function of variables within nested scales: Ordinary least squares vs. spatial regression models. Environ. Res. Ecol. 2023;2:025002. doi: 10.1088/2752-664X/acd6ff. DOI
Wang Z., Gerstein M., Snyder M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009;10:57–63. doi: 10.1038/nrg2484. PubMed DOI PMC
Liu H., Wang J., Sun H., Han X., Peng Y., Liu J., Liu K., Ding Y., Wang C., Du B. Transcriptome profiles reveal the growth-promoting mechanism of Paenibacillus polymyxa YC0136 on tobacco (Nicotiana tabacum L.) Front. Microbiol. 2020;11:584174. doi: 10.3389/fmicb.2020.584174. PubMed DOI PMC
Yan W.J., Pendi F.H., Hussain H. Improved CTAB method for RNA extraction of thick waxy leaf tissues from sago palm (Metroxylon sagu Rottb.) Chem. Biol. Technol. Agric. 2022;9:63. doi: 10.1186/s40538-022-00329-9. DOI
Ghawana S., Paul A., Kumar H., Kumar A., Singh H., Bhardwaj P.K., Rani A., Singh R.S., Raizada J., Singh K., et al. An RNA isolation system for plant tissues rich in secondary metabolites. BMC Res. Notes. 2011;4:85. doi: 10.1186/1756-0500-4-85. PubMed DOI PMC
Nath O., Fletcher S.J., Hayward A., Shaw L.M., Agarwal R., Furtado A., Henry R.J., Mitter N. A comprehensive high-quality DNA and RNA extraction protocol for a range of cultivars and tissue types of the woody crop avocado. Plants. 2022;11:242. doi: 10.3390/plants11030242. PubMed DOI PMC
Gudenschwager O., González-Agüero M., Defilippi B.G. A general method for high-quality RNA isolation from metabolite-rich fruits. S. Afr. J. Bot. 2012;83:186–192. doi: 10.1016/j.sajb.2012.08.004. DOI
Huang H.H., Xu L.L., Tong Z.K., Lin E.P., Liu Q.P., Cheng L.J., Zhu M.Y. De novo characterization of the Chinese fir (Cunninghamia lanceolata) transcriptome and analysis of candidate genes involved in cellulose and lignin biosynthesis. BMC Genom. 2012;13:648. doi: 10.1186/1471-2164-13-648. PubMed DOI PMC
Morante-Carriel J., Sellés-Marchart S., Martínez-Márquez A., Martínez-Esteso M.J., Luque I., Bru-Martínez R. RNA isolation from loquat and other recalcitrant woody plants with high quality and yield. Anal. Biochem. 2014;452:46–53. doi: 10.1016/j.ab.2014.02.010. PubMed DOI
Wang S.X., Hunter W., Plant A. Isolation and purification of functional total RNA from woody branches and needles of Sitka and white spruce. Biotechniques. 2000;28:292–296. doi: 10.2144/00282st06. PubMed DOI
Chang S., Puryear J., Cairney J. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 1993;11:113–116. doi: 10.1007/BF02670468. DOI
Sasi S., Krishnan S., Kodackattumannil P., Shamisi A.A., Aldarmaki M., Lekshmi G., Kottackal M., Amiri K.M. DNA-free high-quality RNA extraction from 39 difficult-to-extract plant species (representing seasonal tissues and tissue types) of 32 families, and its validation for downstream molecular applications. Plant Methods. 2023;19:84. doi: 10.1186/s13007-023-01063-5. PubMed DOI PMC
Johnson M.T.J., Carpenter E.J., Tian Z., Bruskiewich R., Burris J.N., Carrigan C.T., Chase M.W., Clarke N.D., Covshoff S., Depamphilis C.W., et al. Evaluating methods for isolating total RNA and predicting the success of sequencing phylogenetically diverse plant transcriptomes. PLoS ONE. 2012;7:e50226. doi: 10.1371/journal.pone.0050226. PubMed DOI PMC
Lee S., Moon J.S., Ko T.S., Petros D., Goldsbrough P.B., Korban S.S. Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol. 2003;131:656–663. doi: 10.1104/pp.014118. PubMed DOI PMC
Hu C.G., Honda C., Kita M., Zhang Z., Tsuda T., Moriguchi T. A simple protocol for RNA isolation from fruit trees containing high levels of polysaccharides and polyphenol compounds. Plant Mol. Biol. Rep. 2002;20:69a–69g. doi: 10.1007/BF02801935. DOI
Kolosova N., Miller B., Ralph S., Ellis B.E., Douglas C., Ritland K., Bohlmann J. Isolation of high-quality RNA from gymnosperm and angiosperm trees. Biotechniques. 2004;36:821–824. doi: 10.2144/04365ST06. PubMed DOI
Meisel L., Fonseca B., González S., Baeza-Yates R., Cambiazo V., Campos R., Gonzalez M., Orellana A., Retamales J., Silva H. A rapid and efficient method for purifying high quality total RNA from peaches (Prunus persica) for functional genomics analyses. Biol. Res. 2005;38:83–88. doi: 10.4067/S0716-97602005000100010. PubMed DOI
Asif M., Trivedi P., Solomos T., Tucker M. Isolation of high-quality RNA from apple (Malus domestica) fruit. J. Agric. Food Chem. 2006;54:5227–5229. doi: 10.1021/jf053137n. PubMed DOI
Untergasser A. “RNAprep-Trizol combined with Columns” Untergasser’s Lab. Winter 2008. [(accessed on 1 August 2023)]. Available online: https://www.untergasser.de/lab/protocols/rna_prep_comb_trizol_v1_0.htm.
Vennapusa A.R., Somayandal C.J., Jagadish S.V.K. A universal method for high quality RNA extraction from plant tissues rich in starch, proteins and fiber. Sci. Rep. 2020;10:16887. doi: 10.1038/s41598-020-73958-5. PubMed DOI PMC
Ahmed M., Sarwar M.B., Ashfaq R., Ahmed A., Yanag X., ud Din S., Sajid M., Syed Q., Abidi S.H., Wang X. Low-cost and highly efficient: A method for high-quality nucleic acid isolation from cotton fibres. bioRxiv. 2022 doi: 10.1101/2022.10.07.511236. DOI
Kiefer E., Heller W., Ernst D. A simple and efficient protocol for isolation of functional RNA from plant tissues rich in secondary metabolites. Plant Mol. Biol. Rep. 2000;18:33–39. doi: 10.1007/BF02825291. DOI
Yockteng R., Almeida A.M., Yee S., Andre T., Hill C., Specht C.D. A method for extracting high-quality RNA from diverse plants for next-generation sequencing and gene expression analyses. Appl. Plant Sci. 2013;1:1300070. doi: 10.3732/apps.1300070. PubMed DOI PMC
Kukurba K.R., Montgomery S.B. RNA Sequencing and Analysis. Cold Spring Harb. Protoc. 2015;11:951–969. doi: 10.1101/pdb.top084970. PubMed DOI PMC
Mitchell N., McAssey E.V., Hodel R.G.J. Emerging methods in botanical DNA/RNA extraction. Appl. Plant Sci. 2023;11:e11530. doi: 10.1002/aps3.11530. DOI
Bhardwaj K., Silva A.S., Atanassova M., Sharma R., Nepovimova E., Musilek K., Sharma R., Alghuthaymi M.A., Dhanjal D.S., Nicoletti M., et al. Conifers Phytochemicals: A Valuable Forest with Therapeutic Potential. Molecules. 2021;26:3005. doi: 10.3390/molecules26103005. PubMed DOI PMC
Seçgin Z., Gökdemir G., Atabay E.S., Kurt Kızıldoğan A., Kavas M. Development of new total RNA isolation method for tissues with rich phenolic compounds. Turk. J. Biochem. 2020;45:343–350. doi: 10.1515/tjb-2019-0375. DOI
Carpinetti P.D.A., Fioresi V.S., Ignez da Cruz T., de Almeida F.A.N., Canal D., Ferreira A., Ferreira M.F.D.S. Efficient method for isolation of high-quality RNA from Psidium guajava L. tissues. PLoS ONE. 2021;16:e0255245. doi: 10.1371/journal.pone.0255245. PubMed DOI PMC
Xiao H., Kim W.S., Meng B. A highly effective and versatile technology for the isolation of RNAs from grapevines and other woody perennials for use in virus diagnostics. Virol. J. 2015;12:171. doi: 10.1186/s12985-015-0376-3. PubMed DOI PMC
Tattersall E.A., Ergul A., AlKayal F., DeLuc L., Cushman J.C., Cramer G.R. Comparison of methods for isolating high-quality RNA from leaves of grapevine. Am. J. Enol. Vitic. 2005;56:400–406. doi: 10.5344/ajev.2005.56.4.400. DOI
Lewinsohn E., Steele C.L., Croteau R. Simple isolation of functional RNA from woody stems of gymnosperms. Plant Mol. Biol. Rep. 1994;12:20–25. doi: 10.1007/BF02668660. DOI
Nizam A., Kalath H., Kumar A. A modified method for efficient RNA isolation from mangrove root tissues rich in secondary metabolites. BioTechniques. 2023;74:302–316. doi: 10.2144/btn-2022-0078. PubMed DOI
Masoomi-Aladizgeh F., Jabbari L., Khayam Nekouei R., Aalami A., Atwell B.J., Haynes P.A. A universal protocol for high-quality DNA and RNA isolation from diverse plant species. PLoS ONE. 2023;14:e0295852. doi: 10.1371/journal.pone.0295852. PubMed DOI PMC
Schultz D.J., Craig R., Cox-Foster D.L., Mumma R.O., Medford J.I. RNA isolation from recalcitrant plant tissue. Plant Mol. Biol. Rep. 1994;12:310–316. doi: 10.1007/BF02669273. DOI
Azevedo H., Lino-Neto T., Tavares R.M. An improved method for high-quality RNA isolation from needles of adult maritime pine trees. Plant Mol. Biol. Rep. 2003;21:333–338. doi: 10.1007/BF02772582. DOI
Gautam A. DNA and RNA Isolation Techniques for Non-Experts. Springer; Cham, Switzerland: 2022. Lithium Chloride-Based Isolation of RNA. Techniques in Life Science and Biomedicine for the Non-Expert. DOI